BIVIC Medical Informatics and
Decision Making

Software
The caCORE Software Development Kit: Streamlining

@,

BiolVled Central

construction of interoperable biomedical information services
Joshua Phillips!, Ram Chilukuri?#4, Gilberto Fragoso3, Denise Warzel3 and

Peter A Covitz*3

Address: 1Science Applications International Corporation, Annapolis, MD, USA, 20Oracle Corporation, Reston, VA, USA, 3National Cancer Institute

Center for Bioinformatics, 6116 Executive Blvd., Rockville, MD 20852 USA and 4SemanticBits LLC, Baltimore, MD, USA

Email: Joshua Phillips - joshua.a.phillips@comcast.net; Ram Chilukuri - ram.chilukuri@semanticbits.com;

Gilberto Fragoso - fragosog@mail.nih.gov; Denise Warzel - warzeld @mail.nih.gov; Peter A Covitz* - covitzp@mail.nih.gov

* Corresponding author

Published: 06 January 2006 Received: 19 August 2005
. . - . . Accepted: 06 January 2006

BMC Medical Informatics and Decision Making 2006, 6:2 doi:10.1186/1472-6947-6-2

This article is available from: http://www.biomedcentral.com/1472-6947/6/2

© 2006 Phillips et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Robust, programmatically accessible biomedical information services that syntactically and
semantically interoperate with other resources are challenging to construct. Such systems require the
adoption of common information models, data representations and terminology standards as well as
documented application programming interfaces (APIs). The National Cancer Institute (NCI) developed
the cancer common ontologic representation environment (caCORE) to provide the infrastructure
necessary to achieve interoperability across the systems it develops or sponsors. The caCORE Software
Development Kit (SDK) was designed to provide developers both within and outside the NCI with the

tools needed to construct such interoperable software systems.

Results: The caCORE SDK requires a Unified Modeling Language (UML) tool to begin the development
workflow with the construction of a domain information model in the form of a UML Class Diagram.
Models are annotated with concepts and definitions from a description logic terminology source using the
Semantic Connector component. The annotated model is registered in the Cancer Data Standards
Repository (caDSR) using the UML Loader component. System software is automatically generated using
the Codegen component, which produces middleware that runs on an application server. The caCORE
SDK was initially tested and validated using a seven-class UML model, and has been used to generate the
caCORE production system, which includes models with dozens of classes. The deployed system supports
access through object-oriented APIs with consistent syntax for retrieval of any type of data object across
all classes in the original UML model. The caCORE SDK is currently being used by several development
teams, including by participants in the cancer biomedical informatics grid (caBIG) program, to create
compatible data services. caBIG compatibility standards are based upon caCORE resources, and thus the

caCORE SDK has emerged as a key enabling technology for caBIG.

Conclusion: The caCORE SDK substantially lowers the barrier to implementing systems that are
syntactically and semantically interoperable by providing workflow and automation tools that standardize
and expedite modeling, development, and deployment. It has gained acceptance among developers in the
caBIG program, and is expected to provide a common mechanism for creating data service nodes on the

data grid that is under development.

Page 1 of 16

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16398930
http://www.biomedcentral.com/1472-6947/6/2
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Medical Informatics and Decision Making 2006, 6:2

Background

caCORE is a framework for creating syntactically and
semantically interoperable biomedical information serv-
ices [1]. Systems developed using the caCORE methodol-
ogy use the same approach to defining, registering, and
adopting data and representation standards. Clients of
those systems can therefore draw upon multiple sources
using similar API calls, and can rely on semantic equiva-
lence of the data retrieved. caCORE consists of several
components. Enterprise Vocabulary Services (EVS), a
description-logics based thesaurus and ontology manage-
ment system, provides terminology development and
hosting services. The cancer Data Standards Repository
(caDSR), an ISO/IEC 11179 metadata registry [2], pro-
vides for reference metadata management and distribu-
tion. The Cancer Bioinformatics Infrastructure Objects
(caBIO) module provided the model-driven architecture
for data interfaces that has since been adopted by all
caCORE components. The Common Security Module
(CSM) provides for highly granular access control and
authorization schemes. Complete documentation and
updated information on caCORE can be found on the
NCICB web site[3]. A number of biomedical informatics
groups use caCORE for the management of data standards
and to create interoperable genomic, translational, and
clinical research applications. Examples of such applica-
tions include the Cancer Models Database[4], caWork-
bench[5], Cancer Molecular Analysis Project[6], and
Cancer Centralized Clinical Database|[7].

One of the primary incentives for making the caCORE
development tools and methodology available to the
broader community was the advent of caBIG[8]. The
caBIG program was launched in 2003 as a federated pro-
gram of biomedical information system and tool develop-
ment. caBIG spans multiple research domains, including
basic biology, genomics, proteomics, clinical trials, tissue
banking and pathology, and imaging. caBIG presently
includes participants from 50 cancer centers as well as
other government, commercial, and non-profit institu-
tions enaged in cancer research and patient advocacy.

In order for the tools developed by different development
groups in caBIG to become interoperable, members of the
caBIG program defined several different levels of system
compatibility and interoperability that can be achieved by
meeting certain sets of requirements[9]. The requirements
are grouped into four major categories of standards: Infor-
mation Models; Common Data Elements; Terminology;
and Programming Interfaces. By meeting the require-
ments in all four categories, a system is said to have
achieved a particular level of compatibility. The levels
have been defined and labeled, in ascending order of
stringency, as "Bronze", "Silver", and "Gold". As of the
writing of this article caBIG developers are aiming for Sil-

http://www.biomedcentral.com/1472-6947/6/2

ver-level compatibility in their projects, as the Gold level
is still being defined by the program participants. There-
fore, a toolkit that simplifies construction of a Silver-com-
patible resource was needed.

caBIG Silver compatibility calls for data systems to pro-
vide a documented API that serves up data objects derived
from a domain object model that has been expressed as a
UML class diagram. All data elements described by the
model must be registered in the NCI caDSR. Terminology
used for the model and data elements must originate from
a caBIG-approved vocabulary source.

We assessed the functionality provided by the caCORE
system with respect to caBIG compatibility and deter-
mined that it meets Silver level compatibility itself. We
further determined that caCORE resources combined with
other open-source components could be leveraged to
assist other caBIG developers in with constructing their
own Silver-compatible information systems. We therefore
set about to upgrade and package the tools we had used to
create caCORE itself. The product of this effort, the
caCORE SDK, now enables any group to reproduce our
methodology for implementing a caBIG Silver-compliant
resource.

Implementation

We analyzed and compared a number of open-source and
low-cost tools and utilities that would support the con-
struction of a model-driven system that was grounded in
a solidly defined semantic foundation. The caCORE 3.0
information architecture formed the basis for our
approach, but we selected components from external
sources in addition to those developed at the NCI. The
components were assembled and documented to support
a streamlined workflow that accepts an information
model expressed in the Unified Modeling Language
(UML) as a starting point[10]. The model is semantically
annotated using concepts from EVS terminology services
and registered in the caDSR metadata registry for retrieval
as needed by applications. The model is then fed into a
Java code and database generator that creates fully func-
tioning middleware connected to back-end data storage
services. The resulting APIs are uniform across all data
classes in the model, and provide for runtime access to
structured research data as well as the associated metadata
describing the semantics and information model.

UML modeling tool

UML can be used to model software, business processes
and information models, including complex domain
object models that represent data classes, attributes of
each class, and class-class relationships. These class dia-
grams are electronically captured using a UML modeling
tool. Several UML modeling tools - both commercial and

Page 2 of 16

(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:2

http://www.biomedcentral.com/1472-6947/6/2

cd LogicalModel

domain::Clone

id: Long
+ verified: Boolean
- insertSize: Long

- name: String
- version: String
- strain: String

- accessionNumber: String [0..

+cloneCollection

domain::Library

+library

*

+clone 0..1

*

+sequenceCollection |0..

domain::Sequence

- id: Long
- length: Long

- description: String
- asciiString: String
- accessionNumber: String

- type: Long

- isReferenceSequence: Boolean

- accessionNumberVersion: String

+sequenceCollection | 0..*

+geneCollection | 0..*

domain::Gene

+geneCollection

0..1

id: Long

type: String
name: String
keyword: String
description: String
RSite1: String
RSite2: String
unigeneld: Long
creationDate: Date
labHost: String
clonesToDate: Long

sequencesToDate: Long

+libraryCollection 0..

- id: Long

- title: String

- symbol: String

- locusLinkSummary: String
- OMIMID: String

- locusLinkld: String

- clusterld: Long

0..*

+geneCollection

*

+targetCollection

domain::Target

- id: Long

0..*

+geneCollection

0..*

- type: String
- name: String

+geneCollection | 0..*

+chromosome 0..1

domain::
Chromosome

0..*

+chromosomeCollection

+taxon 0.1

domain::Taxon

- id: Long

- name: String 0..

+t id: Long
axon scientificName: String
0..1|- ethnicityOrStrain: String

- abbreviation: String
- commonName: String
- isPreferred: Boolean

Figure |

Example UML domain model, shown as a class diagram. The model shown here, a subset of the larger caBIO model used in the
production caCORE system, includes several classes related to the class Gene. This model was used for initial testing and vali-
dation of kit components. After the kit was validated, the caCORE SDK was used with all the full-sized caCORE domain mod-

els (not shown).

Page 3 of 16

(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:2

open-source - are available in the market today. To select
a UML modeling tool we conducted an extensive evalua-
tion process based on a wide variety of selection criteria.
The criteria included: ability to import/export UML mod-
els to and from XML Metadata Interchange (XMI) specifi-
cation; support for all types of UML diagrams, for tagged
values, and for stereotypes; performance; and cost. UML
models must be exported to XMI format in order to be
used in the subsequent steps in the caCORE SDK work-
flow[11]. Any UML 1.3 modeling tool that produces XMI
1.1 output should in principle be serviceable, though
slight variations in XMI implementation may require
some processing of the XMI files prior to usage with the
caCORE SDK. Figure 1 shows an example class diagram
from Enterprise Architect (EA), our first choice due to its
relatively low cost and high performance[12].

Semantic connector

Proper semantic integration requires that each class and
class attribute from the UML model gets mapped to
appropriate concepts in a controlled terminology. The
caCORE SDK utilizes the NCI Thesaurus (NCIT) as its pri-
mary terminology source. The NCIT contains terms in use
by the NCI and the cancer community, and is intended to
facilitate interoperability, data sharing, and semantic inte-
gration between systems by mapping terms to unique
concepts, providing codes, and providing base semantics
and relations [13,14]. The NCIT is built in a description
logics (DL) environment [13]. In the DL, concepts are
compositionally defined by their placement in a sub-
sumption hierarchy based on an agreed classification
principle, and the role expressions asserted on the con-
cept. Classification of the DL terminology by a reasoner
can be considered a debugging step, and is utilized to val-
idate defined concepts as well as identifying conflicting
and inconsistent concepts. Although other terminology
authoring systems can prove equally useful, we consider
DL an integral part of terminology development because
it helps to enforce the base semantics of the terminology.
The rigour and consistency of the resulting product is
deemed necessary to support the creation of metadata
describing data that must be shared across disparate sys-
tems. In the future, other DL terminology sources in addi-
tion to the NCIT may be integrated with the caCORE SDK.

The concept selection process can be entirely manual, or it
can be partially automated using the Semantic Connector,
a tool supplied by the caCORE SDK. The Semantic Con-
nector uses the UML Model expressed in XMI as input and
uses the caCORE EVS APIs hosted at the NCI to search the
NCI Thesaurus for appropriate concepts. The search algo-
rithm specifically takes class and attribute names as input.
String matching is conducted against the Preferred_Name
and Synonym properties of the NCI Thesaurus. If an ini-
tial query with the whole UML class or attribute name fails

http://www.biomedcentral.com/1472-6947/6/2

to return results, the names are processed into component
tokens based on underscores or case changes. For exam-
ple, first_name or firstName would be split into the terms
'first' and 'name’, and the semantic connector uses these
component tokens to query the NCI Thesaurus.

The Semantic Connector returns a report as a comma-sep-
arated value file, listing possible matching concepts where
found. This report is reviewed by developers and subject
matter experts to ensure that the correct mapping of UML
classes and attributes to semantic concepts. The report is
edited manually to correct any errors in the automated
output. In the cases where the automated matching fails
to return a match, or returns more than one match to an
existent concept, the assignment is made manually. Fur-
ther, if the search and subsequent manual review reveals
that no NCI Thesaurus concept (or combination of con-
cepts) adequately represents the UML entity, suitable con-
cepts are created. If a combination of concepts is required
to adequately represent the class or attribute, they are
explicitly ordered to preserve the intended semantics. The
validated report containing mapped entities is then used
to automatically insert tagged values for the semantic con-
cepts back into the XMI representation of the UML model.
The final product is thus an annotated UML model that
includes all the semantic concept codes for each class and
attribute. The model and the additional tagged values rep-
resenting the semantic annotations can be viewed in the
UML modeling tool.

UML loader

The UML model, annotated with semantic concept codes,
contains a considerable amount of metadata about the
ultimate system that will be deployed. However, it is not
in a form that is amenable to query and retrieval in a runt-
ime environment nor easily queried by humans to make
use of this information for other purposes such as creating
forms to collect data. To address these limitations, we
developed a strategy for transforming and loading the
models into the caDSR, which provides APIs that support
runtime access to metadata.

The caDSR is an implementation of the ISO/IEC 11179
standard for metadata registries, so we created a mapping
between UML and ISO/IEC11179 at the metamodel level.
To create the mapping, we experimented with various
approaches and concluded that a UML Class is equivalent
to an ISO/IEC 11179 Object Class, a thing in the real
world; and an attribute of a UML class is equivalent to an
ISO/IEC 11179 Property, a characteristic of a thing the real
world. From there, other ISO/IEC 11179 metadata com-
ponents, derived from Object Class and Property, can be
formed. The joining of an Object Class and Property
together forms an ISO/IEC 11179 Data Element Concept. A

Page 4 of 16

(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:2

Data Element Concept, when joined to a Value Domain,
forms an ISO/IEC 11179 Data Element.

Recognizing that UML modeling tools can export a model
as an XMI file, we created the UML Loader, a utility that
takes an XMI file as input. UML Loader uses mapping
rules to convert UML Classes, Attributes, associations, and
cardinality relationships into the corresponding ISO/IEC
11179 constructs: Object Class, Property, Data Element
Concept, and Data Element. UML Loader then inserts
these constructs into the caDSR. The insertion rules
include a harmonization step in which the model compo-
nents are compared to existing metadata components in
the caDSR. Wherever an exact match to the same concept
codes is found, the model component is not duplicated in
the caDSR, and the existing component is re-used. In this
way components of new models are automatically harmo-
nized with those of existing models. We refer to the re-usa-
ble data element components as Common Data Elements
(CDEs).

Curation and specification of data standard constraints
The binding of specific thesaurus concepts to the UML
model components and subsequent loading into the
caDSR is necessary, but not entirely sufficient, to specify
an interoperable system. The UML Loader automatically
creates a default non-enumerated Value Domain for each
Data Element. This default is sufficient for those Data Ele-
ments that do not need further specification beyond one
of a general or primitive data type. However, for many
fields, a crucial additional requirement is the specification
of data standards that are to be used to constrain the
allowable data entries in the final data management sys-
tem. A list of enumerated permissible values or specific
rules for values for a given Data Element needs to be
explicitly defined such that values or rules can be retrieved
and checked as needed during system instantiation or
data validation.

UML provides the Object Constraint Language extension
that could, in principle, be used this purpose. However,
due to the level of interactive integration with EVS and
existing caDSR content that is required to support con-
struction of Value Domains, we have found that, in prac-
tice, it is more efficient to edit the Value Domains directly
in the caDSR after UML model loading. For those Data
Elements that require constraint by an enumerated list of
values, data standards, or specific rules, further refinement
of the model's metadata must be performed. The caDSR's
CDE Curation Tool is a web application that enables a
metadata curator with appropriate access permission to
create or reuse existing Value Domains and insert or refer-
ence a list of permissible values. When using the CDE
Curation Tool, the values may be drawn from EVS termi-
nologies or other externally defined value sets. The CDE

http://www.biomedcentral.com/1472-6947/6/2

Curation Tool is not formally part of the caCORE SDK
itself, but it is presently an essential auxiliary utility for
this particular step in the workflow.

Final Curation of the model in caDSR includes a review
using the caDSR tools and/or the APIs to ensure that all
UML classes, attributes and associations have been prop-
erly transformed. A caDSR classification scheme equating
to the UML Model is used to facilitate retrieval of all the
associated caDSR metadata. After the model metadata has
been reviewed for completeness, ensuring that all classes
and attributes and appropriate associations have been cre-
ated in caDSR as expected, additional information can be
entered directly into caDSR using the caDSR tools, such as
attaching a copy of the UML diagram for reference. In the
final step of model curation, the model owner or meta-
data curator creates any necessary value enumerations or
rules for Value Domains using the Curation Tool. The
CDE Curation Tool is used to search for and incorporate
EVS terminologies to build value lists based on existing
data standards, thus allowing application owners to fur-
ther disambiguate each Data Element.

Code generator

Code generation reduces the cost of producing and main-
taining large, consistent, and intuitive data-access APIs.
The caCORE SDK includes a code generation framework
called Codegen. Codegen is a complete code generation
framework that is independent of any modeling tool and
it can be used independently of the rest of the caCORE
SDK.

Several existing, open-source, code generation tools were
considered before it was deemed necessary to build Code-
gen. Among the tools considered were AndroMDA,
AXgen, Eclipse Modeling Framework (EMF), and XDoclet
[15-18]. The criteria used to evaluate these tools included
the following: UML support; model API standardization;
extent of model access; ease of extensibility; skill-set
match; and extent of modeling constraints. While none of
these tools, on their own, satisfied all the criteria, the com-
ponents that some of these tools use can be combined in
a way that does.

While Codegen is a complete framework, it is also rather
lean in that it combines existing components in a useful
way without introducing elaborate abstractions. Codegen
uses the NetBeans Metadata Repository (MDR) to provide
UML support, model API standardization, and full model
access[19]. Maximal extensibility and minimal modeling
constraints are achieved through Codegen's concepts of
filter and transformation chains. Codegen utilizes Java-
related skill-sets by using Java Emitter Templates (JET) as
its primary template language[17]. The FreeMarker tem-
plate language is also supported[20].

Page 5 of 16

(page number not for citation purposes)

http://www.biomedcentral.com/1472-6947/6/2

BMC Medical Informatics and Decision Making 2006, 6:2

Table |I: Components of the caCORE SDK.

Component Name Version Description URL Incl.
Java 2 Standard Edition j2sdkl.4.2_06 The J2SE Software Development Kit (SDK) supports creating J2SE http://java.sun.com/j2se/1.4.2/download.html No
(J)2SE) or higher applications
UML 1.3 Modeling Tool EA 4.50.744 We recommend using Enterprise Architect (EA) http://www.sparxsystems.com.au/ea.htm No
that produces XMl I.1
output
Ant.jar 1.6.2 Apache Ant is a Java-based build tool http://archive.apache.org/dist/ant/binaries/apache-ant-1.6.2-bin.zip ~ Yes
activation.jar The classes that make up the JavaBeans Activation Framework (JAF) http://java.sun.com/products/javabeans/glasgow/jaf.html Yes

standard extension are contained in the included Java Archive (JAR)
file, "activation.jar"

alteredHibernate2.jar Modified Hibernate code decoupling SearchCriteria object from the Yes
Session Object packaged within Hibernate 2.1 classes.

aspectjrt.jar Aspectj is a seamless aspect-oriented extension to the Java™ http://eclipse.org/aspectj/ Yes
programming language

aspectjtools.jar Aspectj contains a compiler, ajc, that can be run from Ant. Included in http://eclipse.org/aspectj/ Yes
the aspectjtools.jar are Ant binaries to support three ways of running
the compiler

axis-ant.jar Ant tasks for building axis. http://ws.apache.org/axis/releases.html Yes

axis.jar Apache Axis is an implementation of the Simple Object Access http://ws.apache.org/axis/releases.html Yes
Protocol (SOAP)

cglib-full-2.0.1 jar 2.0.1 Dynamic JAVA byte code generator http://sourceforge.net/project/showfiles.php?group_id=56933 Yes

codegen.jar Classes required for JET template compilation. http://www.eclipse.org/ Yes

commons-collections- 2.1 Apache Jakarta Commons utilities http://apache.bestwebcover.com/java-repository/commons- Yes

2.1.jar collections/jars/

commons-dbcp-1.1.jar I.1 The Jakarta Commons DBCP Component provides database http://archive.apache.org/dist/java-repository/commons-dbcpl/jars/ Yes
connection pooling. 1C=S:0=A

commons-discovery.jar Apache Jakarta Commons discovery utilities http://jakarta.apache.org/commons/discovery/ Yes

commons-lang-1.0.1 jar Provides a helper utilities for the java.lang API. http://linux.cs.lewisu.edu/apache/java-repository/commons-lang/ Yes

jars/?C=N:0=D

commons-logging-1.0.3.jar Provides a helper utilities logging. http://public.planetmirror.com/pub/maven/commons-logging/jars/ ~ Yes

commons-logging.jar Apache Jakarta Commons logging utilities http://jakarta.apache.org/commons/logging/ Yes

commons-pool-1.1.jar 1.1 The Jakarta Commons Pool Component provides a generic object http://apache.intissite.com/java-repository/commons-pool/jars/ Yes
pooling API.

datafile.jar Java data file read/write utility that provides a convenient set of http://datafile.sourceforge.net/ Yes

interfaces for reading and writing data to and from files in widely
accepted format such as comma separated values (CSV), fixed width,
tab separated, as well as others

db2java.jar Contains classes to support connections to DB2 databases. http://www-306.ibm.com/software/data/db2/udb/ Yes

dom4j-1.4.jar 1.4 Contains classes that allow you to read, write, navigate, create and http://public.planetmirror.com/pub/maven/dom4j/jars/ Yes
modify XML documents.

ehcache-0.7 jar 0.7 EHCache is a pure Java, in-process cache. http://smokeping.planetmirror.com/pub/maven/ehcache/jars/ Yes

Page 6 of 16

(page number not for citation purposes)

http://java.sun.com/j2se/1.4.2/download.html
http://www.sparxsystems.com.au/ea.htm
http://archive.apache.org/dist/ant/binaries/apache-ant-1.6.2-bin.zip
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://eclipse.org/aspectj/
http://eclipse.org/aspectj/
http://ws.apache.org/axis/releases.html
http://ws.apache.org/axis/releases.html
http://sourceforge.net/project/showfiles.php?group_id=56933
http://www.eclipse.org/
http://apache.bestwebcover.com/java-repository/commons-collections/jars/
http://archive.apache.org/dist/java-repository/commons-dbcp/jars/?C=S;O=A
http://jakarta.apache.org/commons/discovery/
http://linux.cs.lewisu.edu/apache/java-repository/commons-lang/jars/?C=N;O=D
http://public.planetmirror.com/pub/maven/commons-logging/jars/
http://jakarta.apache.org/commons/logging/
http://apache.intissite.com/java-repository/commons-pool/jars/
http://datafile.sourceforge.net/
http://www-306.ibm.com/software/data/db2/udb/
http://public.planetmirror.com/pub/maven/dom4j/jars/
http://smokeping.planetmirror.com/pub/maven/ehcache/jars/

http://www.biomedcentral.com/1472-6947/6/2

BMC Medical Informatics and Decision Making 2006, 6:2

Table I: Components of the caCORE SDK. (Continued)

freemarker.jar

hibernate3.jar

Jakarta-oro-2.0.8.jar

jalopy-1.0bl | jar
jalopy-ant-0.6.2.jar

jaxen-core.jar

jaxen-jdom.jar

jaxrpc.jar

jdom.jar

Jdtcore.jar

jetc-task.jar

jmi.jar

jmiutils.jar

jta.jar
junit-3.8.1.jar
junit.jar
log4j-1.2.8.jar
log4j.properties

mail.jar
Mdrant.jar

3.0
208

1.0bl1

0.6.2

38.1

1.2.8

FreeMarker is a "template engine"; a generic tool to generate text
output (anything from HTML or RTF to auto generated source code)
based on templates.

Hibernate 3.0 is used for the server-side ORM

The Jakarta-ORO Java classes are a set of text-processing Java classes
that provide Perl5 compatible regular expressions, AWK-like regular
expressions, glob expressions, and utility classes for performing
substitutions, splits, filtering filenames, etc.

Source code formatter.

Ant task for building jalopy.

The jaxen project is a Java XPath Engine. jaxen is a universal object
model walker, capable of evaluating XPath expressions across multiple
models.

The jaxen project is a Java XPath Engine. jaxen is a universal object
model walker, capable of evaluating XPath expressions across multiple
models.

Java API for XML-based RPC

Java-based solution for accessing, manipulating, and outputting XML
data from Java code.

Eclipse Tomcat Plugin
An ANT task for translating JET templates outside of Eclipse

JMl is a standards-based, platform independent, vendor-neutral
specification for modeling, creating, storing, accessing, querying, and
interchanging metadata using UML, XML, and Java.

Part of the NetBeans MDR codebase. It contains general utility classes
for doing things such as generating class files and querying MOF
models. Most importantly, it contains the implementations of XMl
readers and writers.

JTA specifies standard Java interfaces between a transaction manager
and the parties involved in a distributed transaction system

JUnit is a regression testing framework that is used by the developer
who implements unit tests in Java

JUnit is a regression testing framework that is used by the developer
who implements unit tests in Java

Log4j is an open source tool developed for putting log statements into
your application. With log4j you can enable logging at runtime without
modifying the application binary.

Configuration file used by Log4)

JavaMail API

Ant tasks for building MDR.

http://freemarker.sourceforge.net/freemarkerdownload.html

http://www.hibernate.org
http://jakarta.apache.org/site/binindex.cgi

http://public.planetmirror.com/pub/maven/jalopy/jars/
http://public.planetmirror.com/pub/maven/jalopy/jars/
http://jaxen.org/releases.html

http://jaxen.org/releases.html

http://www.jdom.org/downloads/index.html

http://www.eclipse.org/emf/docs.php?doc=tutorials/jet2/
jet_tutorial2.html

http://mdr.netbeans.org/download/daily.html

http://mdr.netbeans.org/download/daily.html

http://java.sun.com/products/jta/

http://www junit.org/index.htm

http://www.junit.org/index.htm

http://logging.apache.org/log4j/docs/download.html

Yes

Yes
Yes

Yes
Yes
Yes

Yes

Yes

Yes

Yes
Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes
Yes

Page 7 of 16

(page number not for citation purposes)

http://freemarker.sourceforge.net/freemarkerdownload.html
http://www.hibernate.org
http://jakarta.apache.org/site/binindex.cgi
http://public.planetmirror.com/pub/maven/jalopy/jars/
http://public.planetmirror.com/pub/maven/jalopy/jars/
http://jaxen.org/releases.html
http://jaxen.org/releases.html
http://www.jdom.org/downloads/index.html
http://www.eclipse.org/emf/docs.php?doc=tutorials/jet2/jet_tutorial2.html
http://mdr.netbeans.org/download/daily.html
http://mdr.netbeans.org/download/daily.html
http://java.sun.com/products/jta/
http://www.junit.org/index.htm
http://www.junit.org/index.htm
http://logging.apache.org/log4j/docs/download.html

http://www.biomedcentral.com/1472-6947/6/2

BMC Medical Informatics and Decision Making 2006, 6:2

Table I: Components of the caCORE SDK. (Continued)

Mdrapi.jar

mof.jar

mysql-connector-30.jar

nbmdr.jar
Openide-util.jar 4.0
osgi.jar 3.0

resources.jar

Runtime.jar

saaj.jar

Saxpath.jar 1.0-FCS
servlet.jar J2EE 1.3
uml-1.3.jar 1.3
wsdl4j.jar

xerces.jar

xerceslmpl.jar 2.4.0
xml-apis.jar 2.0.2
xmlrpc.jar

MDR implements the OMG's MOF (Meta Object Facility) standard
based metadata repository and integrates it into the NetBeans Tools
Platform. It contains implementation of MOF repository including
persistent storage mechanism for storing the metadata. The interface
of the MOF repository is based on (and fully compliant with) JMI (Java
Metadata Interface — JSR-40).

Archive containing the classes pertaining to Meta-Object Facility
(MOF) specification from Object Management Group (OMG).
Archive containing MySQL 3.0 JDBC driver classes.

Extended implementation of the Meta-Object Facility, XML Metadata
Interchange, and Java Metadata Interface standards.

Contains low level basic support classes that MDR depends on.

The OSGi™ specifications define a standardized, component oriented,
computing environment for networked services.

Contains code central to the Eclipse platform. The caCORE SDK uses
an the "jetc" Ant task to translate JET templates to Java source code.
That Ant task uses code from the Eclipse Modeling Framework (EMF)
plug-in to do the translation. The EMF plug-in depends on code in
resources.jar

Archive containing the classes necessary to run applications developed
on Eclipse Rich Client Platform (RCP).

Archive containing the classes pertaining to SOAP with Attachments
API for Java (SAA)) specification. SAA] is included in Java Web Services
Developer Pack (JWSDP).

SAXPath is an event-based API for XPath parsers, that is, for parsers
that parse XPath expressions.

Archive containing the classes pertaining to J2EE servlet API
specification.

Object Management Group (OMG) UML metamodel specification.
Web Services Description Language support for Java

XML Parser

Xerces Java Parser

XSLT processor for transforming XML documents into HTML, text,
or other XML document types.

Apache XML-RPC is a Java implementation of XML-RPC, a popular

protocol that uses XML over HTTP to implement remote procedure
calls.

http://mdr.netbeans.org/download/daily.html

http://mdr.netbeans.org/download/daily.html

http://mdr.netbeans.org/download/daily.html

http://mdr.netbeans.org/download/daily.html

http://www.osgi.org/osgi technology/
download specs.asp?section=2

http://www.omg.org

http://xml.apache.org/xerces-j/
http://xml.apache.org/xalan-j/

http://www.apache.org/

Yes

Yes

Yes
Yes

Yes
Yes

Yes

Yes

Yes

Yes

Yes

Yes
Yes
Yes
Yes
Yes

Yes

Page 8 of 16

(page number not for citation purposes)

http://mdr.netbeans.org/download/daily.html
http://mdr.netbeans.org/download/daily.html
http://mdr.netbeans.org/download/daily.html
http://mdr.netbeans.org/download/daily.html
http://www.osgi.org/osgi_technology/download_specs.asp?section=2
http://www.omg.org
http://xml.apache.org/xerces-j/
http://xml.apache.org/xalan-j/
http://www.apache.org/

BMC Medical Informatics and Decision Making 2006, 6:2

http://www.biomedcentral.com/1472-6947/6/2

Table 2: Semantic Connector report for the Target class and its attributes.

UML Entity* Concept Concept Classification Concept Concept Definition Concept Human
Name Preferred Code Definition Verified
Name Source
Target Candidate Candidate ObjectClass C19389 A gene proposed to have a NCI y
_Disease_Gene Disease Gene primary role in a disease, based
upon its known function in
other organisms or model
systems or based upon its
physical proximity to markers
linked to a genetic disease.
id Identifier Identifier Property C25364 One or more characters used NCI y
to identify, name, or
characterize the nature,
properties, or contents of a
thing.
type Type Type Property C25284 A subdivision of a particular kind NCI y
of thing.
name Name_Generic Name Property C42614 The words or language units by NCI y

_Concept

which a thing is known.

A class or an attribute of a class

Results

Overview of the caCORE SDK

caCORE systems are built using the model-driven archi-
tecture paradigm, with substantial extensions added to
support the incorporation of a much richer semantic
framework. The development methodology is a modified
version of the Rational Unified Process embedded within
a lightweight version of the traditional waterfall
approach[21]. Therefore, usage of the SDK follows a par-
ticular workflow pattern that mirrors our approach to
constructing caCORE-type resources. The steps in the
workflow include: Use case development; information
modeling; semantic annotation; metadata registration;
code generation; system deployment.

The result is a fully functioning multi-tiered system with a
middleware layer that provides well defined APIs. The
data classes, their attributes, and the data itself are tagged
with appropriate concepts from a description-logics
ontology. The ontology tags, associated definitions, and
semantic relationships are all available in the runtime
programming environment from the caCORE metadata
registry, the caDSR.

The caCORE SDK includes numerous components (Table
1). Most are included with the kit download, including
those open-source components that are from other
projects. The kit also includes a comprehensive Program-
mer's Guide. Users must obtain their own UML 1.3-com-
pliant UML modeling tool that can export XMI 1.1 or 1.2.
And at present, the UML Loader utility that registers the
model in the caDSR metadata registry can only be run in
consultation with the caDSR support team. Future ver-

sions of the kit are expected to provide direct access to
UML Loader.

Use cases

A use case is a structured textual representation of how
users interact with a computer application. Use cases typ-
ically define one or more actors, a workflow, pre-condi-
tions, post-conditions, and alternate scenarios. The
caCORE software development process begins with use
case development, using whatever tool the team prefers.
The level of formality, granularity, and depth of the use
cases can be adjusted based upon the needs and con-
straints of the project team. We stress that use case devel-
opment should not be skipped, as use cases provide
tangible, stable indicators for project requirements and
thus help avoid drift and scope creep. Example use cases
for a number of projects can be found on the NCICB web
site.

Information modeling and semantic annotation

Once a sufficiently comprehensive set of use cases has
been collected, the next step is to create a domain model
in UML. This model will serve as the primary determinant
of the information and programming interfaces that are
produced, and is also the basis for generation of the actual
software code. Classes in the model should represent dis-
crete scientific entities, and attributes of the classes should
represent specific characteristics of the entities. The
attributes become Data Elements in a software system. For
example, a class might be defined as 'Gene', and an
attribute of that class defined as 'Symbol' (Figure 1). In
addition to classes and attributes, the model also specifies
class-class associations including cardinality and direc-

Page 9 of 16

(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:2

UML model
in native
format

Conversion or; Terminology

export from
UML Tool

source

Y

Semantic Connector
compares model with
terminology source

UML in XMI
format

Corrected
semantic report

T

Semantic Connector
annotates model with
terminology concepts

F

Y

Raw semantic
report

Expert
review and
correction

http://www.biomedcentral.com/1472-6947/6/2

UML in XMI
format with
concept
annotations

Codegen
generates
software

Software
code

Configuration,
deployment

'caBIG Silver-compatible!
data system

Curator
completes
UML
metadata

UML loader inserts
model into caDSR

Figure 2

Model and semantic
metadata registered and
available in caDSR

caCORE SDK Workflow. A UML object model and a description-logic terminology source (NCI Thesaurus in the present
work) are the inputs into the workflow. The model is exported from the format native to the tool it was developed in to the
standard XMI representation. The XMl file is then annotated with terminology concepts using Semantic Connector. The anno-
tated model is used as input into Codegen, which generates the software for a caBIG-compatible data system with object-ori-
ented APIs. The annotated model is loaded as metadata into the caDSR using UML Loader. Model metadata is reviewed and
completed by a curator using caDSR utilities, and then becomes available from the caDSR APIs and web applications.

tion. It is imperative that the UML model be annotated
with descriptions; this facilitates the subsequent semantic
integration, where UML entities (classes and attributes)
are matched to vocabulary concepts, and the matches
require review by a subject matter expert.

After the classes and attributes in the UML model are
defined, but before it is finalized, the modeler undertakes
the process of semantic integration, which results in the
annotation of the UML entities with concept codes from a
controlled terminology system. In practice this involves
using the Semantic Connector utility, included with the
caCORE SDK, to tag data classes and attributes with con-
cepts the NCI Thesaurus. This utility accepts an XMI rep-
resentation of a UML class diagram as input, compares the
class and attribute names to the NCI Thesaurus, and
returns a report of matches between the class and attribute

names and NCI Thesaurus concepts, along with concept
names, codes, preferred terms and definitions.

The report is reviewed by a subject matter expert who
makes appropriate edits and selections for the final con-
cept associations using a text editor or spreadsheet soft-
ware. Table 2 shows a portion of the Semantic Connector
report for the Target class and its attributes after manual
review and annotation. In many cases the expert will
assess whether a UML entity is best represented by a single
concept or a combination of concepts. Consultation with
an authorized editor of the terminology source may be
warranted. Once the report has been appropriately edited
to contain the correctly ordered concept mappings,
including names and codes and definitions, it is fed back
into the Semantic Connector utility, along with the origi-
nal model, to produce a revised XMI file that now includes
all of the relevant ontology concept information from the

Page 10 of 16

(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:2

terminology source. This modified file can be re-loaded
into the UML modeling tool as needed. Once the model
has been finalized, it is fed into the next steps in the work-
flow (Figure 2).

UML model loading

The semantically annotated version of the model is
exported in XMI and used as an input to UML Loader, a
Java application that performs the transformation of
metadata from the model into caDSR metadata (Figure 2).
UML model metadata corresponding to various elements
of a class diagram is transformed into caDSR metadata by
creating, or finding and reusing, the different types of
caDSR metadata components. A high level ISO/IEC
11179 Classification Scheme is created for each UML
model and used to classify and group all the model meta-
data, simplifying identification and retrieval via caDSR
tools and APIs.

We used the UML Loader to insert components from a
semantically annotated version of the model shown in
Figure 1 into the caDSR. In the case of the UML class
"Chromosome", the following caDSR entities are created:
an Object Class with a long name of "Chromosome";
Properties "Identifier" and "Name" corresponding to
attributes "id" and "name"; Data Element Concepts
"Chromosome Identifier" and "Chromosome Name" ;
Data Elements "Chromosome Identifier java.lang.Long"
and "Chromosome Name java.lang.String", which
include the default Value Domains for the Long and String
data types, respectively. In the case of this example, the
default Value Domains were left unmodified.

Details of the class-class associations are recorded as rela-
tionships between caDSR Object Classes, including cardi-
nality and direction. Inheritance associations are treated
as an "IS_A" relationship and transformed in a manner
such that the class attributes associated with the target
class are inherited by the source class. The resulting loaded
metadata can be retrieved from the caDSR APIs or viewed
interactively with the CDE Browser web application. The
UML model shown in Figure 1 was loaded in this manner
and can be viewed in the CDE Browser web application in
the caCORE Context.

Code generation

After the UML model has been curated, Codegen is used
to produce code and other artifacts from elements of the
model. The code generation process is an automated
workflow that is directed by an XML control file. The two
steps in that process include first selecting elements of the
model using a 'filter-chain' and then generating artifacts
from those elements using a 'transformer-chain'. A filter-
chain can select model elements that, for example, have
names that will match a given regular expression or that

http://www.biomedcentral.com/1472-6947/6/2

are members of a class hierarchy. A transformer-chain
consists of one or more 'transformers' that will generate
some artifact from each model element that is selected by
a filter-chain. The type of transformer used depends on
the type of artifact desired. The caCORE SDK supplies JET
templates as the transformers that produce Java code. The
syntax of JET templates is a subset of Java Server Pages
(JSP) syntax, which makes writing templates easy for
those with Java skills.

When a template is executed, Codegen passes it a refer-
ence to the selected model element. The template code
can then inspect the properties of that element to deter-
mine how to generate code from it. For example, the code
can determine the element's name, attributes, or any
ontological information added by the Semantic Connec-
tor utility. The references passed to templates are Java
objects that implement standard interfaces, as specified by
the Java Metadata Interface (JMI) standard. For example,
if the model element is a UML 1.3 class, then the object
would implement the 'org.omg.uml.founda-
tion.core.UmlClass' interface. From any model element
reference, the transformer code can navigate to all other
information in the model by using the JMI interfaces
alone, but Codegen provides utility classes for performing
common operations, such as retrieving all classes associ-
ated with a particular class. Out of the box, the caCORE
SDK provides transformers to generate Java Bean imple-
mentations of UML class elements; Hibernate Object-
Relational mapping files; and other configuration files
needed by the caCORE architecture.

Object to relational mappings

The caCORE SDK generates the implementation of an
object-oriented API to a relational data source. Object-ori-
ented queries created by clients are sent to the persistence
layer, where they are mapped into equivalent SQL state-
ments. The resulting database records are used to populate
the caCORE domain objects that are sent back to the cli-
ent. The translation of domain objects to database
records, and back, is handled by the open-source object-
relational mapping tool Hibernate[22]. To perform this
translation, Hibernate needs XML files containing the
metadata that describes how classes map to tables, how
attributes map to columns, and how associations between
classes map to relations between tables. Codegen gener-
ates these XML files from the UML model.

According to the caCORE SDK's model-driven process, the
modeler creates a UML data model within the same
model that contains the domain object model. The data
model describes the mappings between the object model
and a physical relational schema. This approach works for
both new and existing database schemata. There are vari-
ous approaches to implementing object-relation map-

Page 11 of 16

(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:2

http://www.biomedcentral.com/1472-6947/6/2

J2EE/WEB APPLICATION SERVER

API SERVICES

Java APls

Clients

FRAMEWORK, DOMAIN OBJECTS AND DEPLOYMENT

Domain
Objects

Hibernate Mapping
Descriptors

Delegation
Service

Data Access
Objects

LIBRARIES AND UTILITIES

Hibernate AspectJ

Log4J

Figure 3

Architecture of caCORE SDK-generated system. Systems developed using caCORE SDK are deployed as a Web Application
Archive (WAR) to a J2EE application server such as JBoss or a web application server such as Tomcat. Contents of the WAR
file can be logically grouped into three categories. Libraries and Utilities are typically packaged as JAR files, and include Aspect]
for auditing, Log4] for logging, and Hibernate for object-relational mapping. Framework, Domain Objects and Deployment
Descriptors include caCORE SDK classes needed at runtime, domain objects with corresponding hibernate mapping files gen-
erated by caCORE SDK, and property files containing configuration parameters. APl Services function as a fagade or an entry
point to the system. Client requests are processed by the interface proxy in the application server and mapped to the appro-
priate data source by the delegation service. In version 1.0.2 of caCORE SDK, described in this article, only Java APIs are gen-
erated; in subsequent versions Web Services APIs can also be generated, with Apache Axis providing SOAP message support.

ping, each with its own trade-offs and implications for
physical database structure. Hibernate can accommodate
most approaches. However, the Codegen transformers
that generate the Hibernate XML metadata files follow a
single approach which places constraints on the database
structure. For example, it is assumed that all tables will use
a surrogate primary key. The details of these constraints
are explained in the caCORE SDK's Programmers Guide.

Database creation

After the data model containing the mapping between
object model and physical relational schema is created,
data definition language (DDL) scripts containing SQL
commands for creating database schema could optionally
be generated using the "Generate DDL" utility in EA.
These SQL scripts have to be executed in the chosen
RDBMS environment to actually create the necessary data-
base schema objects such as: tables and views, and data-
base constraints such as: primary keys, unique keys, and
foreign keys. This exercise can totally be skipped when
using an existing/legacy database. Essentially, caCORE
SDK supports creation of object-oriented data access API

for two types of systems: systems with existing databases
and brand new systems.

During model transformation the UML Loader creates an
alternate name for each Data Element in caDSR corre-
sponding to the fully qualified attribute name. If the
caCORE SDK naming convention is followed, these alter-
nate names will match the mapping attribute names used
to associate data model tables and fields with domain
object model classes and attributes, forming the basis for
easily identifying the caDSR Data Elements associated
with the data model. For example, if the data model
describes a table and field mapped to the attribute "name"
of the "Chromosome" class of the domain object model,
the alternate name "gov.nih.nci.cabio.domain.Chromo-
some.name" is created and can be used as a search term to
find the Value Domain list or rules associated with this
Data Element.

System architecture and deployment
The default output of the caCORE SDK is a fully func-
tional, data-access system that is similar to the caBIO

Page 12 of 16

(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:2

module of caCORE 3.0 (Figure 3). The system is com-
posed of six components that function on three tiers. The
components include domain objects, a query API, the
interface proxy, a delegator/service locator, internal data
source, and external data source.

The domain objects are Java classes representing biomed-
ical concepts, like Gene or Protein. Instances of these
classes are populated with data by components in the data
source tier and then sent by components in the server tier
to the client tier. These classes follow a Java Bean-like pat-
tern, which means that the properties of each object are
accessible through operations whose names begin with
"get". For example, to retrieve the collection of Library
objects associated with a Gene object, the client invokes
the getLibraryCollection operation on the Gene object.

The query API provides both a simple, query-by-example
metaphor and a more powerful search criteria model. In
the query-by-example approach, the client constructs a
domain object and populates it with property values that
are similar to those of objects that should be retrieved. The
search criteria model provides a 'detached' version of the
popular Hibernate 2 Criteria API, which enables expres-
sion of complex query constraints. The implementation of
the Hibernate 2 Criteria APl has been modified
(detached) to allow it to run on the client tier without
making database connections to the data source tier. The
query API includes a utility class, called ApplicationServ-
ice, which sends queries to the caCORE server tier.

The interface proxy component provides a common entry-
point into the caCORE server-tier for all types of caCORE
clients. The implementation of the interface proxy that is
provided with the caCORE SDK is a Java Servlet that serv-
ices clients using HTTP tunneling. The client, for example,
ApplicationService, packages a query within a caCORE
Request object and writes it (using Java Object Serializa-
tion) over an HTTP connection to the interface proxy serv-
let, which deserializes the HTTP request payload back into
a caCORE Request object. The results of a query are writ-
ten back to the connection and deserialized by the client.

The delegator passes query requests from the interface
proxy, to the logical data source that is responsible for the
set of domain objects being queried. The service locator
uses service metadata to map data sources to a particular
implementation of a logical data source. The caCORE
SDK comes with implementations for two data sources:
ORM and ExternalSystem. The ORM implementation uses
Hibernate to translate object criteria into SQL statements,
execute those statements in a relational database, and
populate domain objects from the returned records. The
ExternalSystem implementation simply forwards the
request to another interface proxy.

http://www.biomedcentral.com/1472-6947/6/2

Client tier components run as (or within) standalone Java
applications. The client installation involves only putting
the client jar (Java Archive) file, and a few other jar files,
on the Java runtime classpath. Server- and data source tier
components run within an application server. Since the
interface proxy component of the system is implemented
as a Java Servlet, the server can be installed in any applica-
tion server that supports the Java Servlet 2.3 specification.
By default, the caCORE SDK will download and deploy
the server to Tomcat, which is a free and open-source
application server that is also the reference implementa-
tion of the Java Servlet specification.

Systems built using caCORE SDK

A number of biomedical research information systems
have been constructed or extended using caCORE SDK.
The caCORE 3.0 suite of components was built using
caCORE SDK to create the object-oriented middleware
and API interfaces to the various underlying data
resources [3]. caCORE 3.0 provides runtime data services
for terminology, metadata, and biomedical data. The
SNP500Cancer project is specifically designed to generate
resources for the identification and characterization of
genetic variation in genes important in cancer [23].
SNP500Cancer has used the caCORE SDK to add publicly
accessible object-oriented APIs to their database resource.
The Protein Information Resource (PIR), an integrated
public resource of protein informatics that supports
genomic and proteomic research and scientific discovery,
created a new object model in UML to represent their
information structures, and then used the caCORE SDK to
provide interoperable APIs [24]. The in vivo Image Repos-
itory (I3) aims to provide access to imaging resources that
will improve the use of imaging in today's cancer research
and practice by: increasing the efficiency and reproduci-
bility of imaging to support cancer detection and diagno-
sis, leveraging imaging to provide an objective assessment
of therapeutic response, and ultimately enabling the
development of imaging resources that will lead to
improved clinical decision support [25]. I3 used the
caCORE SDK to construct its entire back-end and middle-
ware. Development using caCORE SDK is currently
underway in several other projects affiliated with caBIG.

Discussion

A number of software development tools are emerging
that support specific needs of biomedical informatics. The
majority, however, have been created to support data
analysis and manipulation use cases, and not semantics-
based data modeling and management. The caCORE SDK
fills this gap by providing a well structured approach to
linking information models that represent data services
with DL semantic formalisms. The resulting n-tier system
that is automatically instantiated provides a basis for fed-

Page 13 of 16

(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:2

erated interoperability across all sites that use the same
semantic model and APIs.

The caCORE SDK relies on UML to represent its domain
information models. UML is a maturing standard that has
gained widespread acceptance in the software industry. Its
provision for graphical representations of models makes it
a fine choice for working with biomedical subject matter
experts. Since every UML model conforms to the same
underlying meta-model, these models are readily lever-
aged to generate consistent, well-structured software. Thus
the caCORE SDK provides a full realization of the model-
driven architecture paradigm. The model is the code, the
code is the model.

For many years the only available UML modeling tool was
a costly product that was not widely accessible to mod-
estly funded developers in the biomedical informatics
community. There are now several low cost choices and
an open-source alternatives. We selected Enterprise Archi-
tect for use with the caCORE SDK due to its combination
of low cost and high performance. Poseidon for UML and
ArgoUML are notable alternatives[26,27]. Processing the
XMI that is exported from a given tool is necessary, as each
vendor implements the XMI standard slightly differently.
The XMI processor for EA-exported models is included in
the caCORE SDK.

Our requirements for semantic expressiveness and runt-
ime services demanded that we extend the basic UML
modeling process typically used in business software
development. We were able to ground the models in a
richer DL semantic structure without sacrificing the bene-
fits of the model-driven architecture paradigm by map-
ping each UML data class and attribute to concepts in the
NCI Thesaurus, a concept oriented thesaurus with ontol-
ogy-like properties. The Semantic Connector provides a
modest degree of automation to this added procedure,
minimizing the burden on the software development
team. The UML loader captures the resulting annotated
model and registers it as metadata in the caDSR. The
caDSR provides tools to specify permissible value con-
straints for the Data Elements in the model. The caDSR
also provides runtime access to metadata that can be used
to satisfy a variety of discovery, semantic comparison, and
data validation use cases.

Automated code generation tools have been available for
a variety of programming languages for a number of years.
The quality and ease of use of such tools has varied widely.
Until recently the best alternatives were often quite costly.
Our approach couples the meta-model structures in the
XMI representation of a UML model with a template that
dictates what the final code will look like. Crucial to this
our approach was the availability of a number of open-

http://www.biomedcentral.com/1472-6947/6/2

source utilities, in particular the NetBeans MDR, that
made it straightforward to programmatically manipulate
UML object models. We were able to efficiently couple
and synchronize the model with the resulting software.
The code generation itself takes only minutes, freeing the
development team to focus on the scientific issues and
associated semantics that impact the model structure.

The semantically connected UML models in their native
and XMI formats are sufficient to support the software
development team that is using the SDK for its own pur-
poses. However, these file formats are not optimal to sat-
isfy use cases that demand model query and retrieval
services. Developers that wish to query and retrieve infor-
mation about specific data classes, attributes, relation-
ships and definitions within the models need a runtime
model management environment that supports such
functionality. We found the most straightforward way to
satisfy such requirements was to map the UML meta-
model components to ISO/IEC 11179 and create a spe-
cialized loading utility that implements these mappings
and loads models as metadata components in the caDSR.
Thus the caDSR supports granular query and retrieval
functions that enable application developers to present
the definitional metadata about the model in appropriate
user interface components.

The caCORE SDK has been used successfully by a number
of projects at the NCI and in the broader community affil-
iated with the caBIG program. We are presently tying these
various caCORE SDK-generated systems together in a
common data and analysis grid framework[28]. In this
way we expect to provide a single point of entry for the
advertising, discovery, and invocation of caBIG-compati-
ble resources.

Conclusion

The caCORE SDK was constructed to support both inter-
nal development at the NCICB as well as community
developers in the caBIG program. The caBIG Vocabulary
and Common Data Elements workspace has decided that
UML modeling, caDSR metadata registration, and termi-
nology standards must be implemented in caBIG 'Silver'
compatible systems. Thus the caCORE SDK provides a rel-
atively straightforward development path towards Silver-
level compatibility.

The caBIG Architecture workspace is currently defining a
data grid framework that will become the caBIG 'Gold'
standard for interoperability. This grid architecture -
named 'caGrid' — will include a service registry for adver-
tising Gold-compatible data and analytical services that
are on caGrid. The advertised metadata will originate from
the output of the caCORE SDK. Thus we expect to create a
clear mechanism for systems that have achieved Silver

Page 14 of 16

(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2006, 6:2

compliance to add the necessary adaptors and extensions
to enable them to advertise their services and become part
of the caGrid federation.

As this manuscript was being completed, the next version
of the caCORE SDK was released, and included support
for integrating the caCORE 3.0 Common Security Module
into the target architecture. This feature enables secure
access control to systems generated by the caCORE SDK,
and adds a standardized write-API that permits applica-
tions using the system to insert and persist data objects in
addition to reading them. The new version also supports
the generation of a SOAP web services API in addition to
the Java APL

While the motivation behind the caCORE SDK originated
in the area of cancer informatics, the approach and tools
can be applied to any domain of biomedical research. We
expect that the caCORE SDK will lower the barrier to
developing and deploying model-driven systems that are
integrated with structured semantics in many different
areas.

Availability and requirements
¢ Project name: caCORE Software Development Kit

¢ Project home page: http://ncicb.nci.nih.gov/core/SDK.
This page has links to the latest version, which readers are
encouraged to use. Version 1.0.2, described in this article,

can be found at ftp://ftp1.nci.nih.gov/pub/cacore/SDK/
v1.0.2.

e Operating system: Platform independent
¢ Programming language: Java, JET

e Other requirements: Tomcat 4.1.31, mySQL 4.1.9, Ant
1.6.2, UML 1.3/XMI 1.1-compliant modeling tool. Other
software components, most included with SDK, that are
listed in Table 1.

e License: caCORE Software Development Kit License,
Version 1.0, which applies equally to academic and non-
academic wusers, and can be found at http://

ncicb.nci.nih.gov/NCICB/core/SDK/
caCORE_SDK1.0_license.doc.

The following are the system requirements for deploying
and running an application generated using caCORE SDK:

e Operating system: Platform independent

¢ JDK 1.4.2_06 tested.

http://www.biomedcentral.com/1472-6947/6/2

e Web container such as Tomcat 4.1.31 or J2EE applica-
tion server such as JBoss 4.0.

¢ caCORE SDK comes configured to use mySQL for auto-
mated database generation. Oracle, DB2 and other data-
bases can also be used with several configuration
adjustments.

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions

JP was responsible for the overall design and construction
of Codegen, and wrote the Codegen sections of this arti-
cle. DW and RC conceived of the design to transform UML
metamodel structures expressed in XMI into ISO/IEC
11179 metadata, and contributed to the UML Loader sec-
tion of this article. RC was the lead developer and architect
for the UML Loader. DW is the technical manager and RC
the lead developer for the caDSR system. GF lead the
development of the format and content of semantic con-
nector report for EVS review and helped work out the con-
ventions for naming and ordering the mapped concepts.
DW contributed to the design of the semantic connector
report format so that the entities could be properly anno-
tated and ordered for processing by the UML Loader. PC
conceived of the high-level design of the caCORE SDK
and wrote and edited most of this article. All authors read
and approved the final manuscript.

Acknowledgements

M. Connolly and S. Thangaraj made major technical contributions and pro-
vided leadership to the creation and packaging of the overall caCORE SDK
framework. They were assisted by . Zeng, S. Mashetty, S. Mushin, and A.
Tibriwal. Y. Wu led the testing and validation team, which included Y. Long
and A. Shinohara. C. Ludet's technical contributions led to the successful
development of UML Loader. P. Arggawal implemented changes and tools
to support searching and retrieval of UML Model metadata from the
caDSR. S. Kakkodi developed the CDE Browser that allows model owners
to view and browse caDSR metadata from a UML Model perspective. E.
Lucchesi, with assistance from]. Hadfield, wrote and edited the caCORE
SDK Programmer's Guide. Other contributors to that Guide include M.
Connolly, G. Komatsoulis, K. Shanbhag, S. Thangaraj and N. Zebarjadi. N.
Thomas is the primary EVS reviewer coordinating the mapping of UML enti-
ties to EVS concepts. T. Curtis and B. Maeske conducted the post-loading
curation of UML metadata in the caDSR. G. Komatsoulis, K. Shanbhag, F.
Hartel, E. Mulaire, K. Gundry and T. Akhavan were critical project and pro-
gram managers on components of the caCORE SDK. The work described
here was supported entirely by the U.S. National Cancer Institute, National
Institutes of Health, Department of Health and Human Services.

References

I. Covitz PA, Hartel F, Schaefer C, De Coronado S, Fragoso G, Sahni H,
Gustafson S, Buetow KH: caCORE: a common infrastructure
for cancer informatics. Bioinformatics 2003, 19:2404-2412.

2. ISOJ/IEC 11179, Information Technology -- Metadata Regis-
tries (MDR) 1999 [http://metadata-standards.org/1 1179/].

3. caCORE 3.0 2005 [http://ncicb.nci.nih.gov/core].

Page 15 of 16

(page number not for citation purposes)

http://ncicb.nci.nih.gov/core/SDK
ftp://ftp1.nci.nih.gov/pub/cacore/SDK/v1.0.2
ftp://ftp1.nci.nih.gov/pub/cacore/SDK/v1.0.2
http://ncicb.nci.nih.gov/NCICB/core/SDK/caCORE_SDK1.0_license.doc
http://ncicb.nci.nih.gov/NCICB/core/SDK/caCORE_SDK1.0_license.doc
http://ncicb.nci.nih.gov/NCICB/core/SDK/caCORE_SDK1.0_license.doc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668224
http://metadata-standards.org/11179/
http://ncicb.nci.nih.gov/core

BMC Medical Informatics and Decision Making 2006, 6:2

4. The NCI Cancer Models Database 2005 [http://cancermod
els.nci.nih.gov].

5. caWorkbench - A Platform for Integrated Genomics 2005
[http://amdec-bioinfo.cu-genome.org/html/caVWorkBench3.htm].

6. Buetow KH, Klausner RD, Fine H, Kaplan R, Singer DS, Strausberg RL:
Cancer Molecular Analysis Project: weaving a rich cancer
research tapestry. Cancer Cell 2002, 1:315-318.

7. Cancer Central Clinical Database (C3D) 2005 [http:/tri
als.nci.nih.gov/projects/trialmanagement/c3ds project/c3d].

8. The Cancer Biomedical Informatics Grid (caBIG) 2005 [http:/
[cabig.nci.nih.gov].

9. The caBIG Compatibility Guidelines, Revision 2 2005 [https:/
[cabig.nci.nih.gov/guidelines_documentation].

10. Unified Modeling Language 2005 [http://www.uml.org].

Il. XML Metadata Interchage (XMI) 2005 [http://www.omg.org/
technology/documents/formal/xmi.htm].

12. Enterprise Architect 2005 [http://www.sparxsystems.com.au/
ea.htm].

13. Hartel FW, De Coronado S, Dionne R, Fragoso G, Golbeck J: Mod-
eling a description logic vocabulary for cancer research. |
Biomed Inform 2005, 38:114-129.

14. De Coronado S, Haber MW, Sioutos N, Tuttle MS, Wright LW: NCI
Thesaurus: using science-based terminology to integrate
cancer research results. Medinfo 2004, 11:33-37.

15. AndroMDA 2005 [http://www.andromda.org/].

16. Axgen: Anything from XMI Generator 2005 [http:/

axgen.sourceforge.net/].
17. Eclipse Modeling Framework 2005 [http://www.eclipse.org/emf/

18. Xdoclet 2005 [http://xdoclet.sourceforge.net/xdoclet/index.html].
19. NetBeans Metadata Repository 2005 [http://mdr.netbeans.org/].
20. FreeMarker 2005 [http://freemarker.sourceforge.net/].

21. Kruchten P: The Rational Unified Process: An Introduction 2nd edition.
Boston, MA, Addison-Wesley; 2000.

22. Hibernate 2005 [http://www.hibernate.org/].

23. Packer BR, Yeager M, Staats B, Welch R, Crenshaw A, Kiley M, Eckert
A, Beerman M, Miller E, Bergen A, Rothman N, Strausberg R,
Chanock S): SNP500Cancer: a public resource for sequence
validation and assay development for genetic variation in
candidate genes. Nucleic Acids Res 2004, 32:D528-D532.

24. Wu CH, Yeh LS, Huang H, Arminski L, Castro-Alvear |, Chen Y, Hu
Z, Kourtesis P, Ledley RS, Suzek BE, Vinayaka CR, Zhang |, Barker
WC: The Protein Information Resource. Nucleic Acids Res 2003,
31:345-347.

25. The in vivo Imaging Repository 2005 [http://imaging.nci.nih.gov].

26. Poseidon for UML 2005 [http://www.gentleware.com].

27. ArgoUML 2005 [http://argouml.tigris.org/].

28. caGrid: Tying interoperable resources together in a caBIG
Gold-compatible grid architecture 2005 [https://
cabig.nci.nih.gov/workspaces/Architecture/caGrid/].

Pre-publication history
The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1472-6947/6/2/prepub

http://www.biomedcentral.com/1472-6947/6/2

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 16 of 16

(page number not for citation purposes)

http://cancermodels.nci.nih.gov
http://cancermodels.nci.nih.gov
http://amdec-bioinfo.cu-genome.org/html/caWorkBench3.htm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12086845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12086845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12086845
http://trials.nci.nih.gov/projects/trialmanagement/c3ds_project/c3d
http://trials.nci.nih.gov/projects/trialmanagement/c3ds_project/c3d
http://cabig.nci.nih.gov
http://cabig.nci.nih.gov
https://cabig.nci.nih.gov/guidelines_documentation
https://cabig.nci.nih.gov/guidelines_documentation
http://www.uml.org
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.sparxsystems.com.au/ea.htm
http://www.sparxsystems.com.au/ea.htm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15797001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15797001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15360769
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15360769
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15360769
http://www.andromda.org/
http://axgen.sourceforge.net/
http://axgen.sourceforge.net/
http://www.eclipse.org/emf/
http://xdoclet.sourceforge.net/xdoclet/index.html
http://mdr.netbeans.org/
http://freemarker.sourceforge.net/
http://www.hibernate.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520019
http://imaging.nci.nih.gov
http://www.gentleware.com
http://argouml.tigris.org/
https://cabig.nci.nih.gov/workspaces/Architecture/caGrid/
https://cabig.nci.nih.gov/workspaces/Architecture/caGrid/
http://www.biomedcentral.com/1472-6947/6/2/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	UML modeling tool
	Semantic connector
	UML loader
	Curation and specification of data standard constraints
	Code generator

	Results
	Overview of the caCORE SDK
	Use cases
	Information modeling and semantic annotation
	UML model loading
	Code generation
	Object to relational mappings
	Database creation
	System architecture and deployment
	Systems built using caCORE SDK

	Discussion
	Conclusion
	Availability and requirements
	Competing interests
	Authors' contributions
	Acknowledgements
	References
	Pre-publication history

