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Abstract

Background: Multiplication of data sources within heterogeneous healthcare information systems
always results in redundant information, split among multiple databases. Our objective is to detect
exact and approximate duplicates within identity records, in order to attain a better quality of
information and to permit cross-linkage among stand-alone and clustered databases. Furthermore,
we need to assist human decision making, by computing a value reflecting identity proximity.

Methods: The proposed method is in three steps. The first step is to standardise and to index
elementary identity fields, using blocking variables, in order to speed up information analysis. The
second is to match similar pair records, relying on a global similarity value taken from the Porter-
Jaro-Winkler algorithm. And the third is to create clusters of coherent related records, using graph
drawing, agglomerative clustering methods and partitioning methods.

Results: The batch analysis of 300,000 "supposedly" distinct identities isolates 240,000 true unique
records, 24,000 duplicates (clusters composed of 2 records) and 3,000 clusters whose size is
greater than or equal to 3 records.

Conclusion: Duplicate-free databases, used in conjunction with relevant indexes and similarity
values, allow immediate (i.e.: real-time) proximity detection when inserting a new identity.

Background

Because of the fast growth of communication protocols
(Internet technologies amongst them), health services are
undergoing a large paradigm change: a shift from institu-
tion-centred care to consumer-centred care. Unambigu-
ous identification of patients is a critical success factor for
health care reform and for the provision of speedy, safe,
high quality, comprehensive and efficient health care. We
may consider more complete information on which to
base potentially life-critical clinical decisions and less
wasted time and less inconvenience as a result of hunting

for information and/or re-gathering as being amongst the
benefits of positive identification. However, client infor-
mation flows are often substantially limited by an inabil-
ity to positively identify the subjects of care and to locate
their relevant details amongst an extensive array of data
repositories which may be unlinked, duplicated and cata-
logued in different ways. Health workers are now con-
fronted with "health records" for each patient dealing
with contacts in a hospital, with a general practitioner, etc.
If every contact with the patient is an opportunity to col-
lect information, the information noted must, within an
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identification domain, be perfectly linked to the patient
and identified within the domain by a unique identifica-
tion number (UID) and a minimum profile (i.e. a set of
features such as name, first name, gender and date of
birth). This UID and profile then constitute the identity of
the subject. When matching different identification
domains, profiles are compared in order to track the same
individuals. The ultimate aim is a complete "data recon-
ciliation", meaning the coherent association between a
unique identity and several other features like medical
data, demographic data, ... The expression "record link-
age" refers to the use of an algorithm technique to match
records from different datasets which correspond to the
same statistical unit [1,2]. But whatever the chosen
method is, the final decision remains in the hands of a
human specialist. Computer logic, based upon Boolean
operations can basically tell us if two values are equal
("True or False", "1 or 0"), but it is limited if the answer
has to be a bit more fuzzy. The decision-making ability of
the human mind is still difficult and time consuming to
replicate.

Medical information, and by extension identity records,
has to be over-time stable, mainly due to legal require-
ments and for reasons of traceability. So we must be sure,
until a final decision is made by the specialist, not to alter
the original data in any way during the linkage process. It
would be useful, therefore, when comparing records, to
process atomic parts of them (such as name, first name,
date of birth ...) in order to avoid the most common mis-
takes made during data entry. This step, called standardi-
zation, will ensure a greater effectiveness of the
comparison algorithm. Most of the mistakes are a result of
not adhering to data entry guidelines (i.e. abbreviations,
accented letters, date format...), which are too often the
responsibility of the operator. Some others appear when
attempting to match records from different data sources
(or different identification domains), ruled by heteroge-
neous and non-compatible data-entry guidelines. This
standardization step is mandatory and its lifetime should
not exceed the comparison operation.

In a database containing n records, record linkage is often
described as an O(n2) complexity problem, due to its Car-
tesian aspect. The brute force approach, comparing each
record to every other record, requires (n2-n)/2 compari-
sons. This approach, while being the most reliable (as no
record is missed during the comparison process) is also
the most time consuming and least effective (CPU load
speaking). To reduce the number of comparisons, indexa-
tion of databases by blocking techniques is used. The data
sets are split into smaller blocks and only records within
the same blocks are compared.

http://www.biomedcentral.com/1472-6947/5/32

Whichever blocking technique is chosen, the principle of
a record linkage process is to try to pair similar records.
But how is the decision which qualifies two different
records as "duplicates" made? A basic way is to compare
each atomic part of a sample record (i.e. the fields) to its
counterpart in the reference record. If a binary equality is
obtained, we can then assume that the entities are the
same. The main drawback with such a method is that key-
stroke mistakes or subtle spelling changes are ignored,
even after standardization. To be more efficient, we must
enhance the comparison principle. While a binary opera-
tor returns a Boolean value (1 if the fields are strictly the
same, 0 if they are different), a similarity operator will
return a score ranging from 0 to 1, showing fields proxim-
ity and quantifying their differences. The higher the result,
the nearer the field values are. Such a similarity operator
is based on approximate string matching methods, so
non-literal data fields such as dates or numbers have to be
converted before processing. The main approach of
approximate string matching has always, until now, been
based on the edit-distance [3,4], the oldest kind of algo-
rithm according to Navarro [5,6]. For example, Levenh-
stein's distance [7] is the minimum number of operations
on individual characters like substitutions, insertions and
deletions, needed to transform one string to another. It
remains the most flexible although it is no longer the
most effective, at least in "text retrieval" cases. The Smith-
Waterman algorithm [8] is one of the most popular algo-
rithms for edit-distance. Much of its power is due to its
ability to introduce gaps in the records (sequence of non-
matching symbols). Hence, the use of such an algorithm
on each field of records allows us to calculate the same
number of atomic similarities (noted aS in the sequel)
linking the fields of the sample and the reference records.
Such atomic values are then combined in a weighted
mean to obtain a record to record similarity or global sim-
ilarity (gS) value. If one uses k fields for comparing

k
records then gS=2 W;asS; where w;are the weights (cor-

j=1
rected so that the sum of all of them is 1) in the mean.
Indeed, not all the atomic similarities have the same dis-
criminative power when comparing two records. For
example, gender is less reliable than date of birth: two
records with the same gender have less chance of repre-
senting the same identity than two records with the same
date of birth. The weights are obtained, for example, by
the Expectation-Maximization algorithm [9,10]. Several
general algorithms for record linkage have been written
since the 70's, most of them in biomedical papers in order
to perform epidemiological studies [11]. The seminal the-
oretical paper on record linkage by Felligi and Sunter [12]
has, as its goal, the division of record pairs into linked
pairs (designated matches), possible linked pairs (pairs
for which human oversight, also known as clerical review,
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is needed) and non-linked pairs (non-matches). Their
classification rule is based on the comparison of the com-
mon fields of the two sets of records. To be a little more
specific, let us suppose that all the records of a dataset are
distributed into two equal sets, say A and B, and that fur-
thermore we create three more sets: for matched pairs, for
non-matched pairs and a set of possible matched pairs. If
each record has k fields, it is possible to define an agree-
ment k-vector y (all the atomic similarities for example)
between a record of the set A and a record of the set B. The
main issue of the Felligi-Sunter theory is to define an opti-
mal linkage rule (for given levels of type I and type II
errors), where optimality is defined as minimising the
probability of classifying a pair in the set of possible
matched pairs. Assuming conditional independence of
the k components of vy, the decision rule is a function of

g . m(y;)
ZWj where those weights w; are log

j=1 u()

m(y;) and u(y;) are the conditional probability of observ-
ing y; given that the pair is respectively a true matched pair
and a true non-matched pair. For example, Jaro [13,14]
uses the EM algorithm to estimate these weights (or at
least the m(v;)s).

. Here

Results provided by those techniques of record linkage
consist of a list of paired records linked by a global simi-
larity score. Whilst being a good starting point, such a
presentation is far from being the most efficient for cleri-
cal review. Specialists have to deal with complex patterns
of similarities between several records split-down into a
list of similarities between couples of records. We can then
try to build clusters of duplicates, "n-plicates". A weak def-
inition of a cluster could be "a set of entities which are alike
and entities from different clusters are not alike". Methods for
clustering can be divided into hierarchical, graph-based
(equivalent to the graph partitioning), model-based or
mixed methods [15,16]. An additional stage in the repre-
sentation of the records with their similarities may be nec-
essary. From a representation of records in clusters, we can
switch to a representation of graphs. Following the graph
theory, the clusters become undirected sub-graphs with
vertices (records) and edges (global similarity value). It
would be useful, for the visual comfort of the user, to rep-
resent these clusters in a reliable manner with vertices and
edges, whose lengths are proportional to the strength of
the relation between the vertices (global similarity). The
most used methods for graph drawing are force-directed
methods [17-19]. Generally, these methods view a graph
as a system of particles (vertices) with forces acting
between them (edges). They seek a state of balance where
the sum of the forces acting on each particle is zero. All
these methods are relatively simple to implement, heuris-

http://www.biomedcentral.com/1472-6947/5/32

tic improvements can easily be added, but they can be
time consuming.

But specialists also have to deal with the possibility that
some of the relations between some record pairs may be
unreliable. For example, two different paths between two
records can exist: one path with only edges labelled
"duplicate" and one with at least one edge labelled "non-
duplicate". Hence, some of the sub-graphs are complete
(each of the vertices is linked with each other in the sub-
graph by an edge), like the left panel on Figure 1. But
some are incomplete (n vertices but fewer than n(n-1)/2
edges), like the right panel on Figure 1. If we choose not
to enforce transitivity of the relation "is a duplicate of",
unlike some other authors [20,21], the vision of this sub-
graph as a "n-plicate" is not so straightforward. Thus, it
would be interesting to consider complete sub-graphs
within this incomplete one, and then to consider each of
these last sub-graphs as "n-plicate". Methods for this
result are derived from graphs partitioning algorithms
[22], in an unsupervised situation (the number of sub-
graphs is, a priori, unknown). They go on to delete several
edges in order to isolate groups of vertices. Such a cut is
said to be of minimum weight, if the sum of the weights
on the edges is the minimum necessary to isolate such
groups of vertices. The gain of a vertex is the difference
between the sum of the similarities with vertices of other
sub-graphs and the sum of the similarities with vertices of
its own sub-graph. Notably, the gain is the cost when a
vertex changes its sub-graph.

Our very general aim is to provide specialists with a relia-
ble presentation of a set of several potentially duplicated
records in a data set with a score showing how similar
records in this homogeneous set are. These specialists may
be responsible for merging similar records or for avoiding
duplicate entry. This method, then, deals with two differ-
ent situations: batch and real-time data browsing.

Methods

The method used for achieving our goal comprises three
steps: the first one is a pre-processing of data in order to
eliminate the most common errors and to present this
data in a convenient way; the second is to compare
records and the third is to organize the records. We will
focus on showing its application upon a single data
source, even if the proposed technique can be applied to
link foreign domain records (i.e. a sample data source to
a reference one).

A particularity in Anglo-Saxon countries and in France
(but not in all Latin countries) is the use by a married
woman of her husband's name: her birth name is no
longer used but "replaced" by her married name. Because
of the instability of this married name (divorced persons),
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the birth name is always recorded in a patient database to
guarantee an over-time reference. But a high risk of errors
exists while encoding names between birth name and
married name. First of all, we define a typical patient-
identity record as constituting a unique identification
number and a minimum profile: birth name, married
name, first name, gender and date of birth. We are work-
ing, here, on the patient database of our hospital as it was
on the 1 st July 2003. This paper reports the use of our
proposed method on this database from which we want
to eradicate duplicates. Each of the variables belonging to
the patient profile is already encoded in formatted fields
within the database and thus does not need any parsing or
re-allocating.

Accents, hyphens and apostrophes may be uncommon in
English, but are very important and may appear often in
French or in other Latin languages. Data entry of patient

identities is, for the most part, under human control and
subject to missing data or data entry errors (such as typo-
graphical or keystroke mistakes), non standard abbrevia-
tions or differences in detailed schemas of records from
multiple databases. We first of all try to standardize the
strings before comparing them with the algorithm: replac-
ing all accented letters with the same unaccented letter,
converting all strings in uppercase, replacing punctuation
signs with a space, discarding all non-informative spaces
(double spaces, spaces at the end of strings...), discarding
all spaces in names and, in double first names (quite dif-
ferent from first name and initial in English), replacing
the first part by its first letter (for example "Jean-Philippe"
becomes "] PHILIPPE").

Baxter et al [23] describe four different blocking methods.
The standard blocking method clusters records that share
an identical blocking key, composed of one or more
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attributes of each record, like the postcode or phonetic
encoding of names. The sorted neighbourhood method
[24] sorts the records based on a sorting key and then
moves a window of fixed size sequentially over the sorted
records. Records within the window are then compared
with each other. In the bigram indexing method [25], the
blocking key values are converted into a list of bigrams,
and sub-lists of all possible permutations are built using a
threshold. The canopy clustering method [26] creates
overlapping subsets, called "canopies" composed, for
each record, of all the records within a certain loose
threshold distance. For indexing the database, we chose a
blocking method borrowed from this last technique. For
each record a certain number of blocking keys is calcu-
lated, each one being three bytes in length which allow us
to scan, for a given record, not the entire database but only
the records whose blocking keys correspond. The structure
of these keys is very simple. They are comprised of the first
three characters of the standardized string (normal ver-
sion) and the last three characters (inverted version).
These two keys are computed for birth name (i.e. maiden
name for a married woman), first name and, if it exists,
married name. The use of inverted keys allows us to com-
pare strings with an error on the first few characters, which
seems to be common in patient databases. Furthermore,
the speed of the algorithm remains high and the window
screening remains feasible. Two records sharing the same
canopy are compared if they meet one of the following
two conditions:

¢ Their dates of birth and their gender are the same;

e Their gender are the same and their blocking keys on
birth name and married name (if necessary) meet at least
one of these two conditions:

1. their normal or reversed blocking keys for birth
names or for married names are the same

2. the normal (respectively the reversed) blocking key
for birth name in one of the two records is the same as the
normal (respectively the reversed) blocking key for mar-
ried name in the other record.

A comparison is made for each atomic part (i.e. field) of
the identity record, giving an atomic similarity value for
each. In order to compare two records, we run the approx-
imate string matching algorithm on the different match-
ing variables and write out six atomic similarities: three
for the comparisons of the two dates of birth, the two first
names and the two birth names, one, if necessary,
between the married names (otherwise the atomic simi-
larity is considered as missing), one if necessary between
the married name of the first record and the birth name of
the second (otherwise missing) and one, if necessary,
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between the birth name of the first record and the married
name of the second (otherwise missing). From a series of
different algorithms [27], we chose to use an algorithm we
call the Porter-Jaro-Winkler algorithm [28], an improve-
ment of an initial algorithm [13,14]. Its basic principle is
to compare two strings C; and C,, and to compute a simi-
larity rate. It considers letters in the first string which are
within half the length of the second string. In addition,
some errors are penalized less harshly (visual scanning
errors, keypunch errors and errors at the end of the string
with respect to the errors at the beginning of the string). It
is a looser matching criterion than edit-distance and,
unlike the other techniques, it is not an "all or nothing"
computation, but gives a degree of match. Noting L, and
L,, C; and C,'s respective lengths, the similarity rate is

Nc Nc Nt

L, 2Nc

L
obtained by —L , where Nc is the number of

common characters in the two strings and Nt the number
of transpositions. From this basic formula, several
improvements are successively obtained, but we use only
two of them:

e The number of "similar" characters Ns replaces the
number of common characters Nc. A character is decreed
"similar" to another if it belongs to one of 36 couples
defined in the algorithm, which are for example (X, K), (5,

$), (0, Q);

¢ Additional weight is given to the similarity when the first
four characters of C; and C, are similar or identical. Typo-
graphical errors are often not located at the beginning of
the string, but rather in its body;

According to the authors, a similarity of less than 0.7
means two different strings and more than 0.95 means
two similar strings (common strings exhibit a rate of 1).
We then add different refinements to this algorithm. We
weight the atomic similarities of names (birth names and
married names) depending on their frequency in the data-
base: the more frequent a name is, the less the similarity
seems to be credible. In this early report of our work, we
have created just two categories according to the name fre-
quency (approximately 5 per 10,000) and under-weight if
necessary the similarity of 0.05. This 5 per 10,000 cut-off
was decided from the graph of the names frequency,
which has an inverse function aspect with the end of the
strong decrease about 5 per 10,000. We also take into
account the difficulty of comparing two strings of differ-
ent lengths which present a strong similarity on the
shorter length. For instance, the names "ABC" and "ABC-
DEFG" are quite different but have an atomic similarity
according to the initial algorithm of 1. In this case, we cal-
culate a similarity like the initial one minus 0.01 times the
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number of additional characters (4 in the above example,
yielding an atomic similarity of 0.96). A global similarity
is then computed as a weighted mean of atomic similari-
ties. Because of the particular configurations of our
records (with or without married names) we use a prag-
matic weighting based on common weights used in liter-
ature and on our prior knowledge. Once again, we define
a few rules:

1. If the two birth names and the two first names are
almost the same (i.e.: aS > 0.7) then the date of birth
should have a high discriminative weight;

2. If the similarity between the married name of a record
and the birth name of a second record is more than the
similarity between the two birth names then we suppose
that an inversion between the married name and the birth
name has occurred.

The weights are standardized to 1. A complete description
of this weighting step appears in the Appendix. For exam-
ple, the simplest situation (without any married name to
compare) can be split into two sub-cases: if the birth
name's atomic similarity is high (i.e. > 0.7) then the
weight for birth names is 1/3, the weight for first names is
1/6, the weight for dates of birth is 1/2, otherwise the
three weights are respectively set to 1/2, 1/4 and 1/4.
Unlike the Felligi-Sunter probabilistic theory, we chose
not to use two thresholds which would classify pairs into
linked, non-linked and possibly-linked, but to determine
a unique threshold with a set of non-linked pairs and a set
of possibly-linked pairs. Before analyzing the database
and after multiple experiments, this threshold was set to
0.85.

To achieve the clustering step, because of our confidence
in the similarity algorithm, we need a simple, unsuper-
vised (the number of clusters is, a priori, unknown) hard-
clustering method (not a probability of classification).
Our choice is a greedy agglomerative algorithm with com-
plete linkage to avoid clusters in a chain. For graph draw-
ing, we will choose a very simple version of a force
directed algorithm, but in the early version of our work,
this functionality is not yet implemented. Then, in order
to automate the graph partitioning, several algorithms
have been proposed [29-33], they are often heuristics
based on seminal algorithms like Kerninghan-Lin or
Fiduccia-Mattheyses. Because of our confidence in the pre-
vious steps and the use of the Porter-Jaro-Winkler algo-
rithm, a simple algorithm based on the gain is then used
to partition incomplete clusters in complete objects (clus-
ters or isolated records).

http://www.biomedcentral.com/1472-6947/5/32

Results

With 300,859 records in our patient database, the brute
force approach would need 45 10° comparisons. By using
blocking variables, only 24.8 10° comparisons are com-
puted, which means a 1,825-fold gain. In the database,
there are 287,850 different canopies with a maximum
canopy size of 11,550 records. In fact, the distribution of
the size of the canopies is very left-skewed. If the mean
size is 82 and the standard deviation 195, the median is
18 and the 95t percentile is 398. The most frequent size is
7. Each record of the database resides (in average) in 8.9
canopies.

Among 300,859 records, our method detects 38,083 cou-
ples, whose global similarity equals or exceeds the deci-
sion threshold set to 0.85. The Figure 3 summarises the
results of our entire method applied to this data set. Table
1 shows the number among these 38,083 couples with
exact concordance in global similarity and in atomic sim-
ilarities. This table shows that 9,566 couples exhibit a unit
value for their global similarity. Even if they have different
UIDs, these couples seem to correspond to 9,566 different
individuals. The value of the atomic similarities for the
fields birth name, first name and date of birth is exactly
one in about 70% of the couples but less for married
name. For the comparisons, when accurate, between birth
name and married name, 3,065 couples match exactly
(4%). This means that in 3,065 pairs the married name of
arecord is exactly the same as the birth name of the other
record of the pair, probably indicating an inversion
between these names. The Table 2 describes the character-
istics of global similarity and atomic similarities among
the remaining couples, without perfect concordance.
About 29,000 couples exhibit a value of global similarity
which is not exactly the unit 1 but a value with a mean
(and a median) of 0.92. The distribution is approximately
uniform on the interval [0.85 - 1.00], except for a small
peak at 0.95 corresponding to the underweight of 0.05
concerning exact matching of records with frequent
names. Concerning birth name, first name and date of
birth, among about 13,000 remaining couples without a
unit value of 1, the mean is about 0.80 but the quartiles
show that the similarity on first name is more left-skewed
than the similarity on birth name. The similarities
between married names are globally higher than the sim-
ilarities between birth names. Among the 16,013 compar-
isons remaining in the comparisons between birth name
and married name, only about 800 exhibit a similarity
higher than 0.75 and the mean of these 16,013 is 0.36.

Among those 38,083 couples (T), 19,882 (C) may be
found by classical techniques: first three last-name letters
exact matching and first three first-name letters exact
matching and date of birth matching and gender match-
ing, while detection of the last 18,201 is made possible by
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Figure 2

Percentage of true positive couples by global similarity threshold value.

using a string similarity algorithm. An in-depth analysis of
those 18,201 paired records shows that 9,690 couples (P)
are true positives, while 8,511 are false ones. Effectiveness
over classical techniques can then be calculated: a mini-
mum of P/(C+P) = 33% more true positive couples are
detected than by a classical method (for reasons of con-
venience, the C couples are all declared to be true posi-
tives, while in fact, a few false positives may be present).
The proportion of true positives according to this clerical
review is shown on Figure 2, by different levels of global
similarity (gS by unit of one). As a result, we can now
assume that the positive predictive value defined as the
number of true positives divided by the total number of
linked pairs is (P+C)/T = 78%, which represents a good
indicator of accuracy. In Figure 2, we see that the drops, at
0.96, 0.91 and 0.88, reflect name frequency adjustments.

Once the couples have been constituted and their global
similarity values calculated, we can now define the rele-
vant graphs. The 38,083 couples represent 27,184 clus-
ters. This final step creates two kinds of clusters: 25,642
complete and 1,542 incomplete graphs. The first ones

have all their UIDs (vertices) linked by an edge (global
similarity above the threshold). The second ones present
some UIDs that are not linked to some of the other cluster
components. In the complete graphs there are 23,004
clusters of a size of 2 records, 2,237 of size 3 and 401 of a
size greater than 3. In the incomplete graphs there are
1,012 clusters of size 3 and 530 of a size greater than 3.
The complete graphs represent 54,443 initial distinct
UIDs while the incomplete represent 5,760 UIDs. But
before clerical review, our method allows us to state that
the 25,642 complete graphs potentially represent 25,642
different individuals. Whatever the threshold within the
range 0.85 to 1 is, the mean size for the graphs is constant;
about 2.1 for complete graphs and 3.5 for incomplete
graphs but the relative number of each kind of graph
changes: 200-fold more complete graphs than incomplete
for a threshold set to 1, 60-fold for 0.95 and 15-fold for
0.85. The use of the partition algorithm allows us to
merge the 1,542 incomplete graphs into several complete
graphs. The 1,012 incomplete clusters of size 3 become
1,012 single records and 1,012 couples. The other 530
incomplete graphs become 532 single records, 329
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269,604 identities
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Table I: Number of exact concordance in global similarity (gS) and atomic similarities (aS) in the 38,083 identified pairs in a database

of 300,859 patients

Atomic similarities

gs BN* MN* BN/MN* First name Date of birth
Pairs 38,083 38,083 38,083 76,166 ** 38,083 38,083
Missing 0 0 31,747 57,088 0 0
Values at | 9,566 25,990 5,348 3,065 26,017 26,505
in % 25.1 68.2 14.0 4.0 68.3 69.6

* BN = birth name, MN = married name
** Theoretical number of comparisons between BN and MN

couples, 310 complete graphs of size 3 and 111 complete 25,642 individuals come from complete graphs and 3,306
graphs of a size greater than 3. The 38,083 couples corre-  from incomplete graphs. Finally, there are 269,604 differ-
spond to 60,203 initial UIDs. Out of a total number of  ent individuals in our database, corresponding to a 90%
UIDs 0f 300,859, 240,656 UIDs do not form part ofacou-  rate of uniqueness. This means that 1 record in 10 is
ple, corresponding to 240,656 different individuals.  involved in at least one cluster of "n-plicate" identities.
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Table 2: Characteristics of global similarity (gS) and atomic similarities (aS) in the identified pairs without exact concordance

Atomic similarities

gs BN* MN*
Pairs 28,517 12,093 988
Mean 0.92 0.79 0.78
Stand. error 0.48 0.20 0.23
Minimum 0.85 0.00 0.00
Percentiles
25th 0.87 0.76 0.62
50th 0.92 0.88 0.90
75t 0.97 0.92 0.94
90th 0.99 0.95 0.96
95th 0.99 0.96 0.96

BN/MN* First name Date of birth
16,013 12,066 11,578
0.36 0.77 0.82
0.25 0.17 0.07
0.00 0.00 0.65
0.22 0.63 0.77
0.41 0.82 0.85
0.52 0.92 0.88
0.63 0.95 0.88
0.75 0.96 0.88

* BN = birth name, MN = married name

Discussion

Our method gives those specialists responsible for merg-
ing similar records a representation showing how close
records in some homogeneous sets are. But real-time
detection is also one of the main goals of our proposal:
avoiding duplicate entry by alerting the user that several
neighbour records already exist, and furthermore, they
help in decision making whilst providing proximity val-
ues between these similar records. This real-time use
would be involved in multi-criteria searches for identities
or for the creation of identities. But only a simple and easy
to use front-end algorithm and short response time allow
this possibility. Response times are closely related to an
optimization of the algorithm and especially the blocking
part. Its improvement allows the reduction in the number
of potential duplicates to be tested by the main algorithm.

According to Porter and Winkler, the use of their algo-
rithm improves the number of duplicates by 30% com-
pared to a binary or semi-binary method [28]. Our results
are in accordance with this number. Furthermore, we con-
sider only the true positive identified couples in excess of
those identified by the classical methods. Nevertheless,
methods other than an approximate string matching can
also be considered. For example, the CART method (clas-
sification tree-based models) could be used for mapping
duplicates and defining clusters of records, which have to
be seen not as duplicates but "n-plicates”. A logistic model
could also be proposed, using for its dependent variable a
dummy variable indicating a duplicate or not, and the
edit-distance as the independent variable. Some other
independent variables can be also used.

Even if our approach is feasible and seems to be useful
and reliable, we have to improve our process. The formal
Jaro-Winkler algorithm is a domain-independent algo-
rithm, which can be used, without any modification, for a

wide range of applications. Our algorithm is no more
domain-independent because of our weighting procedure
of matching variables, and because of our names fre-
quency based weighting. The classical approach in this
context, to solve both problems, is to use the EM algo-
rithm [9,10,34] to retrieve weights driven by the dataset.
But the formalisation of using the EM algorithm was
developed in the probabilistic Felligi-Sunter theory frame-
work. Our approach is no longer within this framework
since our weighted average of atomic similarity has no
probabilistic interpretation. Furthermore, the conditional
independence assumption of the components of the
agreement vector is probably not fulfilled. One main basis
of our approach is that all records do not have the same
fields because of the potential absence of the married
name. Hence the theoretical considerations for the exten-
sion of the EM algorithm to our approach are not so
straightforward. Instead, other attractive methods seem to
be machine-learning in a Bayesian classification frame-
work [35,36]. The aim is to improve a partial automation
of the linkage decision process, involving the use of a
training data set, in order to instruct a learning algorithm
to classify data in link or non-link. Moreover, our method
essentially deals with real-time data browsing. In this
issue the data set has to be viewed essentially as an evolv-
ing database and the machine learning seems to be very
accurate: each decision taken by the user can become part
of the learning process of the algorithm, instead of a new
calculation of the weights by the EM algorithm.

The similarities we use (atomic and moreover global) do
not fulfil the conditions necessary in order to qualify as a
distance. An interesting condition on distance is the
transitivity one, for example between records A, B and C:
d(A,B) < d(A,C) + d(C,B). A weighted mean of several
distances is indeed a distance unless the weights differ for
at least one distance between records. This is the case in
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our approach (notably due to the difference of treatment
between records with married name and records without)
but that is also the case with the Porter-Jaro-Winkler algo-
rithm due to the improvement involved when the four
first characters of two strings are exactly matched: it can be
the case between, for example, record A and C but not the
case between records B and C. The condition of transitiv-
ity is not sufficient to be really useful in the case of string
matching for sparing the number of comparisons between
strings. A really interesting property would be the exact
knowledge of the relation between d(A,B), d(A,C) and
d(C,B). But this knowledge is probably not compatible
with the complexity of building an indicator to evaluate
string proximity and an indicator of neighbouring
records. We noticed, empirically, that in our data set, the
transitivity property seems to be fulfilled and hence
increases the confidence it is possible to have in the Por-
ter-Jaro-Winkler algorithm.

Here we use, a posteriori, an improvement of window algo-
rithms already mentioned in literature [24,37,38]: records
are ordered according to a given criterion and the algo-
rithm, for a given record, is not used on the whole refer-
ence dataset, but only on records in a window of a given
length. The standard method of detecting exact duplicates
in a table is to sort the table and then to check if neighbor-
ing tuples are identical. Exact duplicates are guaranteed to
be next to each other in the sorted order, regardless of
which part of a record the sort is performed on. The idea
is to do sorting to achieve preliminary clustering and then
to do pairwise comparisons of nearby records. But in this
case there is no guarantee that approximate duplicates are
all next to each other in the sorted order. In the worst case,
they will be found at opposite extremes of the sorted heap.
In our case, the criterion is the blocking key and we used
the algorithm on all the records sharing the same blocking
keys. Much more than a sorted list, the canopy technique
we use creates overlapping subsets in which records are
compared. In the case of a dataset of size n, divided into b
blocks by standard blocking or bigram indexing, the com-
plexity of the record linkage decreases from O(n2) to O(n/
b) but with a much larger b with bigram indexing. The
complexity is O(wn) with the sorted neighbourhood with
a w-size window. For canopy clustering, the number of
record pair comparisons is O(f2n2/c) where ¢ is the
number of canopies and f the average number of canopies
a record belongs to. In our data set, we find that the
number of canopies has the same order as the number of
records and that each record belongs to about 10 canopies
(in mean). Our complexity decreases, then, from O(n2) to
O(n), which is less accurate than a bigram indexing com-
plexity. However, the calculation of canopies technique
complexity over-estimates this complexity [26]. Actually,
it seems to be clear that the most efficient improvement
would be to consider not a window but a priority queue.

http://www.biomedcentral.com/1472-6947/5/32

For example Monge [20] proposes a three-step procedure.
First, the Smith-Waterman algorithm is used to recognize
pairs of approximate duplicates, then the union-find algo-
rithm to keep track of clusters of duplicate records incre-
mentally, as pairwise duplicate relationships are
discovered. Thirdly, a priority queue of cluster subsets
responds adaptively to the size and homogeneity of the
clusters discovered as the database is scanned. All these
improvements are nevertheless based on identification
algorithms using edit-distance.

Our method adds to the calculation of similarity between
couples, a step of clustering and partitioning. To our
knowledge, no other published method in the field of
record linkage offers these last steps. Hence, for compar-
ing our method with the others, we have to rely on the
similarity step even if this is not our "final product". The
measurement of the quality of record linkage relies on 4
different values: the number of record pairs linked cor-
rectly (true positives), the number of record pairs linked
incorrectly (false positives), the number of record pairs
unlinked correctly (true negatives) and the number of
record pairs unlinked incorrectly (false negatives). These
values allow the calculation of different estimates of the
performance of an algorithm and notably: the specificity
(true negatives divided by the number of true non-match
pairs), the negative predictive value (true negatives
divided by the total number of non-linked pairs), the sen-
sitivity (true positives divided by the total number of true
match pairs, which is the sum of the true positives and the
false negatives) and the positive predictive value (true
positives divided by the total number of linked pairs). The
goal of methods for approximate records matching is to
retrieve the truest duplicates possible, even if the price to
pay is to get some false positives as well. Thus, the interest
is mostly in the sensitivity and in the positive predictive
value of methods, corresponding with, respectively, the
recall and the precision in the text retrieval field. Further-
more, the number of true negatives represents about 80 or
90 % of the total number of the pairs and any compari-
sons based on a quality indicator involving this number
will be difficult to interpret. Indeed, for example, the spe-
cificity of different methods will always (except with bad
methods) be close to 1 because the differences in the
number of false positives will play a very minor role in the
division by the number of true negatives. With respect to
the tremendous number of records it is very time consum-
ing, and almost impossible, to review all pairs non-linked
by the methods we want to compare with, in order to
detect false negatives and true negatives. The sensitivity
(and the negative predictive value) is hence very difficult
to calculate. Only the positive predictive value is a reliable
and easy to calculate indicator for measuring the perform-
ance of a method for record linkage. As it is quite impos-
sible to review all the pairs, a solution would be to sample
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Table 3: Weighting procedure of the atomic similarities (Appendix)

http://www.biomedcentral.com/1472-6947/5/32

Weights BN MN MN/BN BN/MN FN DB
Case |
A(MN) = {0} and B(MN) = {0} then
If aS (BN) <T or aS (FN) <T then 24 - - - /4 1/4
Else 2/6 - - - 16 3/6
Case 2
A(MN)! = {0} and B(MN) = {0}
(1) If aS (MN/BN) <aS (BN) then
If aS (BN) <T or aS (FN) <T then 24 - - - 14 1/4
Else 216 - - - /6 3/6
(*) Else 16 - 1/6 - I1/6 3/6
Case 3
B(MN)! = {0} and A(MN) = {0}, switch A and B and go to (I)
Case 4
A(MN)! = {0} and B(MN)! = {0}
If aS (BN/MN) <aS (BN) and aS (MN/BN) <a$ (MN) then w7 - - 7 317
If aS (BN/MN) >aS (BN) and aS (MN/BN) <aS (MN) then vz 7 - 117 117 3/7
If aS (BN/MN) < aS(BN) and aS (MN/BN) >aS (MN) then vz u7 7 - 117 3/7
If aS (BN/MN) >aS (BN) and aS (MN/BN) >a$ (MN) then 18 118 1/8 18 /8 3/8

some pairs and just review these ones. But this solution
does not seem to be completely accurate as the main qual-
ity of sampling is to respect the "data generating process".
In the case of duplicate identities generating, this process
seems to be much too complicated to be reproduced. The
risk then, is to have a biased validation sample and to get
a wrong quality indicator. Another solution is to have an
efficient external data set with several known characteris-
tics. The underlying idea is to compare an exhaustive and
clean (meaning without duplicates, after clerical review)
data set with these characteristics, with the subset of the
general hospital data set with these same characteristics.
This procedure was, for example, (with people remaining
anonymous) used with a digestive cancer registry [39].

The most common used final indicator, in the framework
of record matching, is the percentage of duplicate identi-
ties. But we cannot rely on this indicator as our method
builds several clusters of different sizes; each cluster corre-
sponding, after clerical review, to one identity. Hence we
use an indicator of uniqueness in the database calculated
as the sum of the number of UIDs not involved in any
cluster and the number of clusters, divided by the number
of initial UIDs. As some clusters are not size 2, this
uniqueness is not directly related to the number of dupli-
cate identities (meaning couples whose similarity is above
the threshold).

When we identify clusters of n-plicates, we have to decide,
furthermore, whether they are real n-plicates. The last step
is then to merge, not only on the identities - which is
already a problem - but also the medical records relating
to these identities. Even if all the global similarities are 1
in a given cluster, identified n-plicates stay "possible n-pli-
cates" and only a very close examination can allow us to
discard homonymic identities (in our case, same names,
same first name, same date of birth, same gender and
same address but different subjects). If merging clients'
addresses is not so risky, the problem is quite different in
the case of medical records. Complete traceability should
be possible for "un-merging" clusters if necessary. The
necessity of a human decision for merging is the most
important limitation for a completely automatic process.

Using matching variables other than the minimum set we
defined would dramatically improve the efficiency of the
records matching. For example, parents name or the city
of birth is a very discriminatory matching variable. Fur-
thermore, the first name seems to be less reliable than the
birth name for comparing records, and difficulties with
married names yield a complex algorithm for the calcula-
tion of global similarity. Hence, perhaps the minimal set
for identifying individuals is neither really reliable nor
sufficient.
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Appendix

The goal of this section is to detail the weighting proce-
dure of the atomic similarities for building the global sim-
ilarity as a weighted mean of those same atomic
similarities. The Table 3 summarizes this procedure. We
call A the first record (reference record) and B the second
record (sample record). Each record contains four differ-
ent fields (birth name, married name, first name and date
of birth) whose value cannot be the null string (noted
{0}) unless it is the married name. These fields, for exam-
ple in record A, are respectively noted A(BN), A(MN),
A(FN) and A(DB). We call aS the vector of atomic similar-
ities and gS the global similarity. The components of aS
are the atomic similarities between two fields: which are
noted aS(BN) between the two birth names, aS(MN)
between the married names, aS(BN/MN) between the
birth name of the first record and the married name of the
second, aS(MN/BN) between the married name of the
first record and the birth name of the second, aS(FN)
between the first names and aS(DB) between the dates of
birth. T is the threshold under which two atomic similar-
ities are acknowledged to correspond to two different val-
ues of the fields. With reference to Porter-Jaro-Winkler,
this threshold is fixed to 0.7. In the procedure there are
four main cases, each one is further divided in several sub-
cases.

For example, suppose that the atomic similarities for two
records A and B are aS(BN) = 0.80, aS(MN/BN) = 0.97,
aS(FN) = 0.90 and aS(DB) = 0.92. This case corresponds
to a first record with a married name and a second record
without a married name but with a birth name which is
nearer the married name of the first record than the birth
name of this first record (probably an inversion between
the two names). In the Table 3, these atomic similarities
go with the row highlighted with (*). Hence, the global
similarity is calculated as 1/6.0.80 + 1/6.0.97 + 1/6.0.90
+3/6.0.92 0r 0.905. Even if there is a further error with the
dates of birth, the global similarity indicates a relatively
strong proximity between the two records. Of course, if
the errors on dates of birth were more pronounced, the
global similarity would quickly decrease.
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