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Abstract

Background: The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize
this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the
knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional
differentiation between implicit and explicit knowledge we outline the concepts of general and individual
knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial
intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based
reasoning, a method of individual knowledge processing that aims at solving new problems based on the
solutions to similar past problems.

We outline the fundamental differences between Medical Informatics and theoretical sciences and propose
that Medical Informatics research should advance individual knowledge processing (case-based reasoning)
and that natural language processing research is an important step towards this goal that may have ethical
implications for patient-centered health medicine.

Discussion: We focus on fundamental aspects of decision-making, which connect human expertise with
individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical
knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized
healthcare and that can enable the education of patients and providers.

We center the discussion on formal methods of knowledge representation around the frame problem.
We propose a context-dependent view on the notion of "meaning” and advocate the need for case-based
reasoning research and natural language processing. In the context of memory based knowledge
processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to
naturally support the case-based reasoning paradigm (memory of past experiences of problem-solving and
powerful case matching mechanisms), technical solutions are challenging.

Finally, we discuss the major challenges for a technical solution: case record comprehensiveness,
organization of information on similarity principles, development of pattern recognition and solving ethical
issues.

Summary: Medical Informatics is an applied science that should be committed to advancing patient-
centered medicine through individual knowledge processing. Case-based reasoning is the technical
solution that enables a continuous individual knowledge processing and could be applied providing that
challenges and ethical issues arising are addressed appropriately.
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Background

A meta-level view of science

Our aim is to place Medical Informatics in the context of
other sciences and to bring coherence in its formal educa-
tion [1]. This will necessarily place the discussion at a
meta-level view of science, which traditionally was the
concern of philosophers. From such a general perspective,
science could be defined as "the business of eliciting theo-
ries from observations in a certain context, with the hope
that those theories will help to understand, predict and
solve problems." Also revolving around the "business of
creating theories," R. Solomonoff's ideas [2], summarized
in 3], contribute to the basis of Algorithmic Information
Theory (AIT) [4], a relatively new area of research initiated
by A. Kolmogorov, R. Solomonoff and G. Chaitin, and
regarded as the unification of Computer Science and
Information Theory. According to Solomonoff's view, a
scientist's theories are compressions of her observations
(i.e., her experimental data). These compressions are used
to explain, communicate and manage observations effi-
ciently and, if valid, to help solving problems, under-
standing and predicting. Intuitively, the higher the
compression achieved by the theory, the more "elegant”
that theory and the higher its chances of acceptance. This
very general perspective of the scientific endeavor also
makes science to appear twofold: it comprises the creation
of theories (i.e., theory elicitation) as well as their subse-
quent use in understanding, predicting and solving prob-
lems (i.e., theory application). Therefore, science seems to
be driven by two opposite forces: that of creating theories,
and that of applying those theories to practical
applications.

The four-dimensional space-time continuum we live in
(i.e., our universe) forms the reality (i.e., the context) of
all scientific observations. The compression of the
immense complexity and dynamicity of this reality in
concise "theories of everything" was already demon-
strated by Zuse [5,6] and recently Schmidhuber [7]. These
results of theoretical computer science demonstrate the
power of human theory elicitation and provide important
answers to old questions of science and philosophy. How-
ever, their unfeasibility when applied to practical prob-
lems, which would be equal to building computing
devices capable of running precise simulations of our real-
ity, also widens the gap between theoretical research and
practical sciences. For the time being, humanity still needs
to divide science and define human knowledge as a collec-
tion of individual theories elicited from scientific observa-
tions. The immense number of theories that comprise the
collective human knowledge about every possible subject,
as well as its extraordinary dynamics, have forced us to
divide it into what we commonly refer to as knowledge
domains, thereby reducing the contexts of our observations
to smaller space-time continuums. The attempts to proc-
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ess with computers the knowledge in a domain have
taught us that we need to recognize the reality of the
"knowledge acquisition bottleneck" [8] and to not under-
estimate the importance of common-sense knowledge
(see [9] and [10-13]). The particularities with regard to the
context retention, acquisition, representation, transfera-
bility and applicability of domain knowledge, causes us to
distinguish between different modalities of domain
knowledge, and place them on what we refer to as the
knowledge spectrum.

The knowledge spectrum

The knowledge spectrum (Figure 1) spans from a complex
reality (the source of experimental data and information
gathered from observations and measurements) to high-
level abstractions (e.g., theories, hypotheses, beliefs, con-
cepts, formulae etc). Therefore, it comprises increasingly
lean modalities of knowledge and knowledge representa-
tions media and the relative boundaries and relationships
between them. Two forces manifest on the knowledge
spectrum: that of creating abstractions and that of instan-
tiating abstractions for practical applications. The former
is the theory elicitation and is synonymous to processes of
context reduction and knowledge decomposition. The lat-
ter, theory application, equates to context increase and
knowledge composition processes. The engines behind
the two knowledge spectrum forces are the knowledge
processors, natural or artificial entities able to create
abstractions from data and to instantiate abstractions in
order to fit reality.

Knowledge is traditionally categorized into implicit and
explicit (Table 1) and ranges from rich representations
grounded in a reality, to highly abstracted, symbolic rep-
resentations of that reality. The classical distinction
between data, meta-data, information, knowledge and
meta-knowledge is simplified by our subscription to the
unified view of Algorithmic Information Theory (AIT) [4]
which recasts all knowledge modalities and their process-
ing into a general framework requiring a Universal Turing
Machine, its programs and data represented as finite
binary sequences. From this perspective a precise distinc-
tion between these modalities becomes unimportant.

Implicit knowledge (U, from unobvious, unapparent) is the
rich, experiential, sensorial kind of knowledge that a
knowledge processor acquires when immersed into an envi-
ronment (i.e., grounded in an environment), or presented
with detailed representations of that environment (e.g.,
images, models, recordings, simulations). It is very well
applicable to specific instances of problems and relies on
processing mechanisms such as feature selection, pattern
recognition and associative memory.
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Table I: Implicit and explicit knowledge

Implicit knowledge (U)

Example The implicit knowledge used to recognize the face of
a specific person.

Complexity, Context retention  Rich, grounded in reality.
High retention of context in form of salient features.
Acquisition Detection, learning of correlations and regularities
of environment.

Representation Unstructured, present implicitly in data recordings
of the environment (e.g., image of a person).
Transferability Transferable only in implicit form through the data

recordings (i.e., representations) of the
environment.

Applicability Very well applicable to specific problem instances.
Processing mechanisms Pattern recognition, feature selection, associative
memory.

Explicit knowledge (E)

The explicit knowledge (e.g., textual descriptions)
that would allow to recognize faces of people
(including a specific person).

Lean, more abstract, symbolic.

Variable amount of context retention.
Explicitation of one's implicit knowledge.

Explicit acquisition of knowledge (e.g., through
reading).

Varies from less structured (e.g., natural language)
to very structured (e.g., formal descriptions).
Transferable through languages (natural or formal)
and communication (e.g., verbal).

Applicable to both, specific and more generic
problems.
Reasoning.

Explicit knowledge (E) is the abstract, symbolic type of  processor to

construe the meaning of concepts of that

knowledge present explicitly in documentations of  language. It is applicable to both specific and generic

knowledge such as textbooks or guidelines. It requires a  problems and
representation language and the capability of a knowledge

relies on explicit reasoning mechanisms.
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Table 2: Individual and general knowledge
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General knowledge

Individual knowledge

Example

Complexity
Acquisition

Representation Transferability

Context retention Applicability

Explicit general propositions, rules, algorithms,
guidelines and formal theories for recognizing faces
of people (e.g., a formal theory of human face
recognition).

Very lean, abstract, symbolic.

Identical to acquisition of explicit knowledge.

Very structured, highly transferable, explicitly as
general propositions, rules and guidelines.

Does not retain context.

Easy applicable to generic problems, difficult to apply
to specific problem instances (e.g., recognition of the

The implicit knowledge used to recognize and the
explicit knowledge (e.g., textual description) that
would allow recognizing the face of a specific person.

Varies from rich to lean.

Identical to acquisition of both implicit and explicit
knowledge.

Varies from unstructured to less structured.
Transferable in both implicit and explicit form.
Retains context.

Well applicable to specific problem instances,
especially if context retention is high.

face of a specific person).

Processing mechanisms Logic reasoning.

Pattern recognition, feature selection, associative
recall, case-based reasoning.

The distinction between implicit and explicit knowledge
are useful to characterize the nature of human expertise,
but become problematic when one wants to describe fun-
damental differences between theoretical and applied sci-
ences: many applied sciences, especially knowledge
intensive ones, in addition to general theories of problem
solving, also make use of explicit knowledge in order to
describe, with various degrees of precision, particular
instances of problem solving and theory application. This
represents the rationale for further dividing the knowl-
edge spectrum into general and individual knowledge (Table
2).

General knowledge

General knowledge (G) is the explicit, abstract, proposi-
tional type of knowledge (e.g., guidelines), well applica-
ble to context-independent, generic problems. However,
it is more difficult to use in specific contexts because of the
gap between the general knowledge itself and a particular
application context. This knowledge gap translates into
uncertainty when a general knowledge fact is instantiated
to a specific situation. For example, knowing generally
that a certain drug may give allergic reactions but being
uncertain whether a particular patient may or may not
develop any, is an example of what we consider the uncer-
tainty associated with general knowledge. The creation of
general knowledge (i.e., abstraction, generalization, con-
text reduction, theory elicitation) is a relevance-driven
process done by "stripping away irrelevancies" [9]. This
causes general knowledge to have a lower complexity and
be more manageable: "generalization is saying less and
less about more and more" [9].

Formal representations of explicit knowledge have been
common in early artificial intelligence (AI) applications

=

Figure 2

A blocks world example. In this particular example
expressions such as: on(a, c), on(c, table), on(b, table), pyra-
mid(a), brick(b), brick(c), -same-as(a, c), same-as(b, c), etc.,
are true.

in the context of expert system development. They oper-
ated under the "closed world assumption" and were
meant to make the representation of knowledge manage-
able, reproducible and clear. However this assumption
also rendered the expert systems "brittle" or completely
unusable when applied to real world problems [14]. The
completeness necessary for automatic reasoning using
explicit reasoning mechanisms can be illustrated with the
following formal definition of the concept of "a brick" in
a limited, hypothetical world, containing only simple
geometric objects such as bricks and pyramids (Figure 2)
(adapted from [15]): "being a brick implies three things:
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1. first, that the brick is on something that is not a
pyramid;

2. second, that there is nothing that the brick is on and
that is on the brick as well; and

3. third, that there is nothing that is not a brick and the
same thing as the brick."

This definition could have the predicate calculus
representation:

VX(brick(X) > | [3Y(on(X,Y) A —pyramid(Y))) A|
@Y (on(X,Y) Aon(Y,X))) A

(Y (—brick(Y) A same —as(Y, X)))] (1)

This representation shows that an intelligent agent who
has no implicit knowledge of the hypothetical physical
world and no capacity of generalization or analogy mak-
ing, must be explicitly provided with all knowledge neces-
sary to reason about "bricks" in that limited reality. Such
approaches are known to suffer from a fundamental
shortcoming, the "frame problem."

The frame problem

Daniel Dennett was the first philosopher of science who
clearly articulated the "frame problem" and promoted it
as one of the central problems of artificial intelligence
[16] (also see [17]). Janlert [ 18] identifies the frame prob-
lem with "the problem of representing change." In [14]
the frame problem is defined as "the problem of
representing and reasoning about the side effects and
implicit changes in a world description.” In order to artic-
ulate and circumvent the abstract nature of its definition,
Dennett has invented a little story involving three genera-
tions of increasingly sophisticated robots. These fictitious
robots are products of early artificial intelligence (AI)
technology that use automated reasoning based on formal
representations similar to the brick example. These partic-
ular robots are specifically designed to solve a problem
consisting of the retrieval of their life-essential batteries
from a room, under the threat of a ticking bomb set to go
off soon. Although increasingly sophisticated in their rea-
soning, all three successive versions of the robot fail:

¢ The first robot fails by missing a highly relevant side effect
of pulling the wagon with the batteries out of the room:
the ticking bomb sitting on the same wagon was also
retrieved, together with the batteries.

¢ The second robot did not finish its extensive, irrelevant side-
effect reasoning procedures before the bomb goes off. As
Dennett ironically puts it, the robot "had just finished
deducing that pulling the wagon out of the room would
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not change the color of the room's walls and was embark-
ing on a proof of the further implication that pulling the
wagon out would cause its wheels to turn more revolu-
tions than there were wheels on the wagon - when the
bomb exploded."

¢ The third robot failed because it was "busily (i.e., explic-
itly) ignoring some thousands of implications it has determined
to be irrelevant" and its batteries were therefore lost in the
inevitable explosion.

The frame problem can therefore be recast as a problem of rel-
evance [17](see preface), which is compounded by time con-
straints. It demonstrates that relevance judgment mechanisms
based on general knowledge are time consuming and cause the
failure to solve time-constrained decision problems. It is a prob-
lem only because in the real world we do have time
constraints.

Individual knowledge

Individual knowledge (1) or instance specific knowledge, on
the other hand, is a knowledge modality very well
applicable to real problems, because it identifies uniquely
and matches precisely an application context. The knowl-
edge gap and uncertainty are reduced but still exist
because of our changing reality (time dimension) which
may render individual knowledge about a patient col-
lected in the past (e.g., value of blood pressure from a
month ago), less applicable in the present or future.
Because it preserves context (i.e., it is more grounded),
individual knowledge has a higher complexity than gen-
eral knowledge and hence is more difficult to manage
(i.e,, has high memory requirements). For example,
knowing the drugs and the precise description (e.g.,
numeric, textual, visual) of the allergic reactions that they
caused in a certain person, as well as many other particu-
lar knowledge facts about individual, is what we call indi-
vidual knowledge. The uncertainty and knowledge gap
related to the application of such knowledge to future
instances of decision making involving that individual are
reduced: individual knowledge is supposed to fit very well
the application context where it was originally captured.

Case-based reasoning

Individual knowledge captured from a very specific con-
text (e.g., diagnosing a particular patient with a particular
disease) can be extrapolated to similar contexts. The
higher the similarity between contexts, the smaller the
knowledge gap and instantiation uncertainty and the
higher the chances for a successful solution to a new prob-
lem. For this reason, individual knowledge processing has
become increasingly important for artificial intelligence
applications and is defined as the approach to solving new
problems based on the solutions of similar past problems
[14,19-21]. It has several flavors (e.g., exemplar-based,
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The relationships between the knowledge modalities.

instance-based, memory-based, analogy-based) [21]
which we will refer to in this paper interchangeably,
through the generic term of "case-based reasoning"
(CBR).

There are four steps (the four "RE") that a case-based rea-
soner must perform [14,20,21]:

1. RETRIEVE: the retrieval from memory of the cases
which are appropriate for the problem at hand; this task
involves processes of analogy-making or case pattern
matching;

2. REUSE: the decomposition of the retrieved cases in
order to make them applicable to the problem at hand;

3. REVISE: the compositional adaptation and application
of the knowledge encoded in the retrieved cases to the
new problem; and

4. RETAIN: the addition of the current problem together
with its resolution to the case base, for future use.

CBR entails that an expert system has a rich collection of
past problem-solving cases stored together with their res-
olutions. CBR also hinges on a proper management of the
case base and on appropriate mechanisms for the match-
ing, retrieval and adaptation of the knowledge stored in
the cases relevant to a new problem. Ideally, the individ-
ual knowledge in a case-base will progress asymptotically
towards an exhaustive knowledge base, which represents
the "holy grail" of knowledge engineers. From a learning

http://www.biomedcentral.com/1472-6947/4/19

systems point of view, similarly to artificial neural net-
works [22,23] and inductive inference systems [24] that
learn from training examples, a CBR system acquires new
knowledge, stores it in a case base and makes use of it in
new problem solving situations.

The absolute positions and shapes of boundaries between
the four knowledge modalities, although admittedly not
as precise as drawn on the knowledge spectrum in Figure
1, are not of importance for this discussion. However, the
relative relationships between knowledge modalities are,
and can be represented formally as a Venn diagram (Fig-
ure 3), which implies that:

¢ Individual knowledge has a higher complexity than the
explicit knowledge elicited from the same context. This is
equivalent to stating that, for example, the picture of a
person encodes more knowledge than the textual descrip-
tion of that person's appearance.

e Implicit knowledge is a subset of the individual
knowledge.

¢ General knowledge is a subset of the explicit knowledge.

¢ The set of individual knowledge represented explicitly
formed by the intersection of individual knowledge with
explicit knowledge is a nonempty set. This is equivalent to
stating that it is possible, for example, for an explicit tex-
tual description to identify a context uniquely (e.g., the
complete name and address of a person at a specified
moment in time).

A meta-level view of Medical Informatics

The meta-level overview of sciences and the definitions
and properties of the knowledge spectrum and knowledge
modalities enable us to draw some fundamental differ-
ences between theoretical sciences and applied sciences
such as Medicine [25] and Medical Informatics. From this
perspective, theoretical sciences (e.g., theoretical compu-
ter science):

® Make use of observations which are highly abstract sym-
bolisms and create far more limited contexts of applica-
tion of their theories, when compared to the complexity
of the human body or of any social or biological system,

¢ Have as a primary purpose the creation of general knowl-
edge comprising valid, powerful theories which explain
precisely and completely the observations, and therefore,

¢ Include a relatively limited number of precise theories
which are evaluated primarily by their power of explain-
ing experimental observations, elegance, generality, and
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¢ Are less concerned with the acquisition of the individual
knowledge required by the practical implementation and
by the application of results to real world problems.

Applied sciences such as Medicine and Medical Informat-
ics, on the other hand:

e Gather extensively data and observations (individual
knowledge) from very complex systems [9,26] (e.g., human
body), which are characterized by high individual varia-
tion and randomness;

e Have as a primary purpose not only distilling data and
observations into general knowledge, but are also con-
cerned with the implementation details and with the
application of theories to individual problem solving
(e.g., diagnosis and treatment of real patients),

e May lack the incentive to refine existing theories which
are objectively wrong as long as practical success is
achieved [25],

e Contain very few simple, "elegant" theories (general
knowledge) that can solve individual problems completely
or explain and predict accurately [27] because of the com-
plexity of the human body and its individual variation
and, therefore,

e May pursue the application of a multitude of mutually
contradictory, poorly grounded, general theories (e.g., the
general theory of medical reasoning and the concepts of
"diagnosis" and "symptom") [1,25],

e Abound in general theories (e.g., guidelines) which are
"lossy" (i.e., ignore individual context variation) and
which are evaluated statistically by their practical success
relative to existing ones (e.g., cancer therapy),

¢ Attempt to make up for the knowledge gap between gen-
eral knowledge and the reality where knowledge is applied,
by employing experienced clinicians who require exten-
sive training and information technology (e.g., decision
support), and, in addition,

e Are compounded by time-constrained circumstances
and largely unsolved ethical issues (e.g., privacy and con-
fidentiality, genomics research).

Given the special circumstances of our applied science in
the context of other sciences and the increasing recogni-
tion of the importance of knowledge processing to Medi-
cal Informatics [28], we propose, as part of the thesis of
this paper, that Medical Informatics should complement the
traditional quest for general biomedical knowledge with the
advance of acquisition, storage, communication and use of

http://www.biomedcentral.com/1472-6947/4/19

individual knowledge. By doing so, Medical Informatics will
provide a solution to the problems that arise during the use of
general knowledge and, in the same time, will enable clinical
research as well as advanced decision support and education of
both healthcare providers and patients.

Individual knowledge processing equates to a case-based
reasoning (CBR) approach that employs collections of
patient cases. Currently, such collections are the focus of
research on Electronic Health Records (EHR). Envisioned
as "womb to tomb" collections of patient-specific data,
EHR contain a wealth of data that could be used to sup-
port case-based decisions. If EHR are to be used in a CBR
context, the issues pertinent to the design of case-bases
automatically become pertinent to the EHR design, and the
CBR paradigm becomes important to Medical Informatics.

The overall knowledge processing capacity of healthcare sys-
tems can be thought to be distributed between two
sources: human resources (i.e., healthcare professionals)
and information technology (Medical Informatics). An
ideal CBR approach would increase this knowledge
processing capacity by allowing for the automatic process-
ing (acquisition, representation, storage, retrieval and
use) of individual knowledge present in increasingly rich
knowledge media such as natural language artifacts,
images, videos and computer simulations of reality (Fig-
ure 4). The storage and communication of knowledge are
well advanced by current information technology. How-
ever, most of the acquisition, retrieval and knowledge use
are, and will continue to be the task of professionals until
advanced processing (e.g., real-time computer vision,
scene understanding and synthesis, image understanding,
robotics, natural language understanding) are applicable.
Given the widespread use of natural languages as knowledge
representation and communication media, it follows that natu-
ral language processing (NLP) research is a very important
component of Medical Informatics, required to advance the
organization and processing of individual knowledge in reusa-
ble case-bases. Further, the goal to advance processing of
increasingly complex knowledge representations (e.g., natural
language, sounds, images, simulations) and create intelligent
machines that can hear, see, think, adapt and make decisions,
brings Informatics even closer to what traditionally was the con-
cern of Artificial Intelligence (AI).

Finally, because the knowledge processing capacity of
human resources tends to remain relatively constant, mov-
ing towards the ideal of individual knowledge processing, no
matter how slowly, may also have ethical implications because
it proves that medical informaticians are trying to do everything
they can in order to serve the interest of the individual.
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Discussion

In order to support our thesis, the following discussion
will focus initially on fundamental aspects of medical
decision-making and biomedical knowledge creation
from the standpoint of the knowledge spectrum. This will
lead to a discussion of fundamental knowledge represen-
tation and processing principles and the proposal of a
CBR perspective on EHR, including challenges and poten-
tial solutions.

Human and computer knowledge processing

Decision making in medicine

Medicine is a knowledge intensive domain where time-
constrained decisions based on uncertain observations are
commonplace. In order to successfully cope with such sit-
uations, health professionals go through a tedious learn-
ing process in which they gain the necessary domain
knowledge to evolve from novices to experts. As experts,
health professionals have attained, among other things,
two important, highly interrelated abilities:

¢ To be able to reduce knowledge complexity by determin-
ing efficiently what is relevant for solving a problem in a par-
ticular situation, and,

e To be able to reduce the knowledge gap between knowl-
edge facts and reality which translates into being able to
reduce the uncertainty of knowledge instantiation to a
particular context.

For example, both the presence and the absence of a past
appendectomy are relevant and contribute (potentially
unequally) to reducing the uncertainty of instantiation of
the biomedical knowledge of an expert to a particular con-
text of a patient with right lower abdominal pain. Funda-
mental to decision making, relevance judgments and
uncertainty reduction seem both closely connected with
the quality and quantity of knowledge available for solv-
ing a problem as well as with the nature of knowledge
processing mechanisms. Studies of expert-novice differ-
ences in medicine [29] have shown that the key difference
between novices and experts is the highly organized
knowledge structures of the latter, and not the explicit
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strategies or algorithms they use to solve a problem. This
is supported by expert system development experiences
which showed that a system's power lies in the domain
knowledge rather than in the sophistication of the reason-
ing strategies [14]. Studies of predictive measures of stu-
dents' performance indicate that tests which measure the
acquisition of domain knowledge are the best predictors
[30]. The work on naturalistic decision-making (NDM)
and the development of psychological models of "recog-
nitional decision-making" such as the Recognition-
Primed Decision (RPD) [31-33], suggest the heavy
dependence of decision makers on their previous experi-
ence of problem-solving and also on their ability to per-
form mental simulations.

The discussion around the amount of problem solving
experience of a decision maker becomes critical in time-
constrained decision circumstances. The exhaustiveness
of the knowledge base and the efficiency of retrieval
mechanisms now become paramount to the decision
speed. Empirical evidence that shows the existence of "sys-
tematic changes of cognitive processes" related to time
stress, comes from the studies on the psychology of deci-
sion-making under time constraints [34]. Although most
of these studies attest the overall negative effect of time
stress on the "effectiveness of decision-making processes"
[35], others [31,33] argue that even extremely time-con-
strained situations could be handled successfully by
human subjects, given enough expertise (i.e., enough
problem solving experience).

Since humans are able to make sound relevance judg-
ments and reduce instantiation uncertainty of knowledge
most of the times, the following questions arise: What is
their strategy for increasing the exhaustiveness of their
knowledge base while managing its exponential complex-
ity? How do they represent and organize their knowledge
and how do they manage time-constrained situations? At
least some of these questions have been under intense
scrutiny that has resulted in important empirical work on
naturalistic decision-making [32,33,36,37]. Important
insights have been gained at the individual but also at the
organizational and social levels. Coherent with the impor-
tance of the social aspects of decision-making, Armstrong
[38] builds an interesting argument about the Darwinian
evolution, social networking and the drive for knowledge
discovery of the humanity as being some of the reasons
that contribute to the human decision making potential.

From the perspective of the knowledge spectrum, it seems
reasonable to associate expert decision makers with indi-
vidual knowledge and novices with the more abstract gen-
eral knowledge about a subject, available in explicit
knowledge artifacts (e.g., textbooks, guidelines). It is also
conceivable that mental models of experts span a great
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length of the knowledge spectrum, causing them to effi-
ciently perform implicit processing (feature selection, pat-
tern recognition, associative recall) and also just-in-time
explicit reasoning (Figure 5). The ability to move freely
across the knowledge spectrum causes experts to
efficiently reduce data to abstractions and to create
hypotheses and micro-theories through sound relevance
judgments. The powerful mental simulations that experts
can perform allow them to construe appropriate mean-
ings of concepts and to verify their hypotheses against
contexts of reality.

Novices, on the other hand, have limited mental models
of reality situated towards the abstract region of the spec-
trum. This causes them to have difficulties with construing
appropriate meanings of concepts due to the increased
knowledge gaps between their mental models and reality.
Novices are therefore unable to make sound relevance
judgments and limited in their ability of interpreting data
and creating abstractions. They are also usually over-
whelmed by the explicit, general knowledge present in
textbooks and guidelines and unable to fully construe the
meanings of concepts present in such knowledge artifacts.

In conclusion, in information and knowledge intensive
domains such as medicine, explicit reasoning is important but
individual knowledge acquisition (i.e., experience) and
processing (i.e., CBR) are crucial for decision-making. Because
the nature of expertise seems largely connected with individual
knowledge processing, it follows that the evolution of novices
into experts is unattainable only by the provision of extensive
general knowledge. In addition, not only the individual learn-
ing but also the collective sharing of experiences (e.g., case
records, personal stories, etc.) between individuals and between
generations, contribute to the way humans deal with decision
problems.

Patient-centered vs. population-centered healthcare

The major driving force of science is universally applicable
knowledge (i.e., general knowledge). While creating and
communicating new knowledge, scientists move across
the knowledge spectrum from the data that captures the
reality of their experiments and observations towards
abstract representations that allow them to communicate
their theories. In biomedical research, such an example is
the randomized controlled trial (RCT), currently regarded
as the gold standard for knowledge creation. The correct
design of an RCT is crucial for the validity of the medical
evidence obtained. A correct randomization process in
RCTs will limit the bias and increase the chance for appli-
cability of the evidence obtained, to a specifically selected
group of patients (e.g., "women aged 40-49 without fam-
ily history of breast cancer"). However, at the same time,
the randomization process removes the circumstances of
individual cases and creates a knowledge gap between the
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RCT evidence and future application instances. As with
any statistical approach, the RCT-based evidence is best
applicable at the population level rather than at the indi-
vidual level.

This depersonalization of medical knowledge and evi-
dence was also noted by others [39,40] and could also be
illustrated by the observation that most patients feel
relieved when told that the chances of being successfully
treated for a certain condition are 99%, for example.
Although this is psychologically very positive, the patients
should not necessarily be relieved, as they could very well
happen to fall among the 1%, for whom things could go
wrong and for whom, usually, the RCT-based evidence
does not provide additional information. An experienced
physician and, from a CBR perspective, a highly efficient
case-based reasoner, is most of the times able to individu-
alize the medical decision for a particular patient for
whom things are likely to go wrong and fill in the knowl-

edge gap between the RCT evidence and the medical prob-
lem at hand. This could lead to avoiding a therapeutic
procedure recommended by the medical evidence. The
individual knowledge that this decision is based on is usu-
ally not provided by the RCT, but is acquired through a
tedious process of training. This decision is often so com-
plex that it cannot be easily explained as it becomes heu-
ristic in nature and is motivated by the individual
knowledge that a decision maker possesses.

Others [41] have also pointed out that when physicians
manage their cases (e.g., diagnosis and treatment), their
previous experience allows them to make informed deci-
sions based on heuristics rather than on a sound, com-
plete and reproducible reasoning, such as logical
inference based on a predicate calculus representation of
a problem. In addition, human experts often disregard
probabilisticc, RCT-type of evidence and consistently
detach themselves from the normative models of classical
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decision theory (e.g. probability theory, Bayes theory) in
favor of heuristics-based approaches. Although prone to
occasional failures, heuristics-based decisions are much
more efficient in time-constrained and uncertain situa-
tions [33].

From the perspective of the knowledge spectrum, the driv-
ing forces of Health Informatics and RCT methodology
seem to have opposite directions: while Informatics aims
towards individual knowledge and personalized health care,
the general knowledge gained through populational
studies (e.g., RCTs) targets the ideal of universal applica-
bility (Figure 6). The value of a single bit of data (e.g., a
Yes/No answer to a specific question such as a past appen-
dectomy) can be very relevant in a decision-making con-
text if it reduces the overall uncertainty of knowledge.
However, such individual bits of data are inevitably lost
during the creation of general knowledge.

Rigorously and expensively collected, general, populational level
knowledge is useful only in situations where individual knowl-
edge lacks (e.g., new drugs), providing the decision makers
have access to it and are able to apply it to specific situations.
However, general knowledge is unlikely to be used as such in

many naturalistic decision-making processes, because it does
not support the way expert decision makers think. The knowl-
edge gap and inherent instantiation uncertainty manifested in
the application of general knowledge does not fully enable the
education of providers and patients which would require addi-
tional knowledge about individual contexts of successful or
unsuccessful application instances. Informatics, on the other
hand, by advancing individual knowledge processing, provides
an alternative solution to the problems that arise from the use
of general knowledge that targets universal applicability. An
integral part of individual knowledge, genomic data is already
recognized [39,40]as being of extreme importance for a solu-
tion to the problems of general knowledge.

Knowledge representation by formal methods

The application of formal knowledge representations to
real problems suffers from a fundamental shortcoming:
the frame problem. As explained above (see "The frame
problem"), the frame problem can be recast as a problem
of relevance. Given the capability of relatively effortless
human relevance judgments, the frame problem seems a
rather "artificial" creation, difficult to grasp and which
usually goes unnoticed. In order to circumvent its abstract
nature, Dennett uses a story-telling approach. However,
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the frame problem also applies to and could be illustrated
from the perspective of humans, who in their first years of
life, learn and can easily and efficiently reason about the
side effects and the implicit changes of the complex four-
dimensional spatio-temporal physical world in which
they live. As this learning gradually becomes common
sense knowledge, it causes us to efficiently determine the
relevant implicit changes while ignoring the non-relevant
ones for a given situation. For example, such facts as that
the clothes we are wearing are moving with us while
walking or traveling are most of the times irrelevant given
the context of a planned trip. However, if the trip involves
some rapid movement through the air such as riding a
motorbike, suddenly wearing a sombrero becomes a rele-
vant fact. As experts at managing our physical world, we
are able, through an effortless but powerful mental simu-
lation, to determine the relevance of such a particular fact.
The recall of our personal experiences of moving fast
through the air and of the dragging force of the air
becomes paramount. Therefore, intelligent agent must be
endowed with efficient mechanisms for determining the rele-
vance of particular facts for a decision.

We suggest that what made the robots vulnerable was
their creators' choice for knowledge representation and
reasoning: the robots did not have quick access to implicit
knowledge about the relevance of particular facts (i.e.,
records of problem solving instances) but only to explicit
facts in frames which had to be employed in time-con-
suming, immense number of explicit relevance judgments
about the effects of particular actions. Although they were
supposed to be experts at their task, the robots were
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behaving like novices. The frame problem is not a prob-
lem of the knowledge representation per se, but a problem
of the choice for representation of knowledge needed to
solve time-constrained decisions. In other words, formal
representations and logic reasoning work, but not in time
constrained, complex situations.

From the perspective of our knowledge spectrum, explicit,
formal representations sit on the abstract side of the spec-
trum (Figure 7). The retrieval of explicit knowledge repre-
sentation is currently the subject of the increasingly
important field of research of information retrieval (IR). It
is commonly accepted that IR is strongly coupled with the
notion of intended meaning of concepts: a retrieved docu-
ment is considered to be relevant to a query if the
intended meanings of the authors of a document are rele-
vant to the intended meaning of that query. We propose
that "meaning," a property that characterizes all concepts
present in explicit knowledge, is intimately connected (if
not identical) with the notion of context. According to this
rather paradoxical view, meaning, a property which char-
acterizes the abstract side of the knowledge spectrum, is
strongly coupled with context which, by definition, is a
feature of the reality side of the knowledge spectrum.
Therefore, in order to construe meaning appropriately one
needs to be able to efficiently move from abstractions
towards richer representations of reality. This movement
on the knowledge spectrum is necessary in order to fill the
knowledge gap between abstract concepts and the richer
mental representations required for construing their
meaning.
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Figure 7

Representations of "brick"” on the knowledge spectrum. Such representations range from rich (e.g., images, mental
models) to less complex (sketches and diagrams) and to symbolic descriptions (textual, formal and conceptual).
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Explicit, formal representations attempt to capture general
truth and generally applicable problem solving strategies,
but become too abstract in nature. Through the abstrac-
tion process, which is essentially a reduction driven by the
relevance judgments of knowledge creators, the context of
a problem is lost. Losing context creates difficulties with
construing meaning (which is context-dependent by defi-
nition) and widens the knowledge gap between the repre-
sentation itself and the reality of a future problem-solving
instance. The knowledge gap translates into the instantia-
tion uncertainty that characterizes the application of gen-
eral knowledge to specific problems. Making up for the
knowledge gap through explicit relevance reasoning
becomes time consuming and consequently takes its toll
on the applicability of the representation. In sensitive
applications such as medical decision-making and health
research, general knowledge may potentially be harmful
(e.g., prescribing an highly recommended drug to which a
patient has a undocumented allergy). In addition, abstrac-
tions and general methods and theories of problem solv-
ing and decision making (e.g., guidelines) do not fully
enable the education of individuals and the learning from
successes and mistakes.

Knowledge representation approaches must therefore preserve
to the extent possible, the context of a problem-solving instance.
By efficiently recalling similar past instances of problem solving
and their contexts, intelligent agents are immediately provided
with implicit knowledge about relevance, encoded in the
retrieved contexts and, in the same time, with more possibilities
to reduce the instantiation uncertainty of general knowledge
when applied to specific problems. To enable this, informatics
research must advance the processing of rich representations of
the knowledge encoded in past problem solving cases: this is the
definition of CBR research.

Knowledge representation by natural language

Similar to formal specifications (e.g., predicate calculus)
natural language uses abstractions, i.e., concepts. Its rich-
ness and power of expression place it in the knowledge
spectrum to the left side of formal specifications but to the
right side of rich descriptions consisting of images,
sounds, video-clips and simulations of reality (Figure 4).
Natural language has power of expression but loose
semantics and inherent ambiguity. However, despite its
abstract nature, it remains the indispensable, main knowl-
edge representation and transfer medium between
humans.

In order to illustrate our point about ambiguity we direct
the reader to the previous, natural language definition of
the concept of "a brick." Although the definition may look
unequivocal, there are subtle ambiguities that make a dif-
ference in the predicate calculus representation. The first
condition of an object to be "a brick" (i.e., "the brick is on
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something that is not a pyramid, " highlighted in the equa-
tions 2 and 3) is an ambiguous natural language construc-

tion and could have slightly different formal
representations:
VX(brick(X) — | [(VY(on(X,Y) — —.pyramid(Y)))] A

(—3Y(on(X,Y) Aon(Y,X))) A

(—=3Y(=brick(Y) A same-as(Y,X))) | (2
VX(brick(X) > [ [[3Y(on(X,Y) A ~pyramid(Y)))] A

(—3Y(on(X,Y) Aon(Y,X))) A

(—3Y(—brick(Y) A same-as(Y, X))) | (3

In (2) this condition has been interpreted as: "the brick
being on something IMPLIES that that something is not a
pyramid" and was therefore represented as "for all Y, if X
ison'Y, this implies that Y is not a pyramid." In (3), which
is identical to (1) but is repeated to the benefit of the
reader, this condition was interpreted as "the brick MUST
BE (or is always) on something that is not a pyramid" and
that was represented as "there exists Y such as X is on Y
and Y is not a pyramid."

The first definition is therefore more "relaxed" as it allows
the possibility that a brick sits on nothing. The second def-
inition is more restrictive, because it requires the brick to
be on something that is "not a pyramid" or otherwise X is
not a brick anymore. Therefore, the first definition is more
general and defines the concept of "a brick" in such a way
that the definition would be true even in a world with no
gravity (i.e., the brick is on nothing). In addition, defini-
tion (3) does not reject the possibility that an object sits
on both another brick and a pyramid, at the same time
(Figure 8).

The point is that, most often, humans receive and trans-
mit knowledge without the deep understanding and com-
pleteness required by an exact mathematical
representation of the knowledge to be transmitted. This
shallowness has also been recognized by others [42] who
are trying to draw natural language processing researchers'
attention to the fact that humans are rather superficial in
their knowledge acquisition and processing and often
make use of "underspecified" representations. Although,
since the early days of science, scientists have fallen in love
with the pure reasoning approaches, as they were repro-
ducible, unambiguous means to express new knowledge,
the problems with the use of classical predicate calculus as
a knowledge representation method and of the classical
logic inference as a reasoning strategy are discouraging.
This is due to the requirements of complete, unequivocal
representations, which prevents them from dealing with
the messiness of the real world problems.
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Figure 8

A blocks world example. In this particular example
brick(b), brick(c), pyramid(a), on(c, b), on(c, a) are true and
therefore not rejected by definition (3): the condition that
"c" MUST sit on something that is not a pyramid in order to
be a brick is met by on(c, b).

If possessing the necessary knowledge, humans are able to
effortlessly fill the knowledge gaps between natural
language representations and their richer representations
of reality (i.e., mental models), and to easily construe the
appropriate meaning of potentially ambiguous concepts.
Although current technology allows for its storage, knowl-
edge present in richer media (e.g., images, videos,
simulations) is currently very difficult to process (e.g.,
real-time computer vision, scene understanding and syn-
thesis, image understanding) using today's technology.

Because natural languages are used by people universally and
allow rich representations that no other language specification
can attain, natural language processing (NLP) research is a
first step that Informatics should take in order to advance the
organization and processing of individual knowledge in case-
bases that can be reused. The insights gained will advance
knowledge processing towards richer knowledge representation
media, will reduce the knowledge processing gap and
consequently increase the knowledge processing capacity cur-
rently supported largely by human knowledge processors.

Memory-based knowledge processing

One of the main features of information processing sys-
tems is their memory. It is accepted that storage and
manipulation of information are necessary for complex
cognitive activities in humans [43]. Memory is also con-
sidered crucial for both the "situation recognition" and
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mental modeling processes which are part of naturalistic
decision models [33].

From a computational point of view, one could easily
argue that without a random access memory structure
there can be no effective processing. In the context of "the
computational architecture of creativity," this argument is
clearly outlined in [44]. It is based on the examination of
the classes of computational devices, in the ascending
order of their computational power, ranging from finite-
state machines to pushdown automata and linear
automata. These are paralleled by their corresponding
grammars, arranged similarly in the Chomsky hierarchy,
consisting of regular grammars, context-free grammars,
context-sensitive grammars and of the unrestricted trans-
formational grammars for machines with random access
memory [44].

Recent natural language processing (NLP) research
stresses the importance of memorization of individual
natural language examples [45]. The importance of mem-
ory is also emphasized in earlier [46] and more recent
models of language processing in humans [47-49]. These
converge on the idea that natural language processing,
regardless of the processor, is memory-based (i.e., case-
based). Additional evidence comes from the fact that most
language constructs (e.g. words, phrases) have very low
frequencies. In fact, the very low frequency of most words
in the English language (i.e., Zipf's law) is known from the
1940s since Zipf's famous book "Human Behavior and
the Principle of Least Effort" [50] which is discussed in
[51]. The main implication of "Zipf's law" is that purely
statistical approaches or language processing algorithms
that do not memorize training examples will either lose
important information or may need extensive data
(potentially impossible to collect) in order to be able to
retain important features which have extremely low
frequencies [52] and which may be crucial for construing
the appropriate meanings of a language's concepts.

The tradeoff between learning effort and communication
efficiency seems to be biased naturally towards memoriza-
tion rather than towards logical reasoning. The processing
complexity of natural language might therefore not be an
intrinsic quality of the algorithms, but rather a function of
the memorization capabilities of the language processor,
given the sparseness of natural language pattern space. By
analogy, the advanced knowledge processing in humans
might not be the result of very sophisticated reasoning
strategies, but rather the utilization of a limited reasoning
apparatus on a huge knowledge base, consisting of rich
representations of one's experience. The limitations in rea-
soning are balanced by complex spatio-temporal pattern
recognition capabilities operating on a case base built
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from years of experience. This case base includes com-
mon-sense knowledge.

Furthermore, people and computers memorize informa-
tion differently. Both have a short term, working memory
and long-term memory for storing data and information.
However, the memory access is carried out in different
ways. Computers can reliably store large streams of data,
which most of the times have a very well defined spatial
and temporal structure (e.g., a movie clip). In contrast,
people can only store information and knowledge rather
than data and their storage is unreliable, temporally frag-
mented and spatially incomplete. Computers have very
reliable memories capable of error checking at the bit level
while the human memory supports only a high-level
semantic consistency check. Finally, computers access
their memory in a random seek fashion, being able to
position their "reading heads" at any position in the data
streams in order to extract a certain block of data. People
can access their memory by content, by being provided
with an incomplete description of a potentially complex,
spatio-temporal pattern serving as a retrieval key. There-
fore, one of the main differences between computers and
humans is that computers have address-based random
access memories, while humans possess content-address-
able memories.

In conclusion, from a case-based reasoning perspective, humans
seem to be naturally endowed with the necessary structures for
efficient case base acquisition, organization and retrieval while
computers do not directly support this way of processing infor-
mation and knowledge.

Pattern recognition, comparison and analogy-making

Pattern recognition is an undisputed feature of human
cognitive abilities and a research area in its own right.
However, it does not seem to be as pervasive as it should,
in the information processing systems in current use. Nat-
ural language, as a product of human cognition, offers
compelling evidence that people are naturally inclined
toward processing information using pattern recognition
and similarity principles. This evidence is supported by
the widespread use of language devices such as the simile
and the metaphor. These are examples of comparison and
analogy making that humans perform without effort, in
contrast to the difficulty of implementing them in the arti-
ficial information processing systems [53]. Analogy mak-
ing is essential to generating new knowledge and new
artifact designs [54-56], as well as to problem solving and
inductive reasoning [57,58]. In a case-based reasoning
context, the essential tasks of case matching and retrieval
rely on pattern recognition, comparison and analogy
making. In a decision making process, these mechanisms
provide the immediate, implicit access to information
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about relevance stored in the contexts of similar instances
of problems solving.

The patterns and analogies that humans are able to handle
are often represented by complex spatio-temporal events
with a potentially multi-sensorial impact. For example,
while humans have no difficulty in understanding a
metaphor like "the computer swallowed the disk," an arti-
ficial information processing system that has no visual
input sensors and which lacks the capability of image
understanding, would probably never be able to perceive
this particular analogy with the same speed, because of
the extensive reasoning and amount of explicit knowledge
needed to bring the swallowing process, as it occurs in liv-
ing things, close to the action of inserting a disk into a
computer's disk drive.

In addition to operating on high dimensional, spatio-
temporal complex patterns, analogy making in humans
may also possess a dynamic component that could yield
different relevance judgment outcomes, depending of
context. A very illustrative example is given by French and
Labiouse in [59], using the concept of a "claw hammer."
According to its designed purpose, the "claw hammer" is
semantically close to other concepts like "nail," "hit" and
"pound.” However, it may be dynamically "relocated" or
reassigned in the semantic space, through a complex spa-
tio-temporal mental simulation and analogy-making
process, to the dynamically created class of "back-scratch-
ing devices," in the semantic neighborhood of the "itch,"
"scratch" and "claw" concepts. Similarly, one could think
about the concept of a wooden decoy duck, which inherits
properties from at least the "wooden object", "animal
duck”, "toy" and "hunting gear" classes. This concept may
also be dynamically relocated into the semantic neighbor-
hood of any of the classes, depending on the context of
use that may be focused on themes such as "combusti-
bles" or "hunting" for example. In the medical domain,
the contextual dependence of relevance judgments,
classifications and analogies is even more important, as
these are often based on uncertain information and may
be dynamically reevaluated in the light of new informa-
tion about the patients or about their diseases.

Polyhierarchy and multiple inheritance are indisputable
desiderata of terminology systems [60]. However, build-
ing multiple inheritance mechanism using current tech-
nology seems very difficult, simply because the number of
possible alternative classifications increases exponentially
with the number of concepts. It is also very unlikely that
this kind of taxonomic dynamicity (e.g., the claw hammer
circumstantially classified as a back-scratching-device) of
the human semantic space could work on such fixed con-
ceptual structures which are constructed beforehand
through learning, in human semantic memory. A more
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plausible hypothesis is that such ad-hoc classifications are
circumstantially created using mechanisms that are closer
to a distance calculation between high dimensional, dis-
tributed, vector representation of concepts. This is in
agreement with neurolinguistic evidence from functional
brain imaging studies of the human semantic memory.
These studies suggest the existence of distributed feature
networks for the representation of object concepts [61]
and help the case for less structured approaches to captur-
ing and representing semantics such as compositional
terminology schemes (e.g. as in GALEN-GRAIL [62] and
SNOMED-RT [63]), latent semantic indexing (LSA) [64-
70] and connectionist models [49,71,72]. These
approaches allow for a multidimensional semantic space
where concept features can vary in importance, evolve or
change dynamically, accounting for many possible classi-
fications and subtle variations of concept meaning,
including the new and the less plausible ones. This con-
trasts with the fixed or highly structured semantic repre-
sentation schemas (e.g. fixed knowledge frames, semantic
networks, ontologies), which fail to capture concept
semantics in a way that provides richness, dynamicity and
reusability.

The dynamicity of concept meanings and relevance judg-
ments may offer at least one of the reasons why fixed clas-
sification schemes, controlled terminology systems or
open domain ontologies have not turned out satisfactory.
It may also explain why existing lexical databases based
on carefully handcrafted knowledge such as WordNet [73]
often contain either too fine-grained or too coarse-
grained, "static" semantic information [64]. In informa-
tion intensive domains like medicine, concept dynamicity
may account for why the development of a universal (i.e.,
one size fits all) clinical terminology system is so difficult
[74].

From a case-based reasoning perspective, humans are naturally
equipped with powerful pattern matching and classification
capabilities which allow them to cope with complex, time-con-
strained relevance judgments, to easily construe meaning of
concepts and to tolerate the ambiguity of natural language.
Only relatively recently have computers come close to this
functionality with the introduction of data mining and
machine learning techniques such as self organizing maps
and clustering algorithms based on similarity metrics
[75]. In such machine learning approaches, the important
problem of feature selection equates to a problems of
relevance.

CBR enabled EHR - Proposals, Challenges and Solutions

latrogenic causes are said to be important causes of death
in the US [76]. The reported incidence of adverse effects
among patients in Canadian acute care hospitals is 7.5%
[77]. A proposed means to counteract such medical errors
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is information technology, through the education and
decision support offered to health care professionals.

One very effective form of medical education is the retro-
spective analysis of case records where health profession-
als, both experienced or novices, learn from their own and
from others' successes and failures [78]. Providing that
legal and ethical implications such as provider and patient
protection are dealt with appropriately, the efficacy of this
teaching method can be improved if case records are con-
tinuously created, enriched, accumulated and organized
on similarity principles. This is possible through a CBR
approach of the EHR which, from this perspective, could
serve as a comprehensive case base of managed patients
that will evolve asymptotically towards an exhaustive
knowledge base.

Medical errors are also connected with the complex
human cognitive task of planning [79]. CBR approaches,
devised originally as a solution to automated planning
tasks [80], have been since used in various applications
including healthcare, legal and military (e.g., battle plan-
ning) [21]. This demonstrates a particularly good fit of a
medical decision support based on CBR with its human
users, the healthcare professionals.

Providing that the privacy and confidentiality issues,
which are even more stringent in this case, are dealt with
appropriately, opening EHR to patients could benefit
them [81]. It is perfectly conceivable that patients could
learn from the history of other cases similar to theirs,
which could be presented in an anonymized, story-telling
format and organized on case similarity principles. It is
also possible that patients may be willing to directly
provide some of their own case information in order to be
matched with previously managed cases, for example in
the context of online chronic disease support groups.
These principles are already realized in form of bulletin
boards, mailing lists and forums, where actual patients
interact with each other and occasionally with health pro-
fessionals and exchange information regarding health
related problems ([82] and [83]). The unstructured, tex-
tual exchange of information in such resources would ide-
ally be moderated by knowledgeable individuals (e.g.,
providers). Although the automatic processing of text still
is not readily available, case matching is possible so far
and is performed by the very individuals who are able to
offer useful information and knowledge to others, based
on the similarity of their own experiences (i.e., their own

story).

Medicine has always and will always be a case oriented
profession. Medical Informatics has recognized this early
through the works of various researchers who pioneered
the area of decision support systems [84]. Relevant to CBR
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work are also the attempts to enhance early decision sup-
port systems with domain knowledge from simulated
patient cases [85]. Currently, the exploration of CBR in
medical contexts is increasing [86-94]. Regardless of the
problem nature, the most important components of a
CBR expert system are

e The case base, the memory of past problem-solving
instances

¢ The case matching or pattern matching procedure which
retrieves the relevant cases for a certain problem

While humans seem to possess a natural support for these
two components, there is still work to be done in order to
make the computer support this kind of knowledge acqui-
sition and processing. We envision four important chal-
lenges in advancing towards CBR enabled EHRs:

1. Case record comprehensiveness

2. Organization on similarity and associative principles
(associative memory) and development of advance data
visualization techniques

3. Development of pattern recognition and similarity
measures between heterogeneous records

4. Solving ethical issues and provision of privacy and con-
fidentiality measures

I) Case record comprehensiveness

EHR comprehensiveness is required because the exhaus-
tiveness of a case base is not only a function of the number
of records but also of the richness of each case record. Cur-
rent knowledge processing technology limits the acquisi-
tion and especially the processing of comprehensive EHR
records which incorporate structured data, images, video-
clips, bio-signals, genomic data, unstructured textual data
covering clinical findings, detailed patient history, etc.
However, as knowledge processing technology advances
and knowledge acquisition bottlenecks are overcome, it
might be possible to overcome the heterogeneity and
sparseness of EHR and allow the creation of representative
case-bases and the organization of knowledge on princi-
ples that facilitate similarity based retrieval.

Temporal knowledge is also a good example of a hetero-
geneously represented type of knowledge in the form of
potentially non-interoperable standards for dates and
times and temporal knowledge of various degrees of pre-
cision, embedded in knowledge facts such as "soon after
receiving the drug, the patient developed a rash." Cur-
rently, for many people, the problem may seems to boil
down to devising vyet another standard which

http://www.biomedcentral.com/1472-6947/4/19

encompasses all the different temporal representations of
dates, times and temporal concepts into a unified, com-
mon representation. From a knowledge engineering
standpoint, and again currently for many researchers, this
may equate to the creation of a comprehensive ontology
of temporal knowledge. However, the problem of repre-
senting time starts to look like a somewhat limited version
of another burning problem of Medical Informatics: that
of medical terminologies. The fact that all these issues
remain largely unsolved, can only help the case for CBR
and for adaptive, empirical methods and approaches to
knowledge processing. We believe that such approaches
have the potential to cope and overcome the problems
with redundant, possibly ambiguous representations,
which have arbitrary degrees of precision. Thereby we are
specifying a goal towards which the development of EHR
should proceed.

2) Organization on similarity and associative principles (associative
memory) and development of advanced data visualization
techniques

Similarity based retrieval is difficult with current database
technology. For example, queries to retrieve cases which
are similar to a textual description of a given case are dif-
ficult to answer. The comprehensiveness of EHR must be
complemented with the possibility of indexing its records
on similarity principles. Conceptually, the functionality
of EHR will be that of an associative memory of cases that
will enable the CBR paradigm. The organization of a case-
base must be complemented by the development of
advanced data visualization techniques that comply with
the principles of organization of information by similar-
ity. One example of such data visualization techniques are
self-organizing maps [75]. These models are able to
perform cluster analyses on high dimensional data sets
and provide a visual display which can help with the nav-
igation through and retrieval of similar cases. For
instance, the self-organizing map obtained from the anal-
ysis of the Wisconsin Breast Cancer Dataset [95] used to
cluster and classify cases based on their similarity in [96],
could also be used for data visualization and navigation
purposes, in a CBR context (Figure 9). It also demon-
strates how high level abstractions (i.e., benign tumors
forming the green cluster on the map) can be derived
through an entirely automatic, data driven approach.

3) Development of pattern recognition and similarity measures
between heterogeneous records

CBR relies on the proper management of the case base and
on appropriate mechanisms for matching and retrieval of
these case records. All similarity retrieval mechanisms are
based on some sort of distance calculation between the
problem at hand and the records in the case base, fol-
lowed by the retrieval of the most relevant ones. Clinical
narratives and other EHR components containing

Page 17 of 23

(page number not for citation purposes)



BMC Medical Informatics and Decision Making 2004, 4:19

Benign case (outlier)
ID A1 A2 A3 A4 A5 A6 A7 A8 A9
1213376 8 4 4 5 4 7 7 8 2

Figure 9
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Benign cases cluster

Example of self organizing map (associative memory). Each one of the 9-dimensional, 683 individual cases is associated
with a region on the 2-dimensional map and highlighted using a 3rd dimension (an "activation bubble" with elevation and col-
our). The organization of individual descriptions of cases obeys similarity principles: similar cases are closely mapped and very
similar cases form clusters (e.g., the green area contains most of the benign cases).

unrestricted text represent a particularly difficult challenge
for semantic similarity measures. The development of ter-
minology systems based on less structured (e.g., latent
semantic indexing, connectionist models) and data-
driven approaches will provide the semantic richness,
dynamicity and reusability needed for such complex tasks.

A concrete example for the potential feasibility of such
approaches, is the automated knowledge induction based
on contextual similarity modeling ranging from
morphological to sentential context [97] (Figure 10). An
experimental knowledge processing system can induce
automatically the new knowledge fact that Ayercillin, an
item unknown to the system and hence not appearing in
Figure 10, is most likely to be a drug, precisely a penicillin.
The decision is based on morphological (e.g., "-cillin"),
semantic (e.g., six of the similar items are known to be
drugs, precisely, penicillins) and pragmatic (e.g., the six,
semantically similar items are consistent with the use in a
medical context) similarities that help in filtering out the
non-relevant information (e.g., book of common prayer).
On the same basis, the system can also induce that
surgical procedures ending in "-tomy" (e.g., perineotomy,
valvulotomy, myringotomy, strabotomy) are usually inci-
sions while those ending in "-ectomy" (e.g., myringec-
tomy, tonsillectomy, splenectomy, nephrectomy) are

usually removals, that concepts containing the morpheme
"leuco" (e.g., leucocyte, leucothoe, platalea leucorodia)
are usually associated with color white while those con-
taining "eryth" (e.g., erythroblast, erythema, erythrina)
with color red.

However, despite such proof-of-concept applications and
other progress in data mining and knowledge extraction
from heterogeneous databases, case matching remains
largely an open research question.

4) Solving ethical issues, provision of privacy and confidentiality
measures

We discuss this challenge last, not because it is less impor-
tant but, on the contrary, because of its potential to
become the most important obstacle to individual knowl-
edge processing. The very fact that individual knowledge
has the potential to contribute to solving future problems
instances, raises the important ethical issue whether such
knowledge should be made available to decision makers
and researchers. Because the definition of individual
knowledge implies the possibility to match it in time and
space with an application context, i.e., with a patient,
sharing individual knowledge is counterbalanced by the
need for privacy and confidentiality. In addition, to
further complicate matters, it may turn out that some of
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Figure 10

Example of similarity based retrieval and knowledge induction. Ayercillin, a relatively new drug unknown to the sys-
tem, is likely to be a penicillin because of its high contextual similarities with known penicillines.

the most useful records for future instances of decision
making are instances of medical errors or other unex-
pected events that are unique in their course of events and
therefore easily identifiable together with their contexts of
development (i.e., patients, providers, family members).

The high complexity of individual knowledge renders
explicit, manually controlled access to individual
knowledge cases and their components unfeasible. The
only solution to this problem seems to be of technological
nature. Current privacy and confidentiality measures
which include de-identification, de-nominalization and
scrambling of the unique personal identifiers automated
or semi-automated seem insufficient to counteract the
potential to identify patients from unique, individual
knowledge patterns.

As a general approach, we propose that the accurate meas-
uring of similarity of individual knowledge could form
the basis of a confidentiality risk assessment. This could
be intuitively understood by considering that:

e very similar individual knowledge patterns which are in
great numbers are a very low threat to the privacy and con-
fidentiality infringement, and, at the other extreme,

e stand-alone patterns which possess unique features or
combinations of features, are at high risk of privacy and
confidentiality breaches.

In addition, the provision of privacy and confidentiality
could be regarded as a special case of knowledge process-
ing, which involves knowledge about the proper use (e.g.,
access, modification, transfer) of individual knowledge. This
potentially complex, particular case of meta-knowledge
processing could be implemented and managed using the
principles of CBR paradigm itself, by building case-bases
with examples of both proper and improper (simulated,
not necessarily real) individual knowledge accesses and
that can be compared with future access instances.

Overcoming this very important challenge hinges on the
possibility to effectively measure the similarity between
heterogeneous records and on the advancement of knowl-
edge processing on CBR principles.

If successful, CBR research might therefore fulfill a long-
standing need for intelligent information processing and
advance informatics towards the ideal of individual
knowledge processing. This calls for further investigation
of information processing models that are, similarly to
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human experts, capable to efficiently move across the
knowledge spectrum. One class of such models is repre-
sented by artificial neural networks [14,23], which are
highly adaptive information processing models able to
create high-level abstractions from raw data, completely
automatically [75] and "learn by themselves" new infor-
mation processing functions from data. From this per-
spective, Informatics aligns closely to the goals of Al to
create intelligent machines that can hear, see, speak,
think, adapt and make decisions.

Conclusions

CBR provides potential solutions to important problems
that, among other, stymy the usefulness of EHR. The nat-
ural integration of learning with reasoning and the CBR
resemblance to the cognitive models of human decision-
making hold the promise to overcome the "brittleness"
and "knowledge acquisition bottleneck” of classical
expert systems. The CBR applications to the medical field
have the potential to offering the training and decision
support needed by health professionals and the means
towards a true patient-centered healthcare.

With a CBR theoretical foundation still in its infancy and
with limited medical applications in existence, more
research is needed for providing proofs of the feasibility of
practical CBR-EHR applications. Challenges in the way to
accomplish this include the increasing complexity, ethical
issues as well as the paradigm shift that our current com-
puting devices must undergo in order to support the CBR
principles of knowledge processing.

Summary

1. Science is twofold and is driven by two opposite forces:
that of creating theories (theoretical sciences), and that of
applying theories to practical applications (applied sci-
ences). Medical Informatics is fundamentally an applied
science that should be committed to advancing patient-
centred medicine through individual knowledge
processing.

2. Case-based reasoning is the technical solution that ena-
bles a continuous individual knowledge processing that
could be integrated with the Electronic Health Records.

3. Medicine is an information and knowledge intensive
domain where time-constrained decision problems can
only be solved effectively based on the recollection of sim-
ilar problems and their solutions (i.e., a case-based rea-
soning strategy). The collective sharing of experiences is
important for making future decisions as well as for learn-
ing how to make decisions.

4. Unlike computers, human decision makers possess the
components necessary to perform case-based reasoning

http://www.biomedcentral.com/1472-6947/4/19

naturally (i.e., a content addressable memory to organize
a case base efficiently by similarity principles, as well as
the capability to perform pattern recognition, compari-
son, and analogy-making).

5. Applying the CBR approach to EHR might be a way to
overcome the important obstacles of EHR acceptance and
use, providing that technical challenges and ethical issues
arising are addressed appropriately.

List of abbreviations
Al Artificial intelligence

AIT Algorithmic Information Theory
CBR Case Based Reasoning

E Explicit knowledge

EHR Electronic Health Records

G General knowledge

LSA Latent Semantic Indexing

I Individual knowledge

NDM Naturalistic Decision Making
RCT Randomized Controlled Trial
RPD Recognition-Primed Decision
U Implicit (Unobvious) knowledge

Competing interests
The author(s) declare that they have no competing
interests.

Authors' contributions

Before the reviews

SP researched the paper and provided a first draft. JA, J]M
critically revised the manuscript three times each and pro-
vided their own additions to the initial draft. JA provided
more feedback on the cognitive aspects and decision-mak-
ing as well as writing style and missing references. JM
additions were with regard to the writing style, clarity,
missing references and the overall organization of the

paper.

After the reviews

SP and JM worked on the responses to reviewers' com-
ments. SP wrote a first revision of the paper. JM provided
extensive feedback as well as new references and suggested
a major revision that includes recent ideas. JA also

Page 20 of 23

(page number not for citation purposes)



BMC Medical Informatics and Decision Making 2004, 4:19

commented and made suggestions on the knowledge
spectrum model and on the meta-level view on Medical
Informatics. SP overhauled the entire paper. JM revised
the new version and provided feedback. SP operated the
changes and proposed new modifications. JM revised the
second draft. JA provided feedback on the second draft of
the paper with regard to fundamental aspects of knowl-
edge modalities.

SP and JM incorporated the minor changes suggested by
the last review.

All authors read and approved the final version of the
paper.

Acknowledgements

We would like to thank Dr. André Kushniruk, Scarlette Verjinschi, Dr. Jim
McDaniel and Dr. Yuri Kagolovsky for their excellent suggestions on the

first version of this paper. Also, special acknowledgements are addressed

to Dr. Mahmood Tara for observations and interesting discussions on many
aspects of the material presented in the paper. We also want to thank the
others individuals who provided informal feedback on the initial stages of
the knowledge spectrum idea.

Finally, we like to acknowledge the contributions of Dr. James Cimino and
Dr. Stefan Schulz. Their reviews contributed substantially to the improve-
ment of this article.

References

I. Moehr JR, Leven FJ, Rothemund M: Formal Education in Medical
Informatics. - Review of Ten Years' Experience with a Spe-

cialized University Curriculum. Meth Inform Med 1982,
21:169-180.
2.  Solomonoff R]: A FORMAL THEORY OF INDUCTIVE

INFERENCE. Information and Control 1964, 7(1):1-22.

3.  Chaitin GJ: To a mathematical definition of "life". ACM SICACT
News 1970, 4:12-18.

4. Li M, Vitanyi PMB: An introduction to Kolmogorov complexity
and its applications. 2nd edition. New York , Springer; 1997:xx,
637.

5. Zuse K: Rechnender Raum. Elektronische Datenverarbeitung 1967,
8:336-344.

6.  Zuse K: Rechnender Raum. 1969. In: English translation: "Calculating
Space". Cambridge, Mass.: Massachusetts Institute of Technology;

7. Schmidhuber |: A Computer Scientist's View of Life, the Uni-
verse, and Everything. In Foundations of Computer Science: Potential
- Theory - Cognition Volume [337. Edited by: Freksa C, Jantzen M, Valk
R. Berlin, Springer; 1997:201-208.

8.  Feigenbaum EA: Some challenges and grand challenges for
computational intelligence. In Journal of the ACM (JACM) Volume
50. Issue | ACM Press; 2003:32-40.

9.  Blois MS: Information and medicine : the nature of medical
descriptions. Berkeley , University of California Press; 1984:xiv, 298.

10. Lenat D: CYC: A Large-scale Investment in Knowledge
Infrastructure. Communications of the ACM 1995, 38(11):33-38.

I'l.  Lenat D, Miller G, Yokoi T: CYC, WordNet, and EDR: critiques
and responses. In Communications of the ACM Volume 38. Issue | |
ACM Press; 1995:45-48.

12.  Guha R, Lenat D: Cyc: A Midterm Report. Al Magazine 1990,
11(3):32-59.

13.  Lenat DB, Guha RV: Building large knowledge-based systems :
representation and inference in the Cyc project. Reading,
Mass. , Addison-Wesley Pub. Co.; 1989:xix, 372.

14.  Luger GF: Artificial Intelligence: Structures and Strategies for
Complex Problem Solving. 4th edition. Addison-Wesley; 2002.

20.
21.

22.

23.
24.

25.
26.

27.

28.

29.

30.

31.

32
33.

34.

35.

36.

37.

38.
39.

40.

http://www.biomedcentral.com/1472-6947/4/19

Winston PH: Artificial intelligence. In Addison-Wesley series in com-
puter science 2nd edition. Reading, Mass. , Addison-Wesley; 1984:xv,
527.

Dennett D: Cognitive Wheels: The Frame Problem in Al In
Minds, Machines, and Evolution Edited by: Hookway C. Cambridge Uni-
versity Press; 1984:128-151.

Pylyshyn ZW: The Robot's dilemma : the frame problem in
artificial intelligence. In Theoretical issues in cognitive science Nor-
wood, N.J., Ablex; 1987:xi, 156.

Janlert LE: Modeling Change - The Frame Problem. In The
Robot's dilemma : the frame problem in artificial intelligence Edited by:
Pylyshyn ZW. Norwood, N.J. , Ablex; 1987:xi, 156.

Kolodner J: Case-Based Reasoning. San Mateo, CA , Morgan
Kaufmann Publishers; 1993.

Watson |, Marir F: Case-Based Reasoning: A Review. The Knowl/-
edge Engineering Review 1994, 9(4):355-381.

Aamodt A, Plaza E: Case-Based Reasoning: Foundational
Issues, Methodological Variations, and System Approaches.
AlCom - Artificial Intelligence Communications 1994, 7(1):39-59.
Rumelhart DE, Hinton GE, Williams RJ: Parallel Distributed
Processing. Volume [-2. Edited by: Rumelhart DE, McClelland JL.
MIT Press; 1986:318-362.

Haykin SS: Neural networks : a comprehensive foundation.
New York; Toronto , Macmillan; 1994:xix, 696.

Solomonoff R]: The Kolmogorov Lecture - The Universal Dis-
tribution and Machine Learning. The Computer Journal 2003,
46(6):598-601.

Wieland W: Diagnose: Uberlegungen zur Medizintheorie. Ber-
lin, New York , de Gruyter; 1975.

Shortliffe EH, Blois MS: The Computer Meets Medicine and
Biology: Emergence of a Discipline. In Medical Informatics : Com-
puter Applications in Health Care and Biomedicine Edited by: Shortliffe
EH, Perreault LE, Wiederhold G, Buchanan BG. Springer Verlag;
2001.

Friedman CP, Owens DK, Wyatt |C: Evaluation and Technology
Assessment. In Medical Informatics : Computer Applications in Health
Care and Biomedicine Edited by: Shortliffe EH, Perreault LE, Wieder-
hold G, Buchanan BG. Springer Verlag; 2001.

Musen MA: Medical informatics: searching for underlying
components. Methods Inf Med 2002, 41(1):12-19.

Patel VL, Arocha JF, Kaufman DR: The Psychology of Learning
and Motivation: Advances in Research and Theory. 1994,
31:187-252.

Kuncel NR, Hezlett SA, Ones DS: A Comprehensive Meta-Anal-
ysis of the Predictive Validity of the Graduate Record Exam-
ination’s Implications for Graduate Student Selection and
Performance. Psychological Bulletin 2001, 127(1):162-181.

Klein GA: A Recognition-Primed Decision (RPD) Model of
Rapid Decision Making. In Decision making in action : models and
methods Norwood, N.J. , Ablex Pub.; 1993:138-148.

Klein GA: Decision making in action : models and methods.
Norwood, N.J. , Ablex Pub.; 1993:xi, 480.

Klein GA: Sources of power : how people make decisions. Ist
MIT Press pbk. edition. Cambridge, Mass. ; London , MIT Press;
1999:xviii, 330.

Svenson O, Maule AJ: Time pressure and stress in human judg-
ment and decision making. New York , Plenum Press; 1993:xxii,
335.

Zakay D: The impact of time perception processes on deci-
sion making under time stress. In Time pressure and stress in
human judgment and decision making New York , Plenum Press;
1993:59-69.

Zsambok CE, Klein GA: Naturalistic decision making. In Exper-
tise, research and applications Mahwah, N.J. , L. Erlbaum Associates;
1997:xix, 414.

Salas E, Klein GA: Linking expertise and naturalistic decision
making. Mahwah, N , Lawrence Erlbaum Associates Publishers;
2001:xiv, 447.

Armstrong E: TreeLight Essays. [http://www.treelight.com/].
Fierz W: Challenge of personalized health care:To what
extent is medicine already individualized and what are the
future trends? Med Sci Monit 2004, 10(5):111-123.

Kovac C: Computing in the Age of the Genome. The Computer
Journal 2003, 46(6):593-597.

Page 21 of 23

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6960223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6960223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6960223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11933757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11933757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11271753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11271753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11271753
http://www.treelight.com/

BMC Medical Informatics and Decision Making 2004, 4:19

41.

42.

43.
44.

45.

46.
47.

48.

49.

50.
51,
52.

53.
54.
55.
56.
57.

58.
59.
60.
6l.
62.
63.

64.
65.

66.

67.

68.

69.

70.

Patel VL, Kaufman DR, Arocha JF: Emerging paradigms of cogni-
tion in medical decision-making. Journal of Biomedical Informatics
2002, 35(1):52-75.

Sanford AJ, Sturt P: Depth of processing in language compre-
hension: not noticing the evidence. Trends in Cognitive Sciences
2002, 6(9):382-386.

Baddeley A: Working memory and language: an overview. Jour-
nal of Communication Disorders 2003, 36(3):189-208.

Johnson-Laird PN: Human and machine thinking. In John M
MacEachran memorial lecture series ; 1991 Hillsdale, N.J. , Lawrence
Erlbaum Associates; 1993:xix, 189.

Bosch A, Daelemans W: Do not Forget: Full Memory in Mem-
ory-Based Learning of Word Pronunciation: Sydney, Aus-
tralia. Edited by: Powers DMW. Association of Computational
Linguistics; 1998:195-204.

Riesbeck CK, Kolodner JL: Experience, memory, and reasoning.
Hillsdale, N.J. , L. Erlbaum Associates; 1986:xv, 256.

Alegre M, Gordon P: Rule-Based versus Associative Processes
in Derivational Morphology. Brain and Language 1999, 68(l-
2):347-354.

Murdock B, Smith D, Bai J: Judgments of Frequency and Recency
in a Distributed Memory Model. jJournal of Mathematical
Psychology 2001, 45(4):564-602.

Saffran EM: The Organization of Semantic Memory: In Sup-
port of a Distributed Model. Brain and Language 2000,
71(1):204-212.

Zipf GK: Human behavior and the principle of least effort.
Cambridge, MA , Addison-Wesley; 1949.

Manning CD, Schiitze H: Foundations of Statistical Natural Lan-
guage Processing. Cambridge, Mass. , MIT Press; 1999:xxxvii, 680.
Daelemans W: Abstraction is Harmful in Language Learning:
Sydney, Australia. Edited by: Powers DMW. Association of Com-
putational Linguistics; 1998:1-1.

French RM: The Computational Modeling of Analogy -Making.
Trends in Cognitive Sciences 2002, 6(5):200-205.

Roonzenburg NFM, ]. E: Product Design: Fundamentals and
Methods. John Wiley & Sons Ltd; 1995.

Norman E, Riley ], Urry S, Whittaker M: Advanced Design and
Technology. Longman Group UK Limited; 1990.

Maher ML, Balachandran MB, Zhang DM: Case-Based Reasoning
in Design. Lawrence Erlbaum Associates; 1995.

Keane MT: Analogical problem solving. In Ellis Horwood series in
cognitive science Chichester, West Sussex, England New York , E. Hor-
wood; Halsted Press; 1988:151.

Holyoak K], Thagard P: Mental leaps : analogy in creative
thought. Cambridge, Mass. , MIT Press; 1995:xiii, 320.

French RM, Labiouse C: Four Problems with Extracting Human
Semantics from Large Text Corpora: NJ. ; 2002.

Cimino JJ: Desiderata for controlled medical vocabularies for
twenty-first century. Methods Inf Med 1998, 37:394-403.

Martin A, Chao LL: Semantic memory and the brain: structure
and processes. Current Opinion in Neurobiology 2001, 11:194-201.
OpenGALEN [http://www.opengalen.org]

Spackman KA, Campbell KE, Cote RA: SNOMED RT: A Refer-
ence Terminology for Health Care.: Philadelphia. Edited by:
Masys DR. Hanley & Belfus; 1997:640-644.

Kintsch W: Predication. Cognitive Science 2001, 25(2):173-202.
Kintsch W: The potential of latent semantic analysis for
machine grading of clinical case summaries. Journal of Biomedi-
cal Informatics 2002, 35(1):3-7.

Brants T, Chen F, Tsochantaridis |I: Topic-based document seg-
mentation with probabilistic latent semantic analysis:
McLean, Virginia, USA. ACM Press; 2002:211-218.

Hofmann T: Unsupervised learning by probabilistic latent
semantic analysis. MACHINE LEARNING 2001, 42:177-196.
Landauer T, Dumais S: A Solution to Plato's Problem: The
Latent Semantic Analysis Theory of Acquisition, Induction
and Representation of Knowledge. Psychological Review 1997,
104(2):211-240.

Papadimitriou CH, Raghavan P, Tamaki H, Vempala S: Latent
semantic indexing: A probabilistic analysis. JOURNAL OF COM-
PUTER AND SYSTEM SCIENCES 2000, 61(2):217-235.

Schone P, Jurafsky D: Knowledge-Free Induction of Morphology
Using Latent Semantic Analysis. In Proceedings of the Fourth Con-
ference on Computational Natural Language Learning and of the Second
Learning Language in Logic Workshop, Lisbon, 2000 Edited by: Cardie C,

71.

72.

73.
74.

75.

76.

77.

79.

80.

8l.

82.

83.
84.

85.

86.

87.

88.

89.

90.

9lI.

92.

93.

http://www.biomedcentral.com/1472-6947/4/19

Daelemans W, Nedellec C, Sang ETK. Association for Computational
Linguistics; 2000:67-72.

Hadley RF: Systematiciy in connectionist language learning.
Mind and Language 1994:247-272.

Hadley RF, Rotaru-Varga A, Arnold DV, Cardei VC: Syntactic sys-
tematicity arising from semantic predictions in a Hebbian-
competitive network. Connection Science 2001, 13:73-94.

Miller G: WordNet: A Lexical Database for English. Communi-
cations of the ACM 1995, 38(11):49-51.

Rector AL: Clinical terminology: why is it so hard? Method Inf
Med 1999, 38(4):239-252.

Kohonen T: Self-Organizing Maps. In Springer series in information
sciences Volume 30. 3rd edition. Edited by: Huang TS. Berlin Heidel-
berg New York , Springer-Verlag; 2001:501.

Starfield B: Is US Health Really the Best in the World? JAMA
2000, 284(4):483-485.

Baker GR, Norton PG, Flintoft V, Blais R, Brown A, Cox J, Etchells E,
Ghali WA, Hebert P, Majumdar SR, O'Beirne M, Palacios-Derflingher
L, Reid R}, Sheps S, Tamblyn R: The Canadian Adverse Events
Study: the incidence of adverse events among hospital
patients in Canada. CMAJ 2004, 170(11):1678-1686.

Greene W, Hsu C, Gill JR, Saint S, Go AS, Tierney LM: Case
Records of the Massachusetts General Hospital: A Home-
Court Advantage? N Engl | Med 1996, 334(3):197-198.

Zhang J, Patel VL, Johnson TR, Shortliffe EH: A cognitive taxonomy
of medical errors. Journal of Biomedical Informatics 2004,
37(3):193-204.

Schank RC, Abelson RP: Scripts, Plans, Goals, and Understand-
ing: An Inquiry into Human Knowledge Structures. Hillsdale,
N.J., Erlbaum; 1977:248.

Cimino JJ, Patel VL, Kushniruk AW: The patient clinical informa-
tion system (PatCIS): technical solutions for and experience
with giving patients access to their electronic medical
records. International Journal of Medical Informatics 2002, 68(1-
3):113-127.

Gustafson DH, Hawkins RP, Boberg EW, McTavish F, Owens B, Wise
M, Berhe H, Pingree S: CHESS: 10 years of research and devel-
opment in consumer health informatics for broad popula-
tions, including the underserved. International Journal of Medical
Informatics 2002, 65(3):169-177.

New York Online Access to Health
health.org/]

Miller RA: Medical diagnostic decision support systems--past,
present, and future: a threaded bibliography and brief
commentary. | Am Med Inform Assoc 1994, 1(1):8-27.

Parker RC, Miller RA: Creation of a Knowledge Base Adequate
for Simulating Patient Cases: Adding Deep Knowledge to
the INTERNIST-1/QMR Knowledge Base. Meth Inform Med
1989, 28:346-351.

Reategui EB, Campbell JA, Leao BF: Combining a neural network
with case-based reasoning in a diagnostic system. Artificial Intel-
ligence in Medicine 1997, 9(1):5-27.

Haddad M, Adlassnig KP, Porenta G: Feasibility analysis of a case-
based reasoning system for automated detection of coro-
nary heart disease from myocardial scintigrams. Artificial Intel-
ligence in Medicine 1997, 9(1):61-78.

Lopez B, Plaza E: Case-based learning of plans and goal states
in medical diagnosis. Artificial Intelligence in Medicine 1997,
9(1):29-60.

Montani S, Bellazzi R, Portinale L, Fiocchi S, Stefanelli M: A CBR Sys-
tem for Diabetic Patient Theraphy. Edited by: Brighton ]. Wiley
& Sons Publ.; 1998:64-70.

Montani S, Bellazzi R: Integrating Case Based and Rule Based
Reasoning in a Decision Support System: Evaluation with
Simulated Patients. 1999:887-891.

Armengol E, Palaudaries A, Plaza E: Individual Prognosis of Diabe-
tes Long-Term Risks: A CBR Approach. Methods of Information
in Medicine Journal 2000, 5:46-51.

Armengol E, Plaza E: Relational Case-based Reasoning for Car-
cinogenic Activity Prediction. Artificial Intelligence Review 2003,
20(1-2):121.

Fritsche L, Schlaefer A, Budde K, Schroeter K, Neumayer HH: Rec-
ognition of Critical Situations from Time Series of Labora-
tory Results by Case-Based Reasoning. | Am Med Inform Assoc
2002, 9(5):520-528.

[http://www.noah-

Page 22 of 23

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12415726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12415726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12200180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12200180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12742667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10433780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10433780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11493015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11493015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10716846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10716846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11983582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9865037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9865037
http://www.opengalen.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9357704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9357704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12415721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12415721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10904513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15159366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15159366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15159366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8531993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8531993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8531993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15196483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15196483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12467796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12467796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12467796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12414016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12414016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12414016
http://www.noah-health.org/
http://www.noah-health.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7719792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7719792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7719792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2695784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2695784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2695784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9021057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9021057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9021059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9021059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9021059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9021058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9021058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10566488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10566488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10566488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12223504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12223504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12223504

BMC Medical Informatics and Decision Making 2004, 4:19

94. The Fifth International Conference on Case-Based Reason-
ing. Workshop on CBR in the Health Sciences. [http://ouc
sace.cs.ohiou.edu/~marling/iccbr03/workshop.html]

95. Blake CL, Merz CJ: UCl Repository of machine learning
databases. [http://www.ics.uci.edu/~mlearn/MLRepository.html].

96. Pantazi S, Kagolovsky Y, Moehr JR: Cluster Analysis of Wisconsin
Breast Cancer Dataset Using Self-Organizing Maps: Buda-
pest, Hungary. Edited by: Surjan G. I0OS Press; 2002:431-436.

97. Pantazi SV, Moehr JR: Automated Knowledge Acquisition by
Inductive Generalization. In e-Health 2004 Victoria, BC, Canada ;
2004.

Pre-publication history
The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1472-6947/4/19/prepub

http://www.biomedcentral.com/1472-6947/4/19

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 23 of 23

(page number not for citation purposes)


http://oucsace.cs.ohiou.edu/~marling/iccbr03/workshop.html
http://oucsace.cs.ohiou.edu/~marling/iccbr03/workshop.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15460731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15460731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15460731
http://www.biomedcentral.com/1472-6947/4/19/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Discussion
	Summary

	Background
	A meta-level view of science
	The knowledge spectrum
	Table 1
	Table 2

	General knowledge
	The frame problem
	Individual knowledge
	Case-based reasoning
	A meta-level view of Medical Informatics

	Discussion
	Human and computer knowledge processing
	Decision making in medicine

	Patient-centered vs. population-centered healthcare
	Knowledge representation by formal methods
	Knowledge representation by natural language
	Memory-based knowledge processing
	Pattern recognition, comparison and analogy-making
	CBR enabled EHR - Proposals, Challenges and Solutions
	1) Case record comprehensiveness
	2) Organization on similarity and associative principles (associative memory) and development of advanced data visualization techniques
	3) Development of pattern recognition and similarity measures between heterogeneous records
	4) Solving ethical issues, provision of privacy and confidentiality measures


	Conclusions
	Summary
	List of abbreviations
	Competing interests
	Authors' contributions
	Before the reviews
	After the reviews

	Acknowledgements
	References
	Pre-publication history

