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Abstract

Background: Length-of-stay prediction for cardiac surgery patients is a key point for medical management issues,
such as optimization of resources in intensive care units and operating room scheduling. Scoring systems are a very
attractive family of predictive models, but their retraining and updating are generally critical. The present approach
to designing a scoring system for predicting length of stay in intensive care aims to overcome these difficulties, so
that a model designed in a given scenario can easily be adjusted over time or for internal purposes.

Methods: A naïve Bayes approach was used to develop a simple scoring system. A set of 36 preoperative,
intraoperative and postoperative variables collected in a sample of 3256 consecutive adult patients undergoing
heart surgery were considered as likely risk predictors. The number of variables was reduced by selecting an
optimal subset of features. Scoring system performance was assessed by cross-validation.

Results: After the selection process, seven variables were entered in the prediction model, which showed excellent
discrimination, good generalization power and suitable sensitivity and specificity. No significant difference was
found between AUC of the training and testing sets. The 95% confidence interval for AUC estimated by the BCa
bootstrap method was [0.841, 0.883] and [0.837, 0.880] in the training and testing sets, respectively. Chronic dialysis,
low postoperative cardiac output and acute myocardial infarction proved to be the major risk factors.

Conclusions: The proposed approach produced a simple and trustworthy scoring system, which is easy to update
regularly and to customize for other centers. This is a crucial point when scoring systems are used as predictive
models in clinical practice.
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Background
Prediction models are increasingly important in clinical
practice, as indicated by the number of recent publica-
tions describing their development. One of their pur-
poses is to aid clinical decision-making by combining
patient characteristics in order to estimate the probabil-
ity of a certain disorder or problem (diagnosis and prog-
nosis). In particular, prognostic models are widely
accepted in intensive care units (ICUs) for predicting
outcome of critical patients [1-6]. In many cases, these
models are scoring systems in which the predictor
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variables are usually selected and scored subjectively by
expert consensus or objectively using statistical methods
[7,8].
While mortality can be considered the primary out-

come, over the years technological advances have led to
a significant decrease in mortality for certain patient
populations, for example cardiac surgery patients. In
these cases, morbidity or prolonged stay in intensive
care have been suggested as valid end points and more
attractive targets for developing operative risk models.
In particular, models that estimate the length-of-stay
(LOS) in ICU of cardiac surgery patients can be very
useful for internal purposes. Reliable prediction of LOS
is the starting point for good internal management of
operating rooms.
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When a prediction system is developed primarily for
internal purposes, such as operating-room scheduling,
the model should not only be simple, reliable and
characterized by high sensitivity/specificity, but also
easy to modify, so that clinicians can customize it to
their specific patient subpopulation and update it with
new data sets. Unfortunately, retraining and updating
are critical points of scoring systems, because the de-
sign and development of scoring systems generally
imply theoretical modeling ability and statistical pro-
cedures seldom available in a clinical environment,
and make it complicated to modify a given model.
Thus, in clinical practice, scoring systems are usually
used in their original standard form, as developed with
training data from different countries and/or centers.
If data from the specific scenario is not considered
during model training, there can be significant loss in
model performance [9].
Model customization is essential when it is difficult to

standardize local practices and patient populations differ
[9-13]. Easy updating is another crucial feature. In fact,
acquisition of new, correctly classified patients enables
the training set to be increased day by day, improving
model performance in a corresponding way. Progress in
medical techniques also makes it necessary to be able to
update the model continuously. It is therefore funda-
mental to use approaches allowing the decision rule to
be derived in a straightforward manner so that it is easily
modified, locally customized, updated and validated.
In the present study, a scoring system was designed to

predict prolonged stay in intensive care after heart sur-
gery, using a straightforward approach recently proposed
[14]. It is based on the naïve Bayes rule [15], which gen-
erally shows good classification accuracy, even when the
assumption of independence does not hold [16-18]. Al-
though the prediction model was trained using a sample
of patients who underwent heart surgery in a specific in-
stitution, it can be modified directly to customize it for
other centers.
Methods
Scoring-system development and validation
The scoring system was developed using a simple ap-
proach recently proposed [14], which uses the well-known
Bayes rule assuming that features are all conditionally in-
dependent of each other given the class. This strong
(naïve) assumption drastically simplifies the problem of es-
timation from training data.
Given an N-dimensional observation vector x = (x1,

x2, ….., xN) and two patient classes ω1 and ω2 (adverse
and positive outcome, respectively), the decision rule
was written as
S ¼
XN

j¼1

wxj ≥ ln
P ω2ð Þ
P ω1ð Þ ⇒ x∈ω1

S ¼
XN

j¼1

wxj < ln
P ω2ð Þ
P ω1ð Þ ⇒ x∈ω2

ð1Þ

where P(ωi) is the a priori probability of class ωi (i = 1,2)
and wxj (j = 1,2,….,N) are log-likelihood ratios, which can
be calculated directly from data acquired in any specific
institution.
We chose this type of scoring system because it is eas-

ily customized to any specific scenario and it also can be
easily updated by entering new and removing older data
(for more details see Ref. [14]).
After selecting the subset of features to include in the

predictive model, scoring system performance was assessed
by five-fold cross-validation, randomly dividing the sample
into five roughly equal non-overlapping subsamples. The
whole validation process required five rounds, with each of
the five subsamples used exactly once as testing data. In
particular, in each round, a single subsample was retained
as the validation data for testing the model, and the
remaining four subsamples were used as training data to
estimate the weight of each feature in the scoring system.
This allowed us to assess the performance of the scoring
system when its parameters (weights) were estimated on
datasets different from testing data.
AUC and its 95% confidence interval were calculated

in the training and testing sets. In particular, the bias-
corrected and accelerated (BCa) bootstrap method was
used to estimate the 95% confidence intervals of AUC,
using one thousand bootstrapped samples generated
from original data [19].
The prior probabilities P(ω1) and P(ω2) were both as-

sumed to be 0.5, so that the threshold value in equation 1
was set at zero. All computations were done using IBM
SPSS Statistics (IBM Corp., Armonk, New Yok, USA) and
MATLAB (The MathWorks, Inc., Natick, Massachusetts,
USA) code.

Study population and feature selection
The data set for developing the locally customized scor-
ing system was retrieved from the computerized data-
base of the Department of Medical Biotechnologies of
Siena University. Due to the retrospective nature of the
study, the need for informed consent was waived. The
authors did not have direct access to this institutional
database. Aggregate patient data was provided anonym-
ously. Use of anonymous aggregate data is consented
because it does not implicate the privacy concerns that
apply to patient-identifiable information. The study was
undertaken after approval of the Ethics Committee
(Comitato etico locale e comitato etico per la sperimen-
tazione clinica dei medicinali) of Siena University
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Hospital and was conducted in compliance with the
Helsinki declaration.
A sample of consecutive adult patients who under-

went heart surgery between 2000 and 2007 was used.
Exclusion criteria included operation without cardio-
pulmonary bypass, heart or heart-lung transplant, aor-
tic dissection, age less than 18 years and death. Some
records (about 1.5%) were excluded from the analysis
because they contained insufficient data to design the
classifier. The final size of the sample used in the study
was 3256 patients. These patients underwent isolated
coronary artery bypass grafting (CABG) and isolated
valve or combined procedures (CABG plus valve) at
the Cardiac Surgery Unit of Siena University Hospital,
Italy.
Length of stay in the ICU was chosen as outcome. Ad-

verse outcome was defined as LOS greater than or equal
to 5 days (i.e. 120 hours), and normal LOS was defined
as less than 5 days. The mean and standard deviation of
LOS were 68 and 112 hours, respectively.
A collection of 36 preoperative, intraoperative and

postoperative dichotomous variables and 16 non dichot-
omous (continuous or discrete) variables was considered
a priori as a wide set of features for predicting patient
outcome on the basis of clinical judgment and past ex-
perience [13]. Preoperative and intraoperative data was
collected under the anaesthesiologist’s supervision. Post-
operative data was collected in the first three hours after
admission to the ICU.
To lower the bias of the naïve independence as-

sumption, the above number of variables was reduced
by a procedure aimed at selecting an optimal subset of
features to include in the predictive model. Firstly, the
discrimination power of each variable was evaluated
individually to eliminate less important features once
and for all. For this purpose we calculated the 99%
confidence intervals of the odds ratio [20] for each di-
chotomous variable and for other variables, dichoto-
mized on the basis of their medians (cut-off point).
Only variables with an odds ratio significantly differ-
ent from 1 (p < 0.01) were chosen as potential compet-
ing features to be taken into consideration for the
final stepwise selection, using the receiver operating
characteristic (ROC) curve [21]. The direction of
search proceeded in a forward manner [22] and, at
each step of the algorithm, the variable giving the best
increase in area under the ROC curve (AUC) was en-
tered in the model [23]. To decrease the chance of en-
tering redundant features that might introduce
dependencies, the criterion for halting the search
process was slightly less conservative than the one
suggested in previous papers [22,23]: the procedure
was stopped when the cumulative increment in AUC
obtained in three consecutive steps was less than 1%.
Results
Table 1 shows the 99% confidence interval of the odds
ratio for the whole set of 36 preoperative, intraoperative
and postoperative dichotomous variables chosen a priori
on the basis of clinical judgment and past experience.
Table 2 shows the cut-off (median on original sample)
and 99% confidence interval of the odds ratio for the 16
non dichotomous variables. Seventeen dichotomous and
five non dichotomous variables (in italics in Tables 1 and
2) were eliminated from the subsequent stepwise selection
since their corresponding 99% confidence interval of the
odds ratio included 1. The remaining variables, whose
odds ratios were significantly different from 1 (p < 0.01),
were considered in the stepwise selection process (nine-
teen dichotomous and eleven continuous variables, which
were discretized into 4 categories, according to their value
falling into the 1st, 2nd, 3rd or 4th quartile interval).
The stepwise process selected seven variables, three of

which were dichotomous (low postoperative cardiac out-
put, preoperative chronic dialysis and acute myocardial
infarction). The detailed results obtained step-by-step
are summarized Table 3.
The 95% confidence interval for AUC estimated by the

BCa bootstrap method in the training test was [0.841,
0.883] and the median AUC was 0.863. No significant
difference was found when estimating AUC in the test-
ing set, where the median and 95% confidence interval
were 0.859 and [0.837, 0.880], respectively. On the basis
of the Hosmer-Lemeshow rule [24] an AUC greater than
0.8 indicated excellent discrimination, while the absence
of significant differences between the results obtained with
the training and testing sets denoted good generalization
power.
Table 4 shows the confusion matrix obtained with the

testing set. The first row of the matrix refers to patients
with LOS less than 5 days (normal outcome), and the
second to patients with LOS greater than or equal to
5 days (adverse outcome). 2403 patients with normal
outcome and 268 patients with adverse outcome were cor-
rectly classified, giving an overall correct-classification of
82%. Of course, the values in the table can be interpreted
as true negatives, false positives, false negatives and true
positives, so that the correct classification percentage of
patients with normal outcome corresponds to the specifi-
city (SP), while the correct classification percentage of pa-
tients with adverse outcome represents the sensitivity (SE)
of the model, i.e. SP = 83%, SE = 74%.
Tables 5 and 6 show the weights of the selected di-

chotomous and non dichotomous features in the scoring
system, respectively. Since the highest positive weight in
the study sample was assigned to chronic dialysis, pa-
tients in chronic dialysis showed a considerable risk of
prolonged length of stay in the intensive care unit after
heart surgery in the scenario considered. Important risk



Table 1 The whole set of dichotomous preoperative,
intraoperative and postoperative variables considered a
priori as likely predictors

Variable 99% confidence
interval of odds ratio

Gender 0.659-1.21

Emergency 1.44-6.57

Urgency 0.970-2.39

Blood hypertension 0.987-1.87

Treated diabetes 0.884-1.70

Acute myocardial infarction 1.57-6.38

Recent myocardial infarction (<7 days) 0.663-2.96

Preoperative intra-aortic balloon pump 2.79-9.63

Tachycardia 0.885-5.47

Cardiogenic shock 3.15-21.85

Cardiac massage 0.988-21.62

Endocarditis 0.394-8.77

Unstable angina 0.729-1.47

Heart failure 1.90-5.25

Chronic dialysis 3.51-36.70

Previous cerebrovascular events 0.998-3.01

Chronic obstructive pulmonary disease 1.07-2.80

Anti-platelet drugs 0.545-0.984

Dicumarole therapy 1.39-4.18

Heparin therapy 0.873-1.57

Thrombolytic therapy 0.125-3.88

Combined cardiovascular surgery 2.19-4.21

Repeated cardiac surgery 1.63-4.68

Aortocoronary bypass 0.712-1.32

Plastic valve prosthesis 1.48-3.14

Valve substitution 1.22-2.72

Plastic surgery for aortic valve 0.241-8.86

Aortic valve substitution 1.06-1.96

Plastic surgery for tricuspid valve 1.50-7.70

Surgical procedure different from isolated
coronary artery bypass graft

1.52-2.74

Aortic arch pathology 0.776-4.30

Carotid endarterectomy 0.382-2.55

Addition of blood to cardiopulmonary bypass
circuit

1.96-3.59

Use of fresh frozen plasma 2.24-4.11

Significant bleeding (>100 ml) 0.728-1.39

Low postoperative cardiac output 12.3-23.9

The variables in italics were eliminated from the model because their
corresponding odds ratios were not significantly different from 1 (p < 0.01).
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factors were also a low postoperative cardiac output and
acute myocardial infarction. Table 6 also shows that low
blood concentrations of postoperative creatinine and
bilirubin were significant protective factors.
An analysis of Table 6 shows that the weights corre-

sponding to each non dichotomous feature monotonic-
ally increase from the first to the fourth quartile interval.
However, this increase is generally quite nonlinear. For
example, the weights corresponding to postoperative
creatinine values in the first and second quartile inter-
vals differ little from each other (−0.88 vs. −0.70), but
change drastically in the third (−0.07) and fourth quar-
tile intervals (1.03). This result shows that postoperative
creatinine values below the median can be considered a
protective factor, whereas values in the fourth quartile
represent a risk factor. Finally, the weight of creatinine
values in the third quartile interval is close to zero.

Discussion
Outcome prediction is a key point in ICUs, not only for
prognosis assessment, but also for cost-benefit analysis,
health-care management, comparisons between centers,
monitoring/assessment of new therapies and population
sample comparison studies. A distinction must be made
between predictive models for mortality and predictive
models for LOS. For the former task, stable benchmarks
are needed to conclude whether high-quality care is be-
ing delivered across institutions. On the contrary, for
LOS, a customized model can be useful for internal
healthcare management purposes.
In many cases the predictive models are scoring sys-

tems, in which the predictor variables are usually se-
lected and scored subjectively by expert consensus or
objectively using statistical methods. These systems are
generally preferred by clinicians and health operators be-
cause they are so simple that individual scores can be
assessed immediately, without using any data processing
system. However, a common weakness of scoring sys-
tems is that their updating or customization to new pop-
ulations is often not an easy task [25]. Scoring systems
are therefore generally used in their original formulation
also for internal management purposes, which implies a
significant loss in performance, because model perform-
ance deteriorates over time or when applied to populations
different from the ones on which they were developed [26].
The approach we used in the present study to get

around this critical point was to derive the scoring sys-
tem directly from a naïve Bayes classifier, using discrete
predictors. This approach was not only straightforward
but also successful, because naïve Bayes classifiers iden-
tify the parameters required for accurate classification
using less training data than many other classifiers. This
makes them particularly effective for datasets containing
many features. Previous papers have also demonstrated



Table 2 The whole set of non dichotomous preoperative,
intraoperative and postoperative variables considered a
priori as likely predictors

Variable (units) 99% confidence
interval of odds ratio

Cut-off

Age (years) 1.36-2.46 69

Height (cm) 0.668-1.19 167

Weight (kg) 0.587-1.05 71

Body surface area (m2) 0.550-0.983 1.8

NYHA heart failure classification 1.55-2.78 2

Preoperative hematocrit (%) 0.499-0.895 39.2

Preoperative creatinine (mg/dl) 1.51-2.69 1.0

Preoperative bilirubin (mg/dl) 0.812-1.45 0.8

ECC time (min) 1.75-3.22 122

Aortic clamping time (min) 1.44-2.61 86

Minimum hematocrit at
cardiopulmonary bypass (%)

0.517-0.924 24

Minimum intraoperative
temperature (°C)

0.410-0.743 32.5

Postoperative hematocrit (%) 0.570-1.02 31

Postoperative venous O2 saturation (%) 0.656-1.17 63.7

Postoperative creatinine (mg/dl) 3.35-6.29 1.2

Postoperative bilirubin (mg/dl) 1.99-3.70 1

NYHA = New York Heart Association; ECC = extracorporeal circulation.
The 99% confidence intervals of the odds ratio were calculated after
dichotomizing each variable on the basis of the cut-off (median calculated
on original sample). The variables in italics were excluded from the model
because their corresponding odds ratios were not significantly different from
1 (p < 0.01).
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that naïve Bayes classifiers may outperform more com-
plex classification methods and show good average per-
formance in terms of classification accuracy, especially
over data sets having features that are not strongly cor-
related [22]. Of course this does not mean that the naïve
Bayes technique is the best approach for supervised clas-
sification problems. More sophisticated models (which
do not rely on the conditional independence assumption
and incorporate interaction terms) may perform better.
Unfortunately, sophisticated models are rarely used in
Table 3 Results obtained by the stepwise process of
variable selection

Step number Variable entered AUC value

1 Low postoperative cardiac output 0.7442

2 Postoperative creatinine 0.8342

3 Extracorporeal circulation time 0.8507

4 Age 0.8551

5 Postoperative bilirubin 0.8589

6 Chronic dialysis 0.8612

7 Acute myocardial infarction 0.8631
clinical practice because they may be difficult to fine-
tune. For example, the actual interaction terms are not
easy to imagine and their choice is often heuristic. Thus,
the naïve approach seems to be a satisfactory comprom-
ise between good performance and simplicity.
Problems may arise if there are several redundant pre-

dictive features, in which case a naïve Bayes classifier
may show low asymptotic accuracy. Under such condi-
tions, Langley and Sage showed that a selective naïve
Bayes classifier, using an optimal subset of selected fea-
tures for making predictions, sharply improved classifier
performance [22]. Unfortunately, if the number N of ac-
quired features is high, an exhaustive search of the best
subset of features may be impractical. In fact, to con-
sider all possible subsets of h features (h = 1,2,…,N), it is
necessary to analyze 2N–1 subsets. In the present case
(52 acquired variables), this is about 4.5 × 1015 possible
subsets of variables. To solve this problem, we used a
heuristic approach consisting of two steps. First we re-
duced the number of variables, keeping only features
giving an odds ratio significantly different from 1 (p <
0.01), after dichotomisation. This allowed us to eliminate
a range of variables a priori, thus decreasing the number
of possible subsets of likely predictors. The final selec-
tion was performed by a forward search, entering the
variable giving the best increase in area under the ROC
curve, step-by-step in the model, and stopping the
search process when the increment in AUC became negli-
gible. This procedure regards a methodology specifically
designed to develop a selective naïve classifier [22,23]. Al-
though the approach used in the present paper does not
ensure an exhaustive search of the best subset of inde-
pendent predictors, it considers all local changes to the
current set of features and makes an optimal selection.
Although alternative methods of variable selection

could be used, we chose a simple approach that exploits
the naïve Bayes model. In particular, we judged it in-
appropriate to reduce the number of predictor variables
by procedures based on different models (e.g. stepwise
logistic regression analysis) and then use the selected set
of variables in the naïve Bayes model. The type of model
may influence the optimal subset of predictor variables.
Prior probabilities were assumed identical for the two

classes, i.e. P(ω1) = P(ω2) = 0.5. Such a choice is often
made when it is impossible or inappropriate to make use
of a priori knowledge, even if information from available
data and/or expert beliefs could be used to make these
probabilities more distinctive. Actually, each change in
prior probabilities is equivalent to modifying the cost of
a wrong decision. Objective criteria could be used to
optimize economic and social costs related to correct
and false classifications. Unfortunately, despite of the
importance of this goal, this type of criterion is rarely
used in problems of clinical decision-making, because



Table 4 Confusion matrix and correct-classification percentages obtained with the testing set

Predicted class Correct classification percentage

LOS < 5 days LOS ≥ 5 days

Actual class LOS < 5 days 2403 492 83% (SP)

LOS≥ 5 days 93 268 74% (SE)

Overall correct-classification percentage: 82%

SP = Specificity, SE = Sensitivity.

Table 6 Weights of the selected continuous features in
the scoring system
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the costs are generally difficult to estimate and actual
prevalence cannot be easily assessed.
The results showed that the scoring system derived

from the naïve Bayes classifier had excellent discrimin-
ation and good generalization power. In particular the
95% confidence interval for AUC estimated by the BCa
bootstrap method was [0.841, 0.883] and [0.837, 0.880]
in the training and testing sets, respectively. To assess
the actual performance of the scoring system, the results
were compared with those obtained by a logistic regres-
sion (LR) model and a quadratic Bayesian (QB) classifier.
Both models were designed on the same data set using
IBM SPSS Statistics and MATLAB code.
For the LR model, the stepwise procedure of variable

selection again chose seven predictors, four of which
(low postoperative cardiac output, postoperative creatin-
ine, age and postoperative bilirubin) were identical to
those chosen for the scoring system. The 95% confi-
dence intervals for AUC estimated by the BCa bootstrap
method were [0.840, 0.883] and [0.833, 0.876] in the
training and testing sets, respectively. No evident differ-
ence was observed between the results obtained with the
scoring system and the LR model.
The QB classifier selected four predictor variables,

three of which (low postoperative cardiac output, post-
operative creatinine and age) were identical to those
chosen for the scoring system and LR model. The last
predictor variable entered in the QB classifier was aortic
clamping time. It may be interesting to note that the lat-
ter variable was not present in the scoring system, which
instead included extracorporeal circulation time. The
number of predictor variables of the QB classifier was
smaller than that of the other two classifiers (4 vs. 7).
This confirms what we pointed out in previous papers,
namely that the quadratic Bayesian classifier generally
requires fewer predictor variables than other models
[6,13]. For the QB classifier, the 95% confidence intervals
Table 5 Weights of the selected dichotomous features in
the scoring system

No Yes

Low postoperative cardiac output −0.7418 2.0920

Chronic dialysis −0.0305 2.3647

Acute myocardial infarction −0.0692 1.5864
for AUC were [0.834, 0.877] and [0.829, 0.873] in the
training and testing sets, respectively. Like the LR model,
the QB classifier provides performance that completely
overlaps with the scoring system.
The finding that more complex classification systems

(LR model and QB classifier) did not give better per-
formance than the naïve Bayes classifier suggests that
the assumption of conditional independence of the se-
lected variables was mostly true, and small deviations
from the assumption did not cause significant deterior-
ation of model performance.
Length of stay in the ICU was chosen as endpoint for

this study because it is a limiting factor for operating
theatre utilization for heart surgery and consequently a
major parameter of cost-effectiveness. While 120 hours
is a high value of LOS for cardiac surgery patients, in
the example under consideration we chose this cut-off
because it identifies the group of patients (about 10%)
that mostly influences internal management decisions in
the scenario considered.
A recent study sought to identify and validate existing

prediction models for prolonged intensive care after
heart surgery [27] through systematic review of the lit-
erature. It also tested several models on a large registry
database comprising 11,395 heart operations. The study
proved that several models showed acceptable discrimin-
ation, but no model achieved excellent discrimination.
The best performance was obtained by the Parsonnet
model (AUC = 0.75), followed by the European system
for cardiac operative risk evaluation (AUC = 0.71). A
similar AUC value was obtained by us when we used the
Cleveland scoring system [3] to predict morbidity risk
after cardiac surgery in our specific scenario [12]. These
AUC values are somewhat distant from those obtained by
1st

quartile
interval

2nd

quartile
interval

3rd

quartile
interval

4th

quartile
interval

Postoperative creatinine −0.8848 −0.7004 −0.0678 1.0344

Extracorporeal circulation time −0.6738 −0.3335 −0.1140 0.7261

Age −0.5917 −0.1154 −0.0278 0.5111

Postoperative bilirubin −0.7184 −0.4112 −0.0163 0.7972
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the scoring system proposed in the present study. This
confirms that careful model customization is indispensable
for good performance, because standardization of local
practices is difficult and patient populations may differ.

Conclusion
Scoring systems are often used in ICUs to predict out-
comes of critical patients. Despite their simple applica-
tion, they are generally difficult to update with new sets
of data and to tune to clinical institutions different from
those in which they were designed. This weakness may
have a negative effect on the reliability of these attractive
predictive models, since the performance of models that
were originally efficient may deteriorate significantly
with changes in clinical scenario.
The naïve Bayes approach used in the present paper

seems to overcome this difficulty, because the scoring
system is completely defined by descriptive tables that
are easily calculated and/or updated using data acquired
in any specific institution. Although the model described
in the present paper is a working example, the results
obtained indicate performance very similar to a logistic
regression model and a quadratic Bayesian classifier, as
well as greater ease of handling.
In conclusion, although the proposed scoring system

can be regarded as an objective ICU discharge model or
predictive tool in the particular scenario analysed, the re-
sults demonstrate that the present approach produces a
very simple and trustworthy scoring system that is easily
updated and customized for other centers. This is a key
message, because simple, precise customization and up-
dating not only ensure better model performance, but also
better acceptance by surgeons and anaesthesiologists.
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