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Abstract

Background: Open-angle glaucoma (OAG) is a prevalent, degenerate ocular disease which can lead to blindness
without proper clinical management. The tests used to assess disease progression are susceptible to process and
measurement noise. The aim of this study was to develop a methodology which accounts for the inherent noise in
the data and improve significant disease progression identification.

Methods: Longitudinal observations from the Collaborative Initial Glaucoma Treatment Study (CIGTS) were used to
parameterize and validate a Kalman filter model and logistic regression function. The Kalman filter estimates the true
value of biomarkers associated with OAG and forecasts future values of these variables. We develop two logistic
regression models via generalized estimating equations (GEE) for calculating the probability of experiencing
significant OAG progression: one model based on the raw measurements from CIGTS and another model based on
the Kalman filter estimates of the CIGTS data. Receiver operating characteristic (ROC) curves and associated area under
the ROC curve (AUC) estimates are calculated using cross-fold validation.

Results: The logistic regression model developed using Kalman filter estimates as data input achieves higher
sensitivity and specificity than the model developed using raw measurements. The mean AUC for the Kalman
filter-based model is 0.961 while the mean AUC for the raw measurements model is 0.889. Hence, using the
probability function generated via Kalman filter estimates and GEE for logistic regression, we are able to more
accurately classify patients and instances as experiencing significant OAG progression.

Conclusion: A Kalman filter approach for estimating the true value of OAG biomarkers resulted in data input which
improved the accuracy of a logistic regression classification model compared to a model using raw measurements as
input. This methodology accounts for process and measurement noise to enable improved discrimination between
progression and nonprogression in chronic diseases.

Background
Open angle glaucoma (OAG) is a chronic degenera-
tive ocular disease characterized by damage to the optic
nerve, which when poorly managed can lead to blind-
ness. Glaucoma is the second leading cause of blindness
with an estimated 2.2 million adult Americans diagnosed
with glaucoma [1,2]. Patients with OAG are monitored
regularly via visual field (VF) tests and intraocular pres-
sure (IOP) readings [3-8]. Clinicians use the results of
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these monitoring techniques to determine whether signif-
icant disease progression has occurred, i.e. a change in the
patient’s disease characteristics which calls for changes in
treatment decisions. However, these clinical observations
are subject to process and measurement noise. Errors
in machine calibration, patient anxiety, human error in
administering tests, and variations in measurement tech-
nique can all contribute to measurement noise when
assessing chronic diseases [9]. Biological variability, like
intraday fluctuation of intraocular pressure, is a contribut-
ing factor to process noise which can affect the ability
to identify significant disease progression [10]. Distin-
guishing between signal and noise becomes paramount
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when these noisy measurements are used in decision
making. While most clinicians (glaucoma specialists in
particular) are aware of the variability in VF and IOP
measurements, non-specialists may not fully appreciate
the importance of considering noise in VF findings and
IOPs from visit to visit: they may erroneously conclude
a patient is progressing or non progressing when they
observe variability and make treatment decisions accord-
ingly. Our proposedmethodology provides clinicians with
a mathematical framework that systematically accounts
for noise in the data used to predict disease progression
to aid clinicians (both specialists and non-specialists) in
their decision making process.
In order to determine when a patient with OAG should

be observed by his/her physician, a dynamic and per-
sonalized algorithm was developed using a Kalman filter
approach to estimate VF test and IOP measures (Helm J,
Lavieri M, OyenMV, Stein J, Musch D: Dynamic forecast-
ing and control algorithms of glaucoma progression for
clinician decision support, unpublished). These estimates
were then mapped to a probability of experiencing OAG
progression via logistic regression to determine whether
significant progression occurred that would signal the
need for additional testing and/or impact treatment deci-
sions. The development and the implications of using
Kalman filter estimates in identifying disease progression
are the focus of this work.
Kalman filtering is a technique for identifying signal

in the presence of measurement and process noise. The
Kalman filter approach has been used to estimate pul-
monary blood flow [11], track cardiovascular signals [12],
continuously monitor glucose levels [13], and monitor
prostate specific antigen levels in prostate cancer patients
[14]. These applications of the Kalman filter are used for
predicting important health metrics, but the relationship
between filtered estimates of these metrics and significant
disease progression has not yet been modeled.
Identifying significant disease progression requires

analysis of the longitudinal data of a particular patient.
Therefore, we used generalized estimating equations
(GEE) to statistically model the relationship between
Kalman filter estimates of OAG health metrics and pro-
gression. GEE has been extensively used in the medical
literature: to assess improvements from conversion to
electronic health records [15], to identify risk factors for
chronic obstructive pulmonary disease [16], to identify
predictors of influenza vaccine acceptance [17], and to
study spatially correlated binary data in neuroimaging
[18]. However, applying GEE to raw measurements often
leads to decisionmaking that is informed by “noisy” obser-
vations, not measurements which reflect the true disease
dynamics.
The aim of this work is to show that utilization of

Kalman filter estimates of patient healthmetrics in logistic

regression models improves significant disease progres-
sion identification compared to logistic regression models
constructed using raw clinical observations. Furthermore,
Kalman filter estimates explicitly account for process and
measurement noise inherent in clinical data, making these
estimates more informative than raw observations alone.
This is of particular interest to clinicians who must decide
when to monitor patients and select treatments based on
the patient’s likelihood of progression. While our initial
application is to patients with OAG, this methodology is
applicable to other chronic diseases.

Methods
Our proposed methodology combines an understanding
of system dynamics properties through a Kalman filter
approach with the marginal response technique of GEE
to estimate the true value of clinical observations and
to improve the ability of the logistic regression models
to identify significant OAG progression. Our methodol-
ogy is as follows: first, we built our dataset for analysis
from clinical observations of a randomized clinical trial of
OAG patients. Next, we constructed a robust definition
of significant OAG progression based on the knowledge
of subject matter experts. We then applied Kalman fil-
tering to the repeated measures data of the large-scale
randomized controlled clinical trial to estimate true values
of variables believed to be correlated to significant OAG
progression. We then applied GEE with a logit link func-
tion to the filtered data to develop a probability function
for significant OAG progression. Finally, through cross
validation, we measured sensitivity and specificity and
calculated the area under the receiver operating charac-
teristic (ROC) curve (AUC) to evaluate the accuracy of
the probability function at identifying significant OAG
progression.
All analyses were performed in R. Funding has been

received by grant UL 1RR024986 from the National
Institutes of Health (NIH) and grant 1161439 from the
National Science Foundation (NSF).
All study centers involved in CIGTS obtained insti-

tutional review board approval for the study. Univer-
sity of Michigan institutional review board approval was
granted for the continued analysis of the study results
(HUM00037985).

Data
The data set used for parameterization and validation
of our proposed methodology came from the Collabora-
tive Initial Glaucoma Treatment Study (CIGTS). CIGTS
provided clinical visit data for 607 patients with early
to moderate OAG over 10 years. All patients were seen
approximately every 6 months following initial interven-
tion to have a VF test and IOP check. Longitudinal mean
deviation (MD) and pattern standard deviation (PSD)
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values from VF tests, along with longitudinal IOP mea-
surements, were obtained for each patient from the clin-
ical trial data. From the longitudinal measurements, we
calculated velocities and accelerations for MD, PSD, and
IOP for every patient at each visit. We also extracted
demographic information (age, sex, and race) for every
patient in the clinical trial.
Our inclusion criteria required patients to have at least

4 follow-up VF tests and IOP checks after initial interven-
tion. We also required the patient’s VF test data to include
information on each individual light sensitivity point in
order to apply our progression definition. Further, patients
were required to have been initially treated with medical
therapy. Patients were censored when they left the clinical
trial or if they underwent trabeculectomy or argon laser
trabeculoplasty (ALT).

Progression labeling
Our modeling approach used repeated measures data from
a randomized clinical trial to obtain information about
the evolution of OAG over time. Given the set of longitu-
dinal data obtained sequentially for each patient over the
course of the clinical trial, we used the input of subject
matter experts to retrospectively identify patients that
experienced a significant change in disease characteristics
that would warrant clinical intervention. It is important
to note that our definition of significant disease progres-
sion is meant to serve as an alert to clinicians. Clinicians
use the information obtained from the models along with
their experience and patient-specific factors to ultimately
decree how to best care for a particular OAG patient.
A large drop in MD is generally accepted as an instance

of OAG progression. Furthermore, we used the Hodapp-
Anderson-Parish (HAP) classification [19] in our defini-
tion of significant OAG progression. Patients were labeled
as experiencing progression at visit j when there was a
loss of ≥ 3 decibels (dB) of MD with respect to baseline
MD at visit j and this loss of MD also occured for some
future visit k : k > j or if the patient shifted upward
in HAP class (e.g. moderate to severe). We applied this
definition to all patients in our dataset. This definition
of progression requires both significant change in disease
characteristics at the particular visit and a validation of
this change in some future visit. Validation of the loss of
MD at a future visit mitigates the chance of erroneously
concluding a patient is progressing or not progressing due
to noise in the data. In practice, this added level of val-
idation necessitates the development of an OAG disease
progression probability function, since knowledge about
future visits is not available to clinicians when identifying
whether a patient has progressed.
Our definition of OAG progression (using either a vali-

dated 3 dB decline inMD or worsening based on HAP cri-
teria) was compared against other suggested definitions of

OAG progression (validated decline of 3 dB in MD alone,
progression based on HAP criteria alone, and a point-wise
linear regression method for progression detection) [20]
and the model performed well irrespective of the OAG
progression definition chosen. Given our interest in trying
to identify global worsening of visual field from glaucoma
as well as segmental areas of the visual field loss from
glaucoma, we opted to use the more encompassing pro-
gression definition, characterized as a validated decline in
MD of 3 dB from baseline or worsening based on HAP
criteria for our analyses.

Application of Kalman filter
The raw measurements obtained from sequential test-
ing of OAG patients can be susceptible to process and
measurement noise. To mitigate the effect of process and
measurement noise, we utilized a Kalman filter approach
to estimate the true value for observations obtained from
VF and IOP tests. The Kalman filter utilizes recursive
mathematical equations to optimally estimate the mean
and covariance parameters of a process to characterize
the state of the disease system [21]. The disease state can
be multidimensional. We considered our state, αi,j ∈ �n,
to be the value of OAG-related variables (MD, PSD, IOP,
and their respective velocities and accelerations) at the jth
observation time for patient i. The Kalman filter assumes
the state is a Gaussian random variable and that the evolu-
tion of the disease state is governed by a linear stochastic
difference equation:

αi,j = Tαi,j−1 + wi,j (1)

Equation (1) represents the disease state, αi,j, of patient
i at the current period j, as a transformation of the state of
the last period, αi,j−1, according to the transition matrix
T, plus Gaussian process noise, wi,j, with mean 0. Addi-
tionally, the covariance of the disease state variables for
the current period, �i,j, is also governed by the transition
matrix T, plus the covariance matrix of the process noise,
Q.

�i,j = T�i,j−1T′ + Q

Moreover, the true state cannot be directly measured.
Instead, the clinical observations, zi,j, are assumed to be a
linear function of the state, αi,j, transformed by the matrix
H plus Gaussian measurement noise, vi,j, with mean 0:

zi,j = Hαi,j + vi,j
As described by (Helm J, Lavieri M, Oyen MV, Stein

J, Musch D: Dynamic forecasting and control algorithms
of glaucoma progression for clinician decision support,
unpublished), we used the expectation maximization
(EM) algorithm for parameter estimation [22].
We obtained state estimates, α̂i,j for each patient’s visit

by recursively predicting the disease state values using a
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population-based understanding of OAG mechanics (i.e.
parameterized transition and covariance matrices) and
updating the estimates to reflect the patient’s particu-
lar disease evolution [21]. First, Equation (1) is used to
forecast the patient’s disease state in the next period.
The Kalman filter then uses the patient’s observed dis-
ease state in order to update the estimate of the true
state, α̂i,j. This personalized trajectory process is repeated
for each patient, over the course of the patient’s dura-
tion in the clinical trial, to obtain the best estimates
of the patient’s state at each observation period. This
procedure accounts for the inherent process and mea-
surement noise to provide information to the decision
makers that better reflects the actual disease state of each
patient.

Generalized estimating equations
We next used GEE for logistic regression to develop the
probability function for significant OAGprogression. GEE
is an extension of generalized linear models to repeated
measures data analysis using quasi-likelihood estimation
[23]. GEE is a semiparametric regression technique that
uses an iterative algorithm, Newton-Rhapsody, to esti-
mate the coefficient parameters. Unlike linear mixed
effects models, GEE is robust to the specification of the
correlation structure and requires only the correct spec-
ification of the marginal means to obtain consistent and
asymptotically normal parameter estimates [24].
Let yi,j be the response (i.e. progression label) for patient

i at time j, and letμi,j be the expected value of yi,j. The GEE
approach assumes independence at the patient-level and
relates the marginal response, μi,j, to a linear combination
of the covariates, xi,j, by the link function, g(·).

g(μi,j) = xTi,jβ

where β is a p × 1 vector of unknown regression
coefficients.
Traditionally, the covariates used in GEE are obtained

from the raw observed measurements zi,j. Our proposed
methodology called for using the state estimates α̂i,j
as the input to our model. We compared the perfor-
mance of the GEE model which uses α̂i,j (Kalman filter
estimates) against the GEE model which uses zi,j (raw
measurements).
Through the GEE framework, we considered the vari-

ance of the response variable,V (yi,j), to be a function, v(·),
of the mean response, μi,j:

V (yi,j) = v(μi,j)φ

where v(·) is a known variance function and φ is a possibly
unknown scale parameter.
Because of our Bernoulli response variable, i.e. 1 for

progression and 0 for nonprogression, we used the logit

link function, logit variance function, and scale parameter,
φ = 1:

g(μi,j) = log[
μi,j

1 − μi,j
]

v(μi,j) = μi,j(1 − μi,j)

Repeated measures data are inherently correlated, with
independence at the patient level. GEE uses a n×n “work-
ing” correlation matrix, Zi, for each patient’s sequence of
response variables yi, to account for this inherent correla-
tion. We utilized an autoregressive correlation structure.
The autoregressive correlation structure assumes a first-
order relationship between the measurements. The cor-
relation depends on the magnitude of the time difference
between the measurements:

Corr(yi,s, yi,t) = ρ|s−t|, ρ ∈ (−1, 1)

The final covariate set for the logistic regression was
obtained via forward variable selection. Variable selection
was initialized with MD, PSD, and change in MD. Chi-
squared tests were used to evaluate the benefit of adding
a single variable to the model. We iteratively added the
variable with the smallest Chi-square test p-value to the
model until no new variables were statistically significant
(α = 0.10).

Model performance
To assess the performance of the logistic regression mod-
els, we developed receiver operating characteristic (ROC)
curves. 10-fold cross validation was performed to cal-
culate sensitivity and specificities at various discrimina-
tion thresholds. Receiver operating characteristic (ROC)
curves were created using the average sensitivities and
specifities across the 10-fold cross validation to compare
the performance of the logistic regression model with raw
observations as input versus the model with Kalman filter
state estimates as input. Estimates of the area under the
ROC curve (AUC) were obtained for each iteration of the
10-fold cross validation.

Results
The mean (standard deviation) number of visits for
patients who met the inclusion criteria was 15.1 (2.6) vis-
its. Nearly 99% of the patients had at least 8 follow-up
visits.
We calculated the overall patient average (and standard

deviation) of every variable (Kalman filter estimates and
raw observations) from the VF and IOP tests (Additional
file 1: Table S1) for instances of progression and non-
progression separately. We note that generally the differ-
ence between the progressing and nonprogressing means
for a variable is larger for the Kalman filter estimates
than in the raw measurement data set, e.g. the difference
between progressing and nonprogressing PSD is 7.643 for
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the Kalman filter estimates and 4.831 for the raw mea-
surements. The increased difference between progressing
and nonprogressing means for a variable in the Kalman
filter data set is due to the linear system dynamics frame-
work of the Kalman filter. As time increases, the linear
trajectory of the Kalman filter results in more disparate
variable values between nonprogressing and progressing
instances compared to the “noisy” trajectories in the raw
measurements data set.
We can also see that the standard deviation of the mean

of the variables is greater in the Kalman filter estimates
than the raw measurements, e.g. the standard deviation
of the mean MD of progressing Kalman filter estimates is
6.229 compared to 3.688 for the raw measurements. The
higher standard deviation of the mean of the variables for
the Kalman filter estimates shows that the Kalman filter
sends patients on different trajectories, i.e. each patient
has a different average variable value for his/her pro-
gressing instances. In the raw observations data set, each
patient follows a more similar trajectory, i.e. each patient
has a more similar average variable value for his/her pro-
gressing instances. In the raw observations data set, each
patient’s true trajectory is muddled by process and mea-
surement noise, which results in similar looking trajecto-
ries. The Kalman filter, however, reduces noise to extract
the true signal which results in trajectories that reflect the
patient’s particular disease characteristics.
The final logistic regression models are summarized in

Additional file 2: Table S2. Both models use the same
set of final variables, however the odds ratios are larger
for the model trained on Kalman filter estimates than
the odds ratios for the model trained on raw observa-
tions. For instance, the odds ratio of PSD is 1.344 for
the logistic regression model based on Kalman filter esti-
mates and 1.107 for the logistic regression model based
on raw observations. Analysis of the logistic regression
fitted values, i.e. the estimated probability of progres-
sion, is presented in Table 1. It is important to note
that the average estimated probability of progression of
the Kalman filter progressing instances (0.738) is much
higher than the average for the raw observations progress-
ing instances (0.498). Additionally, the difference between
average fitted values of progressing and nonprogressing
instances is much greater for the Kalman filter estimates
(95% CI 0.611,0.676) than for the raw observations data
set (95%CI 0.290,0.337). This increased difference of aver-
age fitted values between progressing and nonprogressing
instances supports our hypothesis that Kalman filtered
estimates allows for improved distinction of significant
disease progression.
Finally, the ROC curve, Figure 1, illustrates that by first

filtering the data using the Kalman filter model, we can
achieve higher sensitivity and specificity than a model
based on the raw observations. For example, if we select

Table 1 Fitted probabilities from logistic regression
models

Progressing Nonprogressing 95% CI
mean (SD) mean (SD) of diff

Kalman filter estimates 0.738 (0.279) 0.095 (0.172) (0.611,0.676)

Raw observations 0.498 (0.206) 0.185 (0.111) (0.290,0.337)

The table provides themean and standard deviation of the fitted probabilities for
progression and nonprogression instances from both logistic regression models.

95% sensitivity as our goal, we can obtain 83% specificity
using the Kalman filter model but only 39% specificity
using the raw observations model. At 90% sensitivity, the
Kalman filter achieves 88% specificity while the raw obser-
vations model achieves 66% specificity. The mean (and
variance) of the estimated AUC for the Kalman filter
and raw observations models are 0.961 (0.002) and 0.889
(0.013), respectively. Hence, using the probability function
generated via Kalman filter state estimates and GEE for
logistic regression, we are able to more accurately classify
patients and instances as experiencing or not experiencing
significant OAG progression.

Discussion
Using Kalman filter forecasts in determinations of when
patients with OAG should be observed by their physi-
cian required the development of a mapping from the
filtered health metrics to a probability of progression.
The application of GEE for logistic regression on Kalman
filtered longitudinal observations of patients with OAG
resulted in improved ability to identify significant glau-
coma progression as compared to the model generated
using the raw clinical trial data. The Kalman filter model
is able to better detect relationships between health met-
rics and the more complex disease progression definition
than the logistic regression model using raw observa-
tions as inputs. We believe that as the progression defini-
tion becomes more heavily influenced by systematic pro-
cess and measurement noise, a logistic regression model
parameterized on Kalman filter estimates of the input will
become increasingly more beneficial for detecting disease
progression.
The methodology we present here takes advantage of

state estimation and the linear system model of the
Kalman filter, in conjunction with the marginal response
of GEE, to improve the logistic regression model’s abil-
ity to correctly classify patients. The Kalman filter model
performs at higher specificity and sensitivities for signif-
icant disease progression classification due to the greater
difference in mean fitted values (i.e. average estimated
probability of progression) between progressing and non-
progressing instances. As we iterate through potential
probability thresholds for classifying instances/patients as
progressing or nonprogressing, the greater difference in
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Kalman Filter Estimates 
Logistic Regression

Raw Observations 
Logistic Regression

Figure 1 ROC curves for Kalman filter estimates and rawmeasurements logistic regression models. Estimates of sensitivity and specificity
obtained via 10-fold cross validation are used to generate the receiver operating characteristic (ROC) curve for the two logistic regression models
parameterized with Kalman filter estimates and raw observations.

mean fitted values creates a larger set of thresholds for
which there are fewer false negatives and false positives.
The lower rate of false negatives and false positives leads
to improved sensitivity and specificity for the Kalman fil-
ter model at detecting significant glaucoma progression in
comparison to the raw measurements.
The difference of mean fitted values for the Kalman fil-

ter model is larger because of the greater in magnitude
covariate coefficients and higher odds ratios of the model
covariates. With higher odds ratios, each unit increase in
a predictive covariate increases the probability of progres-
sion more greatly for the Kalman filter model than it does
for the raw measurements model.
The greater in magnitude covariate coefficients and

higher odds ratios are explained by the linear system
model the Kalman filter uses for state estimation. In the
case of glaucoma, IOP decreases over time for treated
patients and mean deviation becomes more negative
since VF loss cannot be reversed. The trend creates the
larger difference in mean variable values as the num-
ber of measurements increases. The “noisy” nature of
the raw measurements creates fluctuation around this
expected trend. Because the GEE approach is concerned
with population-averaged (i.e. the mean response) vari-
able, we expect covariate coefficients to be greater in
magnitude when the difference between the mean vari-

able value for progression and nonprogression instances
increases.
The increased standard deviation of the mean value of

the Kalman filter estimates is due to the Kalman filter’s
recognizing each patient’s individual disease realization.
As the Kalman filter updates the state estimates to reflect
a patient’s particular characteristics, that patient’s trajec-
tory becomes more dissimilar to the trajectories of other
patients. The “noisy” raw measurements mask these dis-
similar trajectories which results in clustered mean vari-
able values for progressing or nonprogressing instances.
Increased sensitivity and specificity of classification

models improves clinical decision making by more
accurately identifying significant disease progression.
Clinicians who are able to correctly identify patients
who experience significant glaucoma progression can
make more informed decisions, such as improving mon-
itoring schedules and improving treatment decisions.
Additionally, the increased accuracy allows clinicians to
utilize the statistical model without fearing high rates of
misclassification.
Our proposed methodology is limited by the linear

system dynamics model. Glaucoma progresses relatively
slowly, thus changes in disease state can be estimated well
by a linear model. For more rapidly progressing diseases,
if the time between patient observations is sufficiently
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small, the disease progression mechanics can potentially
be estimated by a linear dynamics model. The Kalman
filter also assumes the state estimates, noise and raw
observations come from a Gaussian distribution. This
assumption is reasonable within a range around the mean
(2 standard deviations) for bounded variables, e.g. IOP.
The application of our methodology to CIGTS data is

limited by the fact that this trial took place between 1993
and 2003. Since 2003, there have been many advances
in the field of diagnostic testing for glaucoma including
testing to check for damage to the retinal nerve fiber
layer tissue using optical coherence tomography (OCT)
and additional progression detection software on the
visual field machines such as Guided Progression Analy-
sis (GPA). In the future, we plan to use data from other
sources to be able to integrate data from OCT and GPA
into our models and progression definition.

Conclusion
In this paper, we applied a linear system dynamics model
approach, using a Kalman filter, to estimate true measure-
ment values for variables which have both measurement
and process noise. Filtering techniques are important
for true measurement estimation for medical decision
making and have been shown to result in improved
significant disease progression classification when utiliz-
ing GEE for logistic regression with repeated measures
data, as demonstrated in our modeling of OAG pro-
gression dynamics. Due to process and measurement
noise, only after having seen future observations can clin-
icians retrospectively assess whether “true” progression
has occurred. Logistic regression models that directly
consider those noises allow for the prospective calculation
of the probability of experiencing progression. Further-
more, for complex progression definitions, logistic regres-
sion enables a reduction in the number of variables to
consider, which is important in guiding clinical decisions.
This methodology is also applicable to other chronic dis-
eases, particularly those diseases whose dynamics can
be modeled effectively by a linear system and whose
biomarkers can be reasonably approximated by a Gaussian
distribution.

Additional files

Additional file 1: Summary of Kalman filter estimates and raw
observations. The table provides the overall mean and standard deviation
for the variables at progressing and nonprogressing instances. Kalman filter
estimates and raw observations of these variables are compared.

Additional file 2: Coefficients of logistic regression. The table presents
the final covariate sets for the two logistic regression models
parameterized with Kalman filter estimates and raw observations. We
present the mean (variance) of the coefficient parameters of the iterations
of the 10-fold cross validation.
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