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Abstract

between AB interactions and BC interactions.

better performance than the previous ABC model.

Background: The Swanson’s ABC model is powerful to infer hidden relationships buried in biological literature.
However, the model is inadequate to infer relations with context information. In addition, the model generates a
very large amount of candidates from biological text, and it is a semi-automatic, labor-intensive technique
requiring human expert's manual input. To tackle these problems, we incorporate context terms to infer relations

Methods: We propose 3 steps to discover meaningful hidden relationships between drugs and diseases: 1) multi-level
(gene, drug, disease, symptom) entity recognition, 2) interaction extraction (drug-gene, gene-disease) from literature, 3)
context vector based similarity score calculation. Subsequently, we evaluate our hypothesis with the datasets of the
“Alzheimer’s disease” related 77,711 PubMed abstracts. As golden standards, PharmGKB and CTD databases are used.
Evaluation is conducted in 2 ways: first, comparing precision of the proposed method and the previous method and
second, analysing top 10 ranked results to examine whether highly ranked interactions are truly meaningful or not.
Results: The results indicate that context-based relation inference achieved better precision than the previous ABC

model approach. The literature analysis also shows that interactions inferred by the context-based approach are
more meaningful than interactions by the previous ABC model.

Conclusions: We propose a novel interaction inference technique that incorporates context term vectors into the
ABC model to discover meaningful hidden relationships. By utilizing multi-level context terms, our model shows

Background

With the advent of high-throughput methods and sheer
volume of medical publications covering various diseases,
biomedical researchers face challenges of distilling an
enormous amount of data and discovering knowledge
buried in them. Biological entities and their relations
such as genes, proteins, molecules, processes, diseases,
drugs and chemicals constitute underlying knowledge
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repository, and those entities and relations exist at var-
ious levels of entity types ranging from molecular to
phenomic.

Discovering hidden relations among biomedical entities
was first proposed by Swanson [1]. Swanson’s Undiscov-
ered Public Knowledge (UPK) model (a.k.a. ABC model)
was to discover the implicit relations among biological
entities such as magnesium, epilepsy, and migraine. As
defined by Swanson, the ABC model is used for undis-
covered knowledge which can be inferred by considering
two (or more) complementary public relations [2] (see
Figure 1). Discovering hidden relations is a daunting
challenge specifically when multiple entities and relation-
ships are interconnected at different levels. According to
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Figure 1 Example of Swanson’s UPK model.
.
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his ABC model, even though there is no connection
reported between the concept A and the concept C, if
there exists public associations between A and B, and
between B and C, it is possible to infer a new relation
between A and C. From this method, Swanson generated
several hypotheses like “Fish oil can be used for treat-
ment of Raynaud’s Disease.” Three years later, this
hypothesis was proved clinically by DiGiacomo [3].

Several techniques have been developed to explore the
Swanson’s ABC model. Weeber [4] attempted to discover
novel relationships between drugs and diseases in the bio-
medical literature. With the ABC model, they developed
the concept-based system by mapping words to UMLS
concepts, and used it for Swanson’s Raynaud-Fish Oil and
Migraine-Magnesium discoveries. Weeber [5] adopted the
following two models to generate new hypotheses in dis-
covering two processes: 1) an open discovery procedure
with directional process and 2) a closed discovery proce-
dure with bi-directional process.

Several studies employed the MeSH terms to infer the
relationships between the biological objects [6-8]. Sehgal
[6] explored genes and their relationships by using

MeSH terms. Srinivasan [7] used MeSH terms and
UMLS semantic types for new hypothesis generation.

Other researches arrange the specific context in order
to infer the new relationships between biological objects
[8,9]. Srinivasan [8] suggested novel uses of dietary and
pharmacological substance in terms of the Swanson’s
ABC model. They identified that some diseases were
related with curcumin. In the Swanson’s ABC model,
they selected context, curcumin as the A terms in an
open discovery procedure. The B, C terms were extracted
by MeSH terms from the results of searching A term,
curcumin in the PubMed. Patric [9] developed the litera-
ture mining method called RaJoLink to discover hidden
relations by the Swansons’s ABC model in the autism
domain.

The major concerns with the ABC model are that 1) it
does not incorporate context information into relation
inference; 2) it generates a large volume of false positive
candidate relations; and 3) it is a semi-automatic, labor-
intensive technique requiring human experts’ manual
input. The goal of this study is to infer unknown interac-
tions among entities extracted from the literature of a
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particular disease by making use of context term pat-
terns. The proposed approach is particularly useful for
drug discovery that determines the possibility of drug
repositioning.

Context terms, in this paper, are defined as biological
entities co-occurring with interaction pairs in a given
PubMed record. These biomedical terms can be treated
as context terms of the interactions. The major hypoth-
esis explored in this paper is that the similar context
terms co-occurring with interactions among entities
provide meaningful patterns to detect undiscovered
knowledge.

To our best knowledge, none of previous studies
resembles our approach that detects context term
patterns from text and applies them for the ABC model
problem. The most similar one is by Baker and Hemmin-
ger [10] proposing a mining technique based on term
co-occurrence based relation model to generate new
hypotheses of drug-disease, gene-disease, and drug-
function relations. This approach uses diseases-genes-
drugs patterns. However, their approach did not utilize
context information where interaction of entities is
discovered.

We have developed a methodology to extract terms
which refer to biological objects from biomedical litera-
ture and store them in a repository used to identify
interaction pairs of entities from multi-level interaction
databases. Applying Swanson’s ABC model to stored
interaction data, we produced new possible interaction
candidates. By applying context term patterns for the
interaction results, we were able to improve the preci-
sion rates than previous ABC methods.

The contributions of our study are three-folds: First,
we built a multi-level interaction database used to iden-
tify whether interaction exists among extracted entities.
Second, besides the interaction identified by the multi-
level interaction DB, we detected patterns of neighbor
entities, built pattern vectors, and inferred undiscovered
interaction. Third, we validated our approach with
77,711 PubMed records of Alzheimer’s disease.

The rest of the paper is organized in the following
order. Datasets and methods describe our approach:
data collections, evaluation strategy, and evaluation mea-
sure. Results and discussions report the experimental
results and discuss the results. In conclusions, we con-
clude the paper with the future plan.

Datasets and methods

In this section, we describe our approach to hidden
interaction extraction using multi-level context terms.
First, we describe the dataset used in this paper. Second,
we introduce the multi-level entity recognition method
as well as the interaction extraction method. Third, we
explain the concept of context terms and the context
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similarity-based scoring method. Last, we describe how
we evaluated our method.

Dataset

UMLS

We use UMLS (Universal Medical Language System) [11]
to find bio-medical entities from the text. As UMLS is
composed of many different thesauruses, we applied dif-
ferent export criteria before importing them to our data-
bases. We first chose the NCI thesaurus as our main
thesaurus, because NCI thesaurus accurately categorized
drug, disease, and symptom entities. Since the UMLS
data is composed of the hierarchical structure, from cer-
tain nodes, all descendant nodes are considered to be in
the same category. We can use periods (,) to represent
hierarchical structures in UMLS. For example, a hier-
archical structure, ‘A0001.A0002’, means that ‘A0002’
entity is under ‘A0001’ entity category. We searched for
each category entities of gene, disease, and symptom in
UMLS. As the result, the entities under ‘A1412976.
A7570735 can be treated as gene entities, the entities
under ‘A1412976.A7644030.A12793852’ can be treated as
disease entities, and the entities under ‘A1412976.
A7644030.A7580815.A7612336.A7589770’ can be treated
as symptom entities. After we locate entities, we collect
all synonyms by extracting all entities which have the
same CUI in the UMLS database.

We extracted 96,031 disease synonyms, 45,527 gene
synonyms, and 6,132 symptom synonyms from UMLS
in total. Using these synonyms, we built up multi-level
biomedical synonym databases of UMLS, and tagged
biomedical terms in literatures as context terms.
PharmGKB
We use PharmGKB (Pharmacogenetics Knowledge Base)
[12] as a dictionary and the golden standard of this study.
As a dictionary, we use names of genes, diseases, and
drugs in PharmGKB to extract drug-gene or gene-disease
relationships. As an answer set, we use interaction pairs
between drug and disease defined in PharmGKB.

We extracted 25,693 disease synonyms, 28,091 drug
synonyms, and 258,840 gene synonyms from PharmGKB
in total. Using these synonyms, we created multi-level bio-
medical synonym databases out of PharmGKB, and tagged
biomedical terms in PubMed records as interaction enti-
ties. Also, we extracted 1,992 drug-disease interaction
pairs from PharmGKB, and used them as an answer set
for the evaluations.

CTD

We use CTD (Comparative Toxicogenomics Database)
[13] for tagging chemicals, genes, diseases entities in the
text. CTD contains 384,141 chemical synonyms, 679,701
gene synonyms, and 68,211 disease synonyms. CTD pro-
vides us for an answer set of interactions between diseases
and drugs, whose number of interactions is 336,693.
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PubMed

PubMed is a well-known biomedical literature repository
that is widely used for text mining. PubMed has more
than 20,000,000 papers’ abstracts. For the evaluation, we
downloaded 77,711 abstracts of Alzheimer disease in the
XML form.

Methods

In this section, we describe the method to detect undis-
covered interactions from the literature using context
terms, and we also explain the evaluation strategy and
measures. Figure 2 shows the flow diagram of our
approach. First, we constructed multi-level entity diction-
aries from three external databases (PharmGKB, CTD,
and UMLS) and extracted entities from the abstracts. Sec-
ond, we extracted interactions from the entity set with
context term vectors. Third, we inferred undiscovered
interactions from the known interactions using context
vectors. Finally, we evaluated our results by comparing
with the frequency based ABC model.

Multi-level entity recognition

The main purpose of the entity dictionary databases is to
tag multi-level biomedical entities existing in PubMed
records. We use 4 levels of entities such as genes, drugs,

Page 4 of 12

diseases, and symptoms. To this end, we first parse the
sentences using the Conditional Random Field (CRF)-
based sentence detector. Second, we match the extracted
entities with PharmGKB, and CTD entity dictionary data-
bases to extract interaction data. And third, we map them
to the UMLS entity dictionary database to extract context
vectors.

We recognize multi-level entity terms from the
PubMed records. Prior to entities tagging, we construct a
multi-level entity dictionary to recognize each level
terms.

We import data from three external databases to gen-
erate the multi-level entity dictionaries: PharmGKB,
CTD, and UMLS (see Figure 3). We first define the
entity levels of the dictionaries into four different levels:
gene, drug, disease, and symptom. From PharmGKB and
CTD databases, gene, drug, and disease entities are
imported. From UMLS database, gene, disease, and
symptom entities are imported.

Entity dictionary tables are structured as two fields:
term names and accession IDs. The content data are
imported from each database. We extract names and
synonym terms with their accession IDs. Due to this,
there can be same accession IDs with different terms in
the dictionary databases.

External Databases

PharmGKB

Figure 2 Overview of our approach.
A\
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Figure 3 Entity levels and databases from which the entities imported.

Interaction extraction

To extract interactions from the identified multi-level
entities, we use two kinds of dictionaries such as
PharmGKB and CTD. From these, we create dictionary
databases. Gene, drug, and disease entities are tagged,
and these serve as the candidate entities for candidate
interactions.

To extract biologically meaningful interactions, we lim-
ited extracted patterns to ‘drug - gene’ and ‘gene - disease’
from the recognized entities. These three patterns (A:
Drugs, B: Genes, C: Diseases) based AC inferences enable
us to find novel relationships between drugs and diseases
which can be also called drug repositioning. We can find
new drug target diseases using this method, which are
inferred by connecting genes.

As shown in Figure 2, we generate entity dictionaries
from PharmGKB and CTD databases. We only use
names of drugs (chemicals), genes and diseases in these
two databases. Based on the names, we tagged biological
entities from PubMed records. After we tagged them, we
extracted candidate interactions when two different types
of entities co-occur within a sentence.

Based on the dictionary database, we obtain different
results. PharmGKB and CTD databases have different
synonym terms, so their tagging results are different
from each other.

Context vector based similarity scores
To discover the meaningful relationships between AB and
BC interactions, we utilize context vectors. Context vec-
tors are defined as the term frequency vectors of each
interaction. After extracting interactions, multi-level bio-
medical entities that were previously extracted and tagged
are members of context vectors. In a given PubMed col-
lection, the same interaction can occur in many records,
and context terms may be aggregated for one interaction.
The average occurrence frequency for each context terms
is defined to be a context term pattern for the interaction.
Figure 4 shows an example of a context vector. Context
vectors contain all biomedical entities tagged from a set
of PubMed records of a particular disease. We generate
context vectors with the frequency of each term for each
interaction. In Figure 4, for example, the “Abstractl” has

A:B interaction and “a, b, a” terms occur together. There-
fore, the number of counts of “a” term is 2 and the num-
ber of counts of “b” term is 1. The “Abstract2” case is the
almost same as the “Abstractl” case. Interaction B:C
occurs in the “Abstract2” and terms “a, ¢, ¢” occur
together in the abstract level. Therefore, the number of
counts of “a” term is 1 and the number of counts of “c”
term is 2. Interaction can be occurred in several
abstracts. In this case, we calculate average frequency
scores of context vectors as follows:

>, CVij
B n

CVi

where we define CV; that denotes a Context Vector
for iy, interaction. We set j as jy, abstract and n as the
number of abstracts includes iy, interaction.

After construction of CV vectors of each interaction,
we calculate similarity scores using both cosine similar-
ity and Spearman correlation. Cosine similarity is widely
used in text mining as a measure of similarity between
two vectors.

. . . . Z;Ll CVAi*CVBi
Cosine similarity

\/Zfll (CVai)* * \/ZL (CVg)?
Spearman correlation [14] is also widely used in text
mining as a measure of similarity between two vectors.
6% > i, (CVai—CVgi)
n(n? — 1)
Besides cosine similarity and Spearman correlation
measures, we have tried various different similarity mea-
sures including Pearson correlation, Jaccard index,
RBFKernel, and we found that Cosine and Spearman
made the steady, superior performance over the other
measures. Thus, we only reported the results by cosine
similarity and Spearman correlation measures in this

paper.

(CV4, CVp) =

Spearman Correlation (CVa, CVg) =1—

Multi-level interaction database

To generate the golden standard answer set, we created
multi-level interaction databases. From PharmGKB, and
CTD databases, we extracted interactions to create the
multi-level interaction database. The database is com-
posed of two accession IDs of interaction entities.
Among extracted interactions, we used drug-disease
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Figure 4 Example of context vectors for similarity scores calculation.

interactions, because our inferred results are limited to
only drug-disease interactions. We extracted 1,992 inter-
actions from PharmGKB database, and 336,693 interac-
tions from CTD database.

Evaluation method
The A-C (Drug-Disease) interactions inferred using B
(gene) terms are evaluated by examining how many
inferred interactions are matched in well-known interac-
tion databases such as PharmGKB and CTD. We com-
pare our method to the ABC model that is based on
entity frequency in Alzheimer’s disease related abstracts.
We retrieved a set of PubMed records with an
“Alzheimer’s disease” as a query. We downloaded 77,711
Alzheimer’s disease related papers from the PubMed.
Each record is further parsed into sentences by the Con-
ditional Random Field (CRF) technique [15]. We used
the Java-version of CRF implemented in the Stanford
NLP package [16]. To extract the biological entities
from sentences, we use the LingPipe’s Hidden Markov

Model (HMM)-based technique [17]. For our study, we
utilize the NER model trained on the Genia corpus [18].
The extracted named entities are biomedical concepts in
a sentence such as “5 and 10 IM parthenolide”, “endo-
scopy”, or “myocardial infarction”. To ensure that the
identified named entities correspond to a controlled set
of vocabulary, we map them to concepts from the
UMLS database.

Figure 5 shows how the calculation of similarity scores
is done for the evaluation. As we infer a new interaction
‘A-C’ from ‘A-B’, and ‘B-C’, we calculate the similarity
score of ‘A-C’ depending on ‘A-B’, and ‘B-C’ interac-
tions. First, we build context vectors for each interac-
tion. As they have the same dimension (the number of
attributes), we can calculate similarity measures between
two vectors. We use both cosine similarity and Spear-
man correlation as our similarity measure. If the cosine
similarity value exceeds a certain threshold, we regard
the inference is meaningful. As ‘A-C’ can be inferred
from various ‘B’ terms, we collect several ‘B’ terms with
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Figure 5 Calculation of similarity scores for the evaluation.
A

Similarity
Measure

cosine similarity scores over the threshold. And then, we
calculate the frequency of the inference by multiplying
the frequency of ‘A-B’ interaction with the frequency of
‘B-C’ interaction.

For every meaningful ‘B’ terms, we apply three different
techniques utilizing frequencies for inference to get a
similarity score for ‘A-C’ interaction. The first method is
the sum score. For this score we calculate just summa-
tion all scores of A-B;-C to A-B,-C Pairs. The second is
the max score. For this score we use the maximum score
of A-B;-C to A-B,-C. The third one is the hybrid score.
For this score we utilize both similarity and frequency of
interaction information. We sum up the frequency of
interactions when similarity scores of them are greater
than a pre-defined threshold.

Results and discussion

In this section, we report the experimental results by
comparing the frequency based ABC model (baseline)
and our context terms based model. We evaluate our
method with two answer sets, PharmGKB and CTD. We

infer interactions related with “Alzheimer’s disease” for
the evaluation.

Results of tagging and extraction

In PubMed, we found 77,711 abstracts related with
“Alzheimer’s disease”. There were 1,640,761 biomedical
entities in them extracted by our text preprocessing
technique. 295,419 of them were tagged by the
PharmGKB entity dictionary, 438,987 of them were
tagged by the CTD entity dictionary, and 260,291 of
them were tagged by the UMLS entity dictionary. We
generated 12,432 interactions using PharmGKB tagged
entities, and 84,286 interactions using CTD tagged enti-
ties. As a result, the size of the context vector for each
interaction was 1,641. We generated 14,481 new dis-
ease-drug interactions using PharmGKB, and 136,570
interactions using CTD.

Evaluation
In the evaluation, we focused on how many interactions
were matched with two answer sets (known interaction
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databases - PharmGKB and CTD) as the performance
evaluation. For the comparison, we used the frequency
based ABC model as the baseline.

Figure 6 and 7 show precision of the ABC model
based on the frequency count and three similarity-based
models (Sum, Max, and Hybrid) on PharmGKB. The
comparison was made for top 100, top 500, and top
1000 pairs. Figure 6 shows the result using the cosine
similarity measure. Figure 7 shows the result using the
Spearman correlation similarity measure. The
PharmGKB case (Figure 6 and 7) shows that all four
approaches based on both cosine similarity and Spear-
man correlation do not achieve the outstanding perfor-
mance (between 0%~1%). The weak performance is
attributed to the fact that PharmGKB has only 1,992
drug-disease interactions. Furthermore our dataset was
not all PubMed abstracts but only Alzheimer’s disease
related context. In the CTD case (Figure 8 and 9), the
results show the better precision performance (~19%),
and the reason for the superior performance is because
as an answer set CTD had many interactions (336,693
interactions).

Our context similarity based method (Hybrid) is
superior to the frequency based ABC model in all cases
(Top 100, 500, and 1000) on PharmGKB. In this case,
the Hybrid approach sets the threshold for cosine simi-
larity to 0.945 and for Spearman coefficient to
0.999999999.

Figures 8 and 9 show the performance results accord-
ing to the precision by the ABC model based on the fre-
quency count and similarity based models (Sum, Max,
and Hybrid) on CTD. The comparison was made for
top 100, top 500, and top 1000 pairs. Figure 8 shows the
results using cosine similarity measure. Figure 9 shows
the results using Spearman correlation. For the CTD
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case, only the hybrid approach is superior to the base-
line in all cases (Top 100, 500, and 1000) using the
threshold 0.95 for cosine similarity and 0.999999998 for
Spearman correlation. This result indicates that the fre-
quency of interaction is an important factor to find
meaningful relationships because only the hybrid
method incorporates both frequency and similarity
information. These results also show that the context
term based similarity is a good feature to find meaning-
ful relationships. When we filtered the inferred interac-
tions using the context term based similarity, we
observed that it helped improve performance, which is
better than the frequency used only.

Literature analysis of top 10 interactions

In this section, we analyzed top 10 ranked results to
examine whether high ranked interactions are truly
meaningful or not. The answer set of CTD contains not
only known interactions reported in the literature but
also interactions based on the related genes that are
undiscovered and not reported in the literature. To
examine whether high ranked interactions are truly
meaningful or not, we searched literatures for the known
evidences. For the comparison, we analyzed the top 10
ranked results of the cosine similarity based hybrid
method and the frequency based ABC method.

Table 1 shows that top 10 ranked interactions from the
cosine based hybrid approach using CTD entities infor-
mation. According to the literature analysis, we found
that 7 interactions are meaningful among the top 10
interactions using context based approach. D058225:
D016229 is the top ranked interaction which is not in the
CTD databases. We found that Amyloid beta-peptides
are the principal component of amyloid plaques from the
literature [19]. We also found that the other top 4 ranked

Top 100 Top 500

Precision for
frequency VS similarity (Cosine) : PharmGKB
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hybrid score on PharmGKB using cosine based similarity.
A

Figure 6 Precision rate for the baseline ABC model based on frequency count, similarity score summation, max similarity score, and
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Figure 7 Precision rate for the baseline ABC model based on frequency count, similarity score summation, max similarity score, and
hybrid score on PharmGKB using Spearman correlation based similarity.

interactions are not in the CTD databases but in the lit-
eratures. Up-regulating Nerve Growth Factor (NGF) pro-
duced therapeutic effect on AD in rats [20].

In the case of D005182:D000544, we found that flavin-
adenine dinucleotide dependent oxidoreductases are
shared similarities with seladin-1 gene and down-regu-
lated seladin-1 in brain regions selectively degenerated
in AD from the literature [21]. Interleukin-6 has rela-
tions on AD also reported in the literature [22].

Tumor necrosis factor (TNF) alpha has also relations
on Alzheimer disease [23]. Amyloid beta-peptides are
known as a main component of senile plaques (SPs),
and senile plaques is highly related to Alzheimer’s dis-
ease [24]. Finally, Alzheimer disease has a similar risk
factor with type 2 diabetes and has relations with insulin
reported in this literature [25].

Table 2 shows that top 10 ranked interactions from the
frequency based ABC model using CTD entities informa-
tion. These results are almost identical with the results
reported in Table 1. These results in Table 2 show that
the top 8 of 10 interactions are same between the cosine
similarity-based hybrid approach and the frequency
based ABC model. We found that the top 5 ranked inter-
actions were confirmed in literatures. We also found that
the 8th ranked interaction also had the evidence on the
literature. The 9th ranked and 10th ranked ones were dif-
ferent between the hybrid and the frequency based
approach. As shown in the 10th ranked interaction, only
our hybrid approach was able to infer the relationship
unlike the basic ABC model failing to infer it in the top
10 ranked interactions. Our hypothesis was that the simi-
larity of context terms between A-B and B-C model
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Figure 9 Precision rate for the baseline ABC model based on frequency count, similarity score summation, max similarity score, and

enables to infer more meaningful interactions A-C. Lit-
erature analysis confirms that in the candidate interac-
tions inferred by the ABC model, the similarity based
hybrid approach penalizes less meaningful interactions
by ranking them.

Conclusions

In this paper, we proposed a novel approach to infer
undiscovered interactions from the literature. We defined
interaction specific context vectors which model a speci-
fic condition of interactions. We inferred interactions
from the known A-B interactions in the literature by uti-
lizing the context vector similarity. We presented three
different context vector similarity based scoring functions
(sum, max, hybrid). We evaluated our method using
PharmGKB and CTD. The results show that the hybrid
approach constantly performs better than the frequency

based ABC model in all cases. The literature based analy-
sis of top 10 ranked interactions confirms that our hybrid
based approach could find more meaningful interactions
than the frequency based ABC model.

In the future study, we plan to improve the precision of
this method. We believe that the size of the context vector
is very large and sparse because we used all bio-medical
entities which were tagged by UMLS. If we could extract
meaningful features from members of the context vector,
we will be able to improve the result. We also plan to find
hidden interactions that are associated with specific condi-
tions using context vectors. If we could extract context
vectors from the known interaction in the specific disease
dataset, we will be able to infer the interaction using con-
text vectors of the condition specific interaction. These
will enable us to find the novel interaction between drugs
and diseases, called drug repositioning.

Table 1 Top 10 ranked interactions from the hybrid approach (cosine)

CTD-complex0.95 Disease Chemical PMID
D058225:0016229 Plaque, Amyloid beta-peptides 21575663
amyloid
D000544:0020932 Alzheimer disease Nerve growth factor 20965859
D005182:D000544 Alzheimer disease Flavin-adenine dinucleotide 12127087
D015850:D000544 Alzheimer disease Interleukin-6 20667498
D000544:D014409 Alzheimer disease Tumor necrosis factor-alpha 21327054
D000544:D015415 Alzheimer disease Biological markers
D005182:0002311 Cardiomyopathy, Flavin-adenine dinucleotide
dilated
D000544:D016229 Alzheimer disease Amyloid beta-peptides 21726674
D002311:D016229 Cardiomyopathy, Amyloid beta-peptides
dilated
D000544:D007328 Alzheimer Insulin 21525299

disease
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Table 2 Top 10 ranked interactions from frequency based basic ABC model

CTD-Basic ABC Disease Chemical PMID
D058225:0016229 Plaque, amyloid Amyloid beta-peptides 21575663
D000544:0020932 Alzheimer disease Nerve growth factor 20965859
D005182:D000544 Alzheimer disease Flavin-adenine dinucleotide 12127087
D015850:0000544 Alzheimer disease Interleukin-6 20667498
D000544:D014409 Alzheimer disease Tumor necrosis factor-alpha 21327054
D000544:D015415 Alzheimer disease Biological markers
D005182:D002311 Cardiomyopathy, dilated Flavin-adenine dinucleotide
D000544:0016229 Alzheimer disease Amyloid beta-peptides 21726674
607842:0016229 Aural atresia, congenital Amyloid beta-peptides
D000544:D0014212 Alzheimer disease Tretinoin
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