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Abstract

are both incomplete and error-prone.

Background: Integration of information on individuals (record linkage) is a key problem in healthcare delivery,
epidemiology, and “business intelligence” applications. It is now common to be required to link very large numbers
of records, often containing various combinations of theoretically unique identifiers, such as NHS numbers, which

Methods: We describe a two-step record linkage algorithm in which identifiers with high cardinality are identified
or generated, and used to perform an initial exact match based linkage. Subsequently, the resulting clusters are
studied and, if appropriate, partitioned using a graph based algorithm detecting erroneous identifiers.

Results: The system was used to cluster over 250 million health records from five data sources within a large UK
hospital group. Linkage, which was completed in about 30 minutes, yielded 3.6 million clusters of which about
99.8% contain, with high likelihood, records from one patient. Although computationally efficient, the algorithm'’s
requirement for exact matching of at least one identifier of each record to another for cluster formation may be a
limitation in some databases containing records of low identifier quality.

Conclusions: The technique described offers a simple, fast and highly efficient two-step method for large scale
initial linkage for records commonly found in the UK's National Health Service.

Background

Integration of information on individuals (record link-
age) is a key problem in healthcare delivery, epidemiol-
ogy, and “business intelligence” applications [1-3]. Large
data sources are increasingly available in many areas,
but unfortunately accurate and ubiquitously applied
unique identifiers are rarely available. Frequently, identi-
fiers which are supposed to be unique to an individual
(e.g. UK National Health Service numbers, or the patient
numbers generated by hospitals) are missing from some
or all data items; additionally, some are incorrectly
entered due to clerical or typographic errors.

Identifier inaccuracies can result in both organisation
costs and risks to individuals.

Because of the problem of identifier error, in many
processes (such as the identification of samples sent to
hospital laboratories) the record to be linked is usually
identified by multiple pieces of information, such as a
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name and date of birth as well as the supposedly unique
identifying number.

Approaches mapping records with multiple identifiers
to individuals have been extensively studied [4]. In a
classical, probabilistic approach, after similarities
between identifiers (such as surnames, forenames, and
so on) have been computed using functions such as the
Levenhstein distance [5] and Jaro-Winkler functions [4],
Bayesian classification is used to discern likely matches
[6]. In general, probabilistic approaches can require up
to (n(n-1)/2) comparisons to merge two files each con-
taining # records, and so prove unfeasibly expensive
computationally for the very large, dynamic datasets
available in many situations. This complexity requires
use of heuristics to divide the database into smaller sec-
tions (termed “blocks”, or “canopies”) within which
comparisons can be made. Since linkage only occurs
within each small section, the algorithm dividing the
database can prevent linkage if it does not assign all an
individual’s records to the same block [4,7]. Neverthe-
less, it has been shown that carefully optimised heuris-
tics combining exact and probabilistic matching can be
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used to generate large databases of healthcare records
with good performance [8], especially when good quality
unique identifiers (e.g. NHS number) can be used in
initial linkage steps.

There is growing interest in the use of graphs, data
structures in which items of data are represented as
nodes and their similarities as edges, to store complex
relationships in general [9]. An important example is
the work of Sauleau and colleagues [10], who considered
the problem of 300,000 clustering health records from a
French hospital. They used an approach derived from
probabilistic clustering literature on canopies (overlap-
ping blocks) of records, generating pairwise distances
between each record. In contrast to classical probabilis-
tic linkage, they then considered records as nodes, and
their pairwise distances as weighted edges in an undir-
ected graph from which records of similar patients can
be recovered using a hard clustering method (i.e. cluster
membership is binary, not probabilistic). In their
approach, assignation of edge weight is a critical step.
Another sophisticated example is the work of Kalashni-
kov and colleagues [11]. They investigated clustering
based on paths of connectivity between identifiers which
are not themselves unique, but the strength of whose
connections can be determined by path analysis, and
where the optimal cluster edges can be determined by
minimizing edge weights.

In many important ‘real-world’ situations, including
healthcare, identifier(s) are available for each record
which would be expected to be unique to an individual.
These would include ‘purpose built’” identifiers, such as
hospital numbers, but also identifiers comprising high-
cardinality combinations of personal data (surname,
forename, home telephone number), or (surname, fore-
name, date of birth). Additionally, in ‘real world’ situa-
tions, these identifiers contain errors at some low
frequency. In commonly used systems for allocating
identifying numbers, particularly sequential allocation,
typographical errors in one identifier number may not
only result in records containing a novel identifier, but
also may generate another person’s identifier with high
probability. As numbers of records increase, these errors
become increasingly important, producing theoretically
unique identifiers in records genuinely belonging to two
or more different individuals. The existence of this type
of error detracts from otherwise appealing and efficient
exact-match record linkage methods combining records
sharing unique identifiers, as the identifier errors cause
co-clustering of records from different individuals,
referred to here as record collision, compromising over-
all linkage quality.

Here we describe a simple and highly efficient solution
to the identifier-collision problem, in which collisions
are detected by noting discrepancies in unique
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identifiers within collision-affected records. Our research
was driven by the need to link accurately more than 250
million health care records from large UK hospitals for
clinical and epidemiological purposes.

Methods

Task definition

From large sets of health records (such as patient admis-
sions and laboratory samples), each of which is identi-
fied by one or more pieces of personal data, the
objective is to assign records to the individuals from
whom they originated in an efficient, sensitive and spe-
cific manner. In this setting, we considered that a ‘mas-
terlist’ or ‘gold standard’ data set of all patients is not
available, requiring that the individuals be discerned
from the identifiers present in the record set. Computa-
tional efficiency is important, since rapid performance is
desirable for clinical decision making. So too is sensitiv-
ity and specificity, where sensitive linkage refers to
assigning the records to the correct individual; specifi-
city refers to assigning all records from a single indivi-
dual to a single individual.

Overview of algorithm
We present an algorithm which has the following com-
ponents, which are described in subsequent sections:

« Identifier cleaning (Section 1)

+ Construction of high-cardinality identifiers from
combinations of identifiers, such as forename, sur-
name and date of birth (Section 2)

+ Exact match using the constructed high-cardinality
identifiers (Section 3)

+ Detection of clusters containing more than one
individuals ‘identity collision’ using logistic classifica-
tion, applied to all clusters containing any variation
in identifiers; (Section 4)

+ Breaking apart of clusters with identity collision
(Section 5)

Data set available
We had available medical records from each of five data
sources: the patient administration system (PAS), details
of any previous names patients may have had (PAShis-
tory), an emergency admission tracking system (Jonah),
a microbiology information system (Micro) and a hae-
matology, biochemistry and immunology laboratory
information management systems (LIMS) of a large UK
hospital, covering about 1% of the population of the
United Kingdom.

The laboratory systems (LIMS and Micro) provide ser-
vices to the hospital, but also to a large number of gen-
eral practitioners supplying outpatient samples, samples
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which make up about half the workload. The outpatient
workload is not necessarily represented in the PAS sys-
tem; therefore, a ‘masterlist’ of patients does not exist
prior to linkage.

Personal information available included forename, sur-
name, gender, date of birth, NHS number, and an iden-
tification number generated by the hospital, although, as
discussed below, not all records contained complete
information. Data sources used started on 1/1/1994
(LIMS), 1/1/1997 (Micro), 1/4/1997 (PAS & PasHistory),
1/1/2005 (Jonah) and ended on 30 March 2010. An
example of the data available is shown in Table 1. In
total, these data sources contain over 250 million
records.

Data platform used and Statistical software

We stored the data on a single Windows Server 2003
running SQL Server 2005 databases, with Dell hardware,
two 2.5 GHz Xeon processors (8 cores total), 1.2TB
RAID 5 hard disc space, and 16GB of RAM. Linkage
algorithms were implemented as SQL server stored
procedures. Jaro-Winkler and Levensthein distance
calculations were implemented using the Simmetrics
package [12], compiled into the SQL server using CLR
integration.

Clustering operations
Here, we describe the stages of the clustering operation
used.

1 Data cleaning

We set to null identifiers which did not pass a series of
quality control checks, which were implemented with
custom C# functions. We also removed (eliminated
from the string identifier) certain patterns, such as the
forename “BABY”. The checks were based on domain
knowledge within the group, and are summarised in
Table 2. Regarding hospital numbers, if different hospi-
tals could issue the same hospital number to different

Table 1 Identifiers and Record linkage operation
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individuals, the hospital number is prefixed by a code
which makes it unique to that hospital, e.g. number
123456 from hospital A is adjusted to ‘A:123456’ or
similar.

2 Construction of high cardinality identifiers by
concatenation

We considered whether concatenation of existing identi-
fiers, particularly surname, forename and date of birth,
might offer an identifier of high cardinality with poten-
tial to act as a unique identifier, using records in the
PAS data source having NHS numbers. This subset
represents recent PAS entries and is more heavily
curated than other data sources, due to cross-checking
against central NHS identity databases via the NHS’s
Spine infrastructure. It represents the subset of patients
with contact with the hospital, which we do not believe
to differ systematically in terms of names and dates of
birth from those without. We counted distinct NHS
numbers (chosen because it is supposed to be unique to
an individual) mapping to particular combinations of
name and date of birth.

3 Initial Record linkage using identifiers
a) We used an initial linkage algorithm which joins all
records having any of three high-cardinality identifiers
in common, using an iterative procedure one set of
which is described in Table 1. The operation ceases
when no set of records contains a shared identifier. The
sets of records thus formed are termed clusters.
Considering complexity, the implementation is possible
using SQL; for one identifier (such as NHS number), in a
table with n rows, identifying the records sharing a com-
mon identifier can be implemented as a hash join of the
table to itself on the identifier, and has complexity O(n),
where n is the number of rows to be analysed; the opera-
tion has to be repeated across all m identifiers (3, in this
case), so complexity for one operation (b) is O(mn)
[13,14]. Because of the nature of set union operations, the

Start cluster  New cluster NHS hospital Surname Forename sex date of birth frequency of
id id number number (ddmmyyyy) occurrence

1 1 NULL 4496644  WILSON DAVID M 14061940 3

2 2 5170231111 NULL ~ WILSON DAVID M 01051939 1

3 3 3319004037 4118890  WILSON DAVID M 20011969 2

4 4 NULL NULL ~ WILSON DAVID M 20011969 1

5 3 3319004037 NULL ~ WILSON DAVID M 20011969 2

6 6 NULL 4118890  WILSON DAVD M 20011969 1

An example of identifiers provided for patients with forename and surname ‘David Wilson'. The details have been changed to protect patient confidentiality. Null

fields indicate there was no information provided in that field.

One cycle of the record linkage is illustrated. Consider each combination of identifiers to belong to its own, discrete cluster, identified by a cluster identifier (Start
cluster id). For all sets in which at least one member shares an NHS number identifier with a different set, combine these sets into a single set (New Cluster ID).

The operation proceeds for all identifiers.
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Table 2 Identifier cleaning
All fields Fields converted to uppercase blanks (e.g. whitespace) deleted All fields
Forename & remove of forenames containing baby/infant/twins, or synonyms. Forename &
Surname Remove all symbols, e.g. . Surname
deletion of records matching internal hospital test individuals.
removal of non-alphabetic values
remove values containing only one letter
reverse forename and surname if stated forename does not exist in any patient administration records as a
forename
Sex Remove unless M, F, U characters, representing male, female or unknown, respectively Sex
Hospital Remove checkdigits Hospital
numbers Remove out-of-range numeric values numbers

Deleted, along with all other identifiers, if the patient is from a Genito Urinary medicine clinic, or from the

Occupational Health Department.

NHS numbers Delete out-of-range values

NHS numbers

Delete values not conforming to checkdigit requirement as described:
http://www.datadictionary.nhs.uk/data_dictionary/attributes/n/nhs_number_de.asp

Birthdate &
Deathdate

Conversion to SQL date format
remove dates before 1860-01-01
remove dates in the future

Birthdate &
Deathdate

The steps taken in cleaning data items are described.

order of these operations do not matter, and the solution
found is deterministic. The number of iterations required
to complete linkage depends on the combinations of iden-
tifiers present within the clusters. If the number of shared
identifiers remaining after the first set union is very small
relative to the total number of records, then overall com-
plexity is approximated by O(mn) as the number of itera-
tions is 1 for almost all records.

4 Identity collision and its detection
It is possible for records from more than one individual
to be combined into the same cluster; this results in
intra-cluster variation, and is discussed in Results. First,
we studied the variation occurring within the clusters
produced by initial linkage. We did this by identifying a
random sample of 25,000 “complex” clusters was
obtained, defining “complex” to mean any difference in
any of the identifiers in section 2 within the records
comprising the cluster, i.e. having intra-cluster variation.
Some of the intra-cluster variation arises from varia-
tions which occur in identifiers, e.g. on marriage. Other
variation arises from combination of individuals. We
devised a sensitive test for clusters belonging to one per-
son, based on domain knowledge: we provisionally
defined regarded the 25,000 clusters as ‘good’ if they had

» one NHS number and one hospital number, or

« one NHS number, one name and date of birth

« one hospital number and one name and date of
birth

We then simulated clusters resulting from inappropri-
ate combination (termed ‘bad’ clusters) of two ‘good’
clusters (defined operationally as above) by randomly

combining pairs of ‘good’ clusters. The artificially
formed bad clusters generated in this way resemble one
frequently observed pattern of mislinkage, as is
described in Results.

Thus, three groups of records were derived: ‘good’,
meeting the above criteria, ‘uncertain’, which were pre-
sent in the original dataset but did not meet the above
criteria, and ‘bad’ which are derived from good clusters
by simulation.

We considered ‘good” and ‘bad’ clusters further. We
computed the maximum distance between the all com-
binations of the fields in the cluster and fitted logistic
regression models for clusters including females (exclud-
ing distances based on surname, because of the frequent
changes in surname occurring on marriage), or for clus-
ters without any females, modelling the odds of bad sta-
tus relative to good. This process used R scripts calling
SQL server stored procedures to extract and simulate
clusters, followed by backwards conditional logistic
regression modelling with the stepAIC function from
the R MASS package [15]. The distribution of scores
was plotted using the R lattice [16] densityplot function
for ‘good’ and ‘bad’ clusters, as well as for clusters con-
sidered uncertain by rule-based classification. Cutoffs
were chosen by visual inspection of density plots and
performance of the fitted model assessed on an indepen-
dent simulation, extracted as above.

5 Identity collision resolution

We hypothesised that the major cause of ‘bad’ clusters -
the co-clustering of records derived from two different
individuals - was the presence of a mistake, perhaps due
to typographical error - in a single identifier. If this is
true, then
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1. identifiers whose removal leads to the division of a
cluster into two, where the two divided clusters have
improved ‘quality’ relative to the initial cluster are
potentially bad. An example is illustrated in Figure 1.

2. When one views the identifier combinations as a
graph, with edges comprising shared identifiers (Figure 1),
the erroneous identifiers form the origins of edges.

3. It follows that potentially erroneous identifiers are
only a small subset of all the identifiers in the records of
interest, in that they both form the origins of edges (as
in 2, above); further, that they lie within the set of iden-
tifiers having the properties in (1, above).

6 Trial of a splitting heuristic by simulation

An unresolved issue is how ‘increased quality’, referred
to above, is to be measured. Various measures are possi-
ble. Given that the cluster is highly likely to be bad
before identity collision resolution, we experimented
with a simple heuristic measure of quality. We consid-
ered our three identifiers used for clustering, and their
within-cluster cardinality (that is, the number of variants
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within them). We hypothesised that maximizing the
increase in invariant identifiers (i.e. those with cardinal-
ity 1) on identifier deletion might allow splitting of clus-
ters into their two constituent parts. This was tested by
simulation on one of the identifiers, hospital number.

a) Pairs of randomly selected ‘good’ clusters were
combined, replacing one randomly selected hospital
number from one cluster with the maximal hospital
number from the other, thus simulating a cluster
collision caused by entry of a ‘bad’ hospital number.

We then tested a cluster splitting algorithm, as fol-
lows:

b) variants of the cluster were generated, and in each
variant one identifier was deleted; the variant was
then re-clustered (described above in Initial record
linkage) performed.

c¢) We identified variants generated in b) in
which maximised the increase in identifiers with

Graph structure including links to an
incorrect hospital number

Graph structure without the links from the
incorrect hospital number

5170231111

5170231111

1 4118890

|

Wilson, Dav 01011939 Smith, Joh 03071988

Wilson, Dav 01011939 Smith, Joh 03071988 H

4496644

Wilson, Dav 14061940

— 4118890

Wilson, Dav 23011969 Wilson, Dav 23011969

3119004037 3119004037

4118890

Wilson, Dav 23011969 Wilson, Dav 23011969

4496644

Wilson, Dav 14061940

4118890

Wilson, Dav 23011969 Wilson, Dav 23011969

3119004037 3119004037

4118890

Wilson, Dav 23011969 Wilson, Dav 23011969

Figure 1 Collision of two clusters. The collision described in Table 6 is illustrated graphically. A single identifier joins two clusters containing
records from two patients. When edges are not formed from this (right panel) the clusters are no longer joined.
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cardinality = 1. If more than one variant had this
property, we identified one at random.

d) We scored the cluster splitting as successful if the
identifier picked for deletion on the basis that it was
bad in step (c) was the same ‘bad’ identifier selected
in step (a).

7 Fuzzy Search

We used two fuzzy search algorithms, together with
manual curation, to estimate the proportion of clusters
which are highly similar. Firstly, to find records similar
to a query record, we determined all trigrams (sub-
strings containing three consecutive characters) of sur-
name, forename, date of birth, hospital and NHS
numbers within the query [17], and identified the top 10
matches by ranking matches according to the numbers
of shared trigrams between the query record and all
other records in the database. Secondly, we identified
the subset of records having identical first surname and
forename to the query record. After both approaches,
the candidates generated were scored as ‘likely to be
from the same patient’ or ‘not likely to be from the
same patient’ subjectively by two different observers.

Results

Identifiers with high cardinality

We wished to link a large number of health records both
efficiently and specifically; examples of the identifiers
available are shown in Table 1. The data set included
hospital and NHS numbers, which are intended to
uniquely identify patients; however, other fields do not.
We found than an identifier could be constructed from
combinations of name, surname and date of birth with
cardinality comparable with NHS number. Name and
surname alone has somewhat less cardinality (Table 3).

Table 3 High cardinality of combinations of name and
date of birth

Identifier Cardinality Average NHS
numbers
per identifier
National Health Service Number 1066339 1
Date of birth 35694 29.87
Surname, complete forename 829650 1.285
Surname, first letter of forename, date 1065027 1.001316
of birth
Surname, first three letters of 1066184 1.000234
forename, date of birth
Surname, complete forename, date of 1066519 1.000090

birth

For a set of complete identifiers from one data source (PAS), we show the
cardinality (number of discrete values) for each of a series of possible
identifiers, and average number of NHS numbers per identifier. This
cardinality of NHS number and combinations of name and date of birth are
similar.
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Incomplete identifiers

We therefore investigated NHS number, hospital num-
ber, and the combination of the first three characters of
the forename, whole surname and date of birth further
as a potentially unique identifier (Table 3). Following
data cleaning (see Methods), at least one valid identifier
was available for almost all samples from data sources
other than the LIMS system, where historical data was
of had low identifier frequency due to laboratory proto-
cols then in place, and microbiology, where 12.8% have
no identifiers. These latter samples represent samples
from Genito-urinary medicine departments, and deliber-
ately lack identifiers, as is required by statute in the Uni-
ted Kingdom (Table 4). Records without any valid
identifiers were not considered further.

Initial Record linkage using identifiers

We considered combinations of identifiers (e.g. each
row in Table 1) as the unit to be linked. We used an
algorithm which joins all records having any common
identifier, implemented using set-based operations (see
Methods), although we note that the operation can also
be viewed as a graph clustering operation. In particular,
one can view identifier combinations as vertices V in an
undirected incomplete graph G, with an edge between
vertices present if they share an identifier, and cliques as
clusters containing results from an individual (Figure 2).
After initial linkage, we found 3,557,951 clusters. Of
these, 284,636 (8.2%) had more than one identifier in
any of NHS number, hospital number, and the combina-
tion of the first three digits of the forename, surname
and date of birth.

Identity collision and its detection

Despite the efficiency of the initial clustering operation,
it has a major problem. If an identifier is mistyped, and
happens to be an identifier used by another individual,
then these two individual will be assigned to the same
cluster. This process ("collision”) can generate differ-
ences in multiple identifiers (e.g. in surname, forename,
date of birth) between elements in the set generated by
identity collisions. We used these to these distances to
build logistic regression models predicting that the clus-
ters created by initial exact match clustering contained
multiple individuals.

Table 3 shows model parameters from the derived
classifier (similar estimates were obtained from a large
number of other random samples). Table 5 shows the
performance of the classification model when empiri-
cally regarding model scores of >-1.5 as bad (Figure 3),
in an independent sample of 25,000 additional clusters
(Table 6). In this validation set, over 97% of the simu-
lated ‘bad’ clusters were detected by the classifier. About
5% of the ‘good’ clusters were classified bad, but this
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Table 4 Combinations of identifiers available on different record sources
Hospital NHS Name/date of jonah lims micro pas pashistory Total
Number Number birth
+ + + 456553 246326 (3.6%) 1494645 1205042 94935 1494645
(72.2%) (28.5%) (53.3%) (83.4%) (16.2%)
+ - 223 (0%) 1510 (0%) 5520 (0.1%) 19086 (0.8%) 161 (0.1%) 19086 (0.2%)
+ + 174874 2160475 978448 860916 18372 2160475
(27.7%) (31.7%) (18.6%) (38.1%) (16.1%) (23.4%)
+ - - 550 (0.1%) 30816 (0.5%) 36636 (0.7%) 177518 (7.8%) 366 (0.3%) 177518 (1.9%)
- + + 7 (0%) 103420 (1.5%) 813906 0 (0%) 0 (0%) 813906 (8.8%)
(15.5%)
+ - 0 (0%) 591 (0%) 2244 (0%) 0 (0%) 0 (0%) 2244 (0%)
- - + 95 (0%) 3883941 (57%) 1245979 1 (0%) 1 (0%) 3883941
(23.7%) (42.1%)
3 (0%) 382490 (5.6%) 671076 0 (0%) 0 (0%) 671076 (7.3%)
(12.8%)

Up to three identifiers, hospital number, NHS number and name & date of birth are available for each record, but they are not all present in each data set.
Shown are the combinations of identifiers (- = absent,+ = present) for each dataset contributing to the database.

probably overestimates the false positive rate of the clas-
sifier, since specific identification of ‘good’ clusters by
rules proved difficult; visual inspection of the misclassi-
fied ‘good’ clusters indicates that >80% probably do not
represent one single individual, i.e. they are not really
‘good’. Thus, we estimate the classification system
detects over 97% of bad clusters, with an approximate
1% false positive rate.

Resolution of bad clusters

The logistic classifier suggested 44,330 (1.2%) were
derived from more than one individual ("bad”). As
described in Methods, we developed and tested by simu-
lation a cluster partitioning algorithm which aimed to
detect single, defective identifiers combining two clus-
ters. In a simulation, which used real clusters combined
randomly using a single identifier (see Methods), of
19,863 combined clusters, 19,258 cases were correctly
partitioned. Thus, ~96.9% of bad clusters of this type
can be successfully resolved by the algorithm described.

S170231M11

4118320

Wiison, Dav 01011939 Wiison, Dav 23011989 Wiison, Dav 23011969

3113004037 3119004037

P 4113520

pre———pr—yr Wikson, Dav 23011969 Wison, Day 23011268

Figure 2 Representation of data as a graph. Above is shown the
result of one real cluster generated by the algorithm; to protect
patient confidentiality, patient details have been replaced by
example details. Here, there are three discrete patients, all called
David Wilson, but differing in dates of birth, NHS and hospital
numbers. Edges join nodes having shared identifiers.

We incorporated the cluster resolution algorithm into
the overall pipeline (see Methods). After the cluster
resolution operation, only 5,570 (0.15%) were classified
bad on re-scoring by the same algorithm.

Assessment of process overall

We wished to investigate the overall performance of the
linkage algorithm. We considered three aspects: specifi-
city, sensitivity, and speed.

Linkage specificity

Non-specific linkage refers to placing multiple individuals
in the same cluster ('identity collision’). The logistic clas-
sifier suggested that at the end of the linkage process
there may be 5,570 such clusters among the 3.6 M clus-
ters, or 0.15%. A process of manual inspection was used
to inspect a random sample of these clusters. Of 100
such clusters examined by one author (DW), 6 (6%) were
thought to represent two individuals, while the rest were
thought to represent one individual, with a variety of var-
iants of identifiers, name variants etc which led to false
positive classification. Examples causing false classifica-
tion of a clusters as containing >1 individual included
incorrect NHS numbers (which are heavily weighted in
the logistic classifier), and variants of forenames and sur-
names (particularly where double-barrelled names are
variably used, or where transliteration from the original
language into latin script is needed. Thus, estimated in
this way, the true number of clusters containing multiple
individuals in the database may be as low as 300-400.
However, the logistic classifier is estimated to be only
about 97% sensitive at detecting bad clusters, about 3% of
true bad clusters will be missed. The classifier was
applied to the 284,636 clusters with some intra-cluster
variation, so another ~8,400 bad clusters might be unde-
tected, leaving ~9,000 remaining clusters (~0.2% of the
3.6 M clusters) with identity collision in the database.
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Table 5 Multivariate Logistic model classifying bad clusters from good

Model: Any Females Model: No females

Parameter Example inputs Distance function Coefficient p Parameter Example inputs
constant 333 <1x107 constant

Date of birth, day 02, 24 Levensthein 0.25 5x 10" Date of birth, day 02, 24

Date of birth, month 01, 11 Levensthein 043 1x 10 Date of birth, month 01, 11

Date of birth, year 1969, 2007 Levensthein 512 <1x10' Date of birth, year 1969, 2007
Forename John, Chris Jaro-Winkler 245 <1x107'® Forename John, Chris
Hospital Number 110111 or 223456 Jaro-Winkler -0.56 <1x10'° Hospital Number 110111 or 223456
Surname Smith, Jones Jaro-Winkler not present - Surname Smith, Jones

Sex M, F Levensthein 080 <1x107'° Sex M, F

A random sample of 25,000 clusters was obtained after initial record linkage. These clusters were divided into those which, on the basis of a series of rules, were
thought to represent one individual (‘good’), or the others ('uncertain’). The uncertain records were not used in model generation. Good clusters were then
combined randomly creating a new set of clusters (‘bad’). Maximal distances were computed by pairwise comparison of good and bad clusters, and a logistic
model was fitted modelling bad cluster status relative to good cluster status for clusters without females, or for clusters including at least one record identified
as being from a female, with backwards selection based on AIC. In the female model, surname was omitted; in the non-female model, there is only one level for
the Sex field, which was therefore omitted. A model fitted is shown; very similar estimates were obtained from a large number of other builds with different

random samples. p refers to the null hypothesis that the coefficient is zero.

We conducted two additional automated tests of link-
age specificity. Firstly we determined the numbers of
clusters with multiple, theoretically unique identifiers.
Secondly, we measured the numbers of patients with
multiple death dates recorded. Death date is recorded in
the PAS system, so having multiple death dates reflects
having two PAS entries. There are two possible explana-
tions for multiple identifiers or death dates:

« the information systems contain details on the
same individual, but with different identifiers, or

« the information systems contain details on differ-
ent individuals, each with their own identifiers; how-
ever, these are incorrectly clustered together.

Although this approach lacks a gold standard - we do
not know how many different variants of (say) name
and date of birth are expected in a given individual - it
does allow quantitation of the impact of the cluster
resolution operation on the 9.2 M records (Table 7). It
can be seen that, in general, the greatest drops in num-
bers of clusters with multiple identifiers occurred for
identifiers which are recognised to change little, such as
forename (in contrast to surname, which changes on
marriage), For NHS number, and less in poor quality
identifiers (such as hospital number, which is often not
unique in our hospital). In particular, there was a large
drop in the number of clusters with multiple deaths
remaining after collision resolution. We inspected these
clusters visually. The 107 clusters with multiple death-
dates could be classified into three groups. 32 (30%)
were found to contain the same person with multiple
PAS entries containing typographical errors. 60 (56%)
errors were due to two different people sharing a com-
mon identifier. It is notable that 80% of these were
records from before 2003, when data quality and

completeness of identifiers were lower. The remaining
15 (14%) errors appeared to arise from laboratory
records being assigned to a wrong PAS entry with simi-
lar names, a manual process which occurred in some
laboratories during specimen entry. Overall, we con-
cluded that the cluster resolution operation produced
large improvements in quality of linkage.

Finally, we considered clusters which have both a
microbiology sample and a PAS record; this is a large
group which includes all inpatients who have ever had a
microbiology sample. We identified all those who
appeared to have had microbiology samples taken >7
days before they were born (according to their PAS
entry), or who had samples taken >7 days after they
were reported to have died. The 7-day cut off is arbi-
trary, and is used to select events which are unlikely to
be physiological. Of 281 cases, we found 139 (49%)
where there were with no differences in identifiers
within the cluster, and 142 (51%) with differences in
identifiers within the cluster. Careful inspection suggests
that 14/142 are caused by combining two individuals
inappropriately, with the other cases being due to typo-
graphical errors in dates of collection or dates of death.

Overall, we concluded that linkage specificity is high,
with ~99.8% of clusters containing, with high likelyhood,
only the records of one individual; the numbers of clus-
ters containing mislinked individuals lying between
~300 and ~9,000 out of 3.6 M. Additionally, for studies
where date of death is an important outcome, it appears
that mislinkage is only a minor contributor to errors in
reported death date, being responsible for about 10% of
a series of errors identified.

Linkage sensitivity

We also examined linkage sensitivity. By sensitivity, we
mean that all the records of one individual are partitioned
into a single cluster. To determine whether it was likely
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Figure 3 Classification of data into good and bad clusters. A
random sample of 25,000 complex clusters was obtained after initial
record linkage. Complex clusters are those with more than one
variant of at least one identifier. These clusters were divided into
those which, on the basis of a series of rules, were thought to
represent one individual (likely good’, purple line), or the others
(uncertain, blue line). Good clusters were then combined randomly
creating a new set of clusters (bad by simulation, green line).
Maximal distances were computed for pairwise distances within all
members of ‘likely good' and simulated bad clusters. A logistic
model was fitted modelling bad cluster status relative to good
cluster status for (top) clusters without females, or (bottom) clusters
including at least one record identified as being from a female.
Here, logistic scores are plotted for each of the three groups. The
dashed vertical line is at -1.5 in both models, a position chosen
empirically as suitable for discrimination of good from bad clusters.

that the records from a single individual were distributed
across two clusters, we used a combination of a fuzzy
searching method (see Methods), and manual curation.
We investigated clusters containing at least one
Patient Administration system (PAS) record, a clinically
and epidemiologically important group which represents
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Table 6 Classifier performance on an independent
validation set of 25,000 complex clusters

Status Predicted not Predicted Total % predicted

bad bad bad
Unknown 5623 2501 8124 307
Good 15975 901 16876 533
Bad 337 11698 12035 97.2

The logistic classifier derived to identify bad clusters (not bad refers to a
single individual within a cluster, bad refers to more than one individual),
shown in Table 4, was applied to a further random sample of 25,000 clusters
obtained after initial record linkage. These were classified into ‘good’
‘unknown status’ and ‘bad’ using rules, as described in Table 4 Legend and
methods. The classifier performance on this validation set is shown.

an important test of the linkage system, as it includes
inpatient visits and large numbers of laboratory and
other records. A random sample of 250 clusters was
compared with all other clusters containing at least one
PAS record. This indicated that approximately 7% of
clusters containing a PAS record were similar to another
cluster containing a PAS record. Notably, it appeared
that where there were ‘duplicate’ PAS records, one was
created on one single hospital visit and usually lacked
an NHS number, whereas all other hospital records of
the patient were assigned to the other PAS entry which
contained all the other hospital admission information
(not shown). Likewise, approximately 14% of clusters
appeared similar to clusters with no PAS record. In
many of these cases, the similar records were derived
from the LIMS data source, where identifiers were few
(Table 4), and after examining similarities manually, it
was difficult to be sure whether the observed similarities
reflected two patients with similar identifiers, or one
patient with typographical errors in the identifier.

Speed

Finally, we assessed performance. Using a single Win-
dows 2003 server, timings for de novo linkage of a 9.2 M
record set, broken down by step, are shown in Table 8.
As can be seen, the process of linking and cluster qual-
ity control takes about 30 minutes. Custom implemen-
tations in C would likely offer higher performance.
Adding records incrementally is also possible, although
we have not incorporated this into our current produc-
tion system, an addition rate of ~ 100,000 records per
minute can be achieved when adding new data to an
existing database.

Discussion

We describe an exact-match based, highly efficient link-
age scheme suitable for large scale linkage of hospital
records. A key requirement is that identifiers expected
to be exact should exist, or can be constructed; if this
requirement is met, clustering is very efficient and read-
ily implemented. The problem inherent in the approach
is ‘identity collision’ - the inappropriate combination of
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Table 7 Effect of collision resolution
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Before collision resolution After collision resolution

Number of clusters 3557951
Clusters with multiple:

NHS numbers 6202
hospital numbers 97071
birthdates 58293
deathdates 830
genders 81118
forenames 59426
surnames 189657

% drop Before collision resolution

3618233 Number of clusters 3557951
Clusters with multiple:

2122 ~66% NHS numbers 6202

94238 ~3% hospital numbers 97071

35523 ~39% birthdates 58293

107 ~87% deathdates 830

61337 ~24% genders 81118

16873 ~71% forenames 59426

151593 ~25% surnames 189657

After initial linkage, a process of collision resolution is applied (see methods). This causes a decrease in the number of clusters containing multiple identifiers, as

detailed above.

two individuals based on mis-entry of an identifier in
one of them, and its coincidence with an identifier
belonging to another patient - which we have demon-
strated can be addressed by systematic investigation of
identifiers within suspect clusters, followed by cluster
partitioning. This process also finds suspect identifiers
within datasets. The algorithm is rapid, and is capable of
incremental updates. Testing on five data sources
including 9.2 million records indicate that ~99.8% of
clusters formed consist of records from 1 individual.

As far as we know the technique described is novel,
and its computational efficiency makes it attractive for
linking very large numbers of records rapidly, for “busi-
ness intelligence” or epidemiological purposes. In parti-
cular, we have recently gained ethical and information
governance approval for an anonymised extract of this
database to be used for infection research, termed the
Infection in Oxfordshire Research Database. The techni-
que has some fundamental differences with probabilistic
linkage algorithms:

(1) pairwise distances between all elements are not
performed in the initial linkage, and blocking steps
are not used;

(2) decisions about cluster quality is made on analy-
sis of the whole cluster formed deterministically, not
on pairwise comparison of records. Maximal

Table 8 Overall performance

Process Operation Timing
1 Identifier cleaning; forename/surname duplication 3 min
screening
2 Construction of unique identifiers 1 min
3 Initial clustering using identifiers 7 min
4 Identity collision detection 10 min
5 Identity collision resolution 2 min
6 Identity collision reassessment 2 min

After initial linkage, a process of collision resolution is applied (see methods).
This causes a decrease in the number of clusters containing multiple
identifiers, as detailed above.

weighted distances within a cluster are used to clas-
sify clusters into good and bad;

(3) subsequent cluster division relies on edge struc-
ture, which probabilistic linkage does not do.

Whilst we are confident that the vast majority of clus-
ters contain only one patient, a more difficult issue con-
cerns the situation when records from one patient are
assigned to multiple clusters. We note that among the
2.26 M patients registered with the hospital’s adminis-
tration system, close matches were found in about 5% of
clusters. Most of these appear to represent odd orphan
records together with a main record to which almost all
other data is attached, and so their epidemiological
impact may be small for some applications. Put another
way, it may be that about 5% of the patient administra-
tion system’s entries are duplicates, although they differ
in all of name and date of birth, hospital number and
NHS number. In many cases, it is difficult to be sure
whether these entries do reflect the same individual, and
we did not add a fuzzy matching component to our rou-
tine pipeline, although for some applications this will
prove helpful, with or without a manual curation step.

What is an acceptable level of linkage? All linkage
methods have a mislinkage rate, and we would argue
that the issue of ‘acceptable’ levels of mislinkage is
highly application specific. For clinical use it can be
argued that the most dangerous situation is that in
which a result is assigned to the wrong patient. This is
an event which is not commonly considered clinically;
because some tests are highly likely to change manage-
ment, there is a substantial risk of inappropriate change
in therapy. By contrast, the risk associated with the test
going ‘missing’ - not being linked to a patient - is often
less, because it can usually be repeated, although there
are obviously exceptions. For epidemiological purposes,
whether modelling or reporting in a tabular form, the
critical issue is bias associated by mislinkage, which is
application and data specific. Our study of deaths sug-
gests that this linkage method biases analysis of death
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following infection, one of our epidemiological goals,
relatively little.

The approach presented has a number of limitations.
Firstly, it is dependent on having samples with unique
identifiers, and preferably multiple unique identifiers. As
alluded to above, records without at least one shared iden-
tifier will not be linked using the approach shown. This
situation arises relatively commonly with our LIMS data-
set, which contains low numbers of identifiers, particularly
prior to 2003, and will degrade the performance of many
linkage algorithms. An additional fuzzy matching step
would be required to merge these clusters, if one had suffi-
cient confidence in the match, which we do not in our
current application. Alternatively, a composite identifier
with high cardinality suitable for incorporating into the
exact matching system could be potentially be constructed
using transformations designed to eliminate common spel-
ling or other errors, e.g. the double metaphone algorithm
[18]. Lack of a fuzzy matching step in the existing pipeline
contributes to efficiency, but for some data sets and appli-
cations, addition of such a step may be important.

Provided unique identifiers exist, however, if one can
detect records from different individuals containing a
shared, erroneous identifier, then there is the opportu-
nity to partition the clusters formed in order to drive up
clustering quality. The logistic classifier used here is not
necessarily the optimal tool to do this with, and other
supervised classification systems might offer increased
performance.

Indeed, one interesting aspect of the algorithm used here
is the separation of the algorithms used for detection of
bad clusters, which relies on a logistic classifier, from that
used for bad cluster partitioning (which relies on graph-
based edge editing), and which was designed for the situa-
tion in which identifier error is relatively rare. This setting
allows quality scoring of the effect of removal of individual
identifiers from the clusters. A simple heuristic is used to
score the result, and although this has good performance,
it is possible that other quality measures, based around
inter-node distances [10], other forms of edge weighting
[9], cluster entropy [11], or the maximal intra cluster dis-
tance (as in the logistic classifier used here) might offer
increased performance in both partitioning and selecting
records for partitioning. In situations where unique identi-
fiers cannot be found, although initial clustering based on
non-unique identifiers could be performed, large clusters
would then result likely requiring more sophisticated algo-
rithms to partition them efficiently. Future work develop-
ing these, and comparing this algorithms with
probabilistic linkage, are planned.

Conclusion
The technique describes appears to offer a simple, rapid,
highly efficient two-step method for large scale linkage
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for some important record types, including those found
in healthcare. Clustering performance is enhanced by a
system for finding of erroneous identifiers and subse-
quent record partitioning.
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