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Abstract

Background: In recent years, magnetic resonance imaging (MRI) has become important in brain tumor diagnosis.
Using this modality, physicians can locate specific pathologies by analyzing differences in tissue character
presented in different types of MR images.

This paper uses an algorithm integrating fuzzy-c-mean (FCM) and region growing techniques for automated tumor
image segmentation from patients with menigioma. Only non-contrasted T1 and T2 -weighted MR images are
included in the analysis. The study’s aims are to correctly locate tumors in the images, and to detect those situated
in the midline position of the brain.

Methods: The study used non-contrasted T1- and T2-weighted MR images from 29 patients with menigioma. After
FCM clustering, 32 groups of images from each patient group were put through the region-growing procedure for
pixels aggregation. Later, using knowledge-based information, the system selected tumor-containing images from
these groups and merged them into one tumor image. An alternative semi-supervised method was added at this
stage for comparison with the automatic method. Finally, the tumor image was optimized by a morphology
operator. Results from automatic segmentation were compared to the “ground truth” (GT) on a pixel level. Overall
data were then evaluated using a quantified system.

Results: The quantified parameters, including the “percent match” (PM) and “correlation ratio” (CR), suggested a
high match between GT and the present study’s system, as well as a fair level of correspondence. The results were
compatible with those from other related studies. The system successfully detected all of the tumors situated at
the midline of brain.

Six cases failed in the automatic group. One also failed in the semi-supervised alternative. The remaining five cases
presented noticeable edema inside the brain. In the 23 successful cases, the PM and CR values in the two groups
were highly related.

Conclusions: Results indicated that, even when using only two sets of non-contrasted MR images, the system is a

reliable and efficient method of brain-tumor detection. With further development the system demonstrates high
potential for practical clinical use.

Background

In recent years, magnetic resonance imaging (MRI) has
become an important modality for neurological image
diagnosis. A noticeable body of research reported detec-
tion of pathology within the neurological system based
on the differing tissue characters in T1-weighted and
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T2-weighted MR images [1,2]. In this area of study, the
segmentation of brain tumor images represents impor-
tant and challenging work [3]. Automatic algorithms
developed to replace the time-consuming manual seg-
mentation include level-set operation [4], support vector
machine (SVM) [5,6], k-nearest neighbor (KNN) [7],
watershed algorithm [8]. or the use of a brain atlas
[9,10]. Among them, many previous studies applied the
fuzzy clustering class of algorithms. Dou [11] used a fra-
mework based on “fuzzy information fusing” for brain
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tumor segmentation, Liu [12] used fuzzy connectedness
to compute the brain tumor volume. Khotanlou [13]
used “fuzzy-possiblistic c-mean (FPCM)” combined with
the asymmetrical prior knowledge in 3D brain tumor
segmentation; and, in his another work [14], adopted
the deformable model together with fuzzy clustering.

Bezdek first proposed the fuzzy c-means (FCM) algo-
rithm in 1981 [15]. Since then it has become a popular
clustering method which divides data into different
groups according to their degree of attribution. Data
may partially belong to more than one group, repre-
sented by a fuzzy membership value of between 0 and 1.
During image analysis, each pixel is classified according
to their attributes: a membership value of 1 means that
a pixel contains only one specific tissue class; whereas a
membership value of 0 means that a pixel does not con-
tain that tissue class. Since the unsupervised FCM does
not require training data researchers have widely used
this method in the segmentation of MR images [16,17].
Clark [18] used FCM with the knowledge-based (KB)
procedure in brain tumor segmentation. Emblem [19]
used knowledge-based fuzzy c-means (FCM) clustering
on multiple classes of MR image for glioma detection.
Wafa [20] used multi-featured FCM and evidence theory
on multimodal MRI for brain tumor segmentation, and
Fletcher-Heath [21] used two-stage FCM combined with
KB procedure on non-contrasted MR images for tumor
segmentation. These assessments made use of the con-
trasted-enhanced MR image or more than two types of
images as study materials. This, therefore, included a
risk of possible reaction to the contrast medium, and
also increased the overall calculation load.

After applying FCM, a defuzzification stage is usually
performed in order to convert the fuzzy memberships
into a clear-cut set. According to previous research [22],
and prior experience, during this stage, data or images
are usually too noisy and tend to become multiple small
and fragmented pieces, which are usually too small to be
properly grouped. Previous literatures proposed including
the region relationship into the procedure as a possible
solution to this drawback [23-25]. This study, therefore,
attempts to adopt the region growing algorithm into the
procedure, in order to effectively eliminate the fragment
portion within the post-clustering images, and to avoid
further errors in subsequent procedures.

This research uses images of menigioma as study mate-
rials. Unlike other forms of brain tumor, menigioma is
one of the few benign tumors found in this region, so
precise tumor margin detection can be curtail in com-
plete surgical resection. Another characteristic of this
tumor is that there is a greater possibility for it to be situ-
ated at the brain midline [26,27]. This particular feature
poses a challenge to tumor location, because in the post-
clustering KB selection process, many researchers locate
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tumors based on the symmetry of brain anatomy [28,29].
If the tumor is located in the midline, it cannot, there-
fore, be effectively detected at this stage.

This study used only non-contrasted T1 and T2-
weighted images to develop a method based on the
fuzzy-c-mean, together with the region-growing algo-
rithm, to extract the meningioma from the MR image.
The overall aim was to successfully complete tumor
image segmentation, and at the same time, to effectively
detect the midline tumor.

Methods

Data

MR images of 29 patients with meningioma were
retrieved from the medical imaging department via the
picture archiving and communication system (PACS)
(This research had been approved by National Taiwan
University Hospital (NTUH) Research Ethics Committee
(REC), Case No.: 201106064RC).

All MR imaging was performed with 1.5 Telsa units
(Signa HDx; GE Medical Systems, Milwaukee, Wiscon-
sin, US) using an 8-channel phased array head coil. The
MR protocol included:

1. Spin-echo T1-weighted imaging, with the follow-
ing sequences: TR/TE = 500-700/20 ms, slice thick-
ness 5 mm, gap 1.5 mm, number of average 1,
matrix 512 x 512. The contrast-enhanced images
(CET1) were also obtained using the same protocol
after the contrast agent was injected.

2. Fast spin-echo T2-weighted imaging, with the fol-
lowing sequences: TR = 5000-6000/80-100 ms, echo-
train length 18-24, slice thickness 5 mm, gap 1.5
mm, number of average 2, matrix 512 x 512.

All patients were examined by the same machine, with
same sequence parameters. The images were obtained
under well-controlled conditions by an experienced
technician, to ensure geometrically-aligned orientations.
An expert radiologist reviewed the whole series of
images, and confirmed that there was no intensity inho-
mogeneity in the images, and consequently no need for
intensity normalization.

The T1 and T2-weighted non-contrasted axial MR
images were analyzed during the study. At the same
time, the contrast-enhanced T1-weighted axial images
(CET1) were used for manual tumor segmentation and
the resulting “ground truth” (GT) was used to validate
results, as shown in Figure 1.

Pre-processing

Before the clustering process, all images went through a
co-registration procedure for quality control. Co-regis-
tration was performed using the Insight Toolkit (ITK)
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Figure 1 Study material. One of the 29 study groups of the MR images of menigioma is shown here, T1-wighted image (left), T2-weighted
image (middle) and two-dimensional intensity histogram based on these 2 images (right).
A\

[30]. Affine transformation and mutual information were
used formetric and linear interpolation during the regis-
tration process. A board certified neurosurgeon con-
firmed the results of registration before commencement
of the tumor image extraction process. This is summar-
ized in Figure 2.

Fuzzy-c-mean clustering
Image segmentation was processed using a software pack-
age (Matlab 7.6, MathWorks, Natick, MA, USA). Based on
the differences in gray levels of T1- and T2- weighted
images, a two-dimensional intensity histogram, as shown
in Figure 1, was created to represent the distribution of
intensities in T1 and T2 images. For a pair of 8-bit images,
the histogram consisted of a set of 256 x 256 bins, which
counted the number of pixels falling in the given area of
the (T1 intensity, T2 intensity) plane. A previously pub-
lished FCM cluster algorithm was used to partition the
two-dimensional histogram. The basic procedures can be
briefly summarized as follows:

Let x = {Xj, ..., X,,} denote a pair of images with n
pixels, and let Xy = (Xi 11, Xi 12) be ordered pair of T1
and T2 intensities of the k-th pixel of X, 1 < k < n.

2
X, = (Xlel,Xk,Tz) [} ,VXk eX

Step 1. Divide the dataset x = {X, ..., X,;} to ¢ clusters

Set membership value u; randomly, with the con-
straint:
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where m > 1 is the exponential weight that regulates
the influence of membership grades and (¢) is the
iteration number.

Step 3. Calculate objective function

. . m .
= S () - i)

Step 4. Minimize objective function

If |t - Jiter+1) | < ¢ end; or else t = t+1 and return
to step 2.

After FCM clustering, the histogram of the MR brain
image resembled Figure 3. The concept of over-segmen-
tation was adopted for better results, and data was initi-
ally defuzzified into 32 groups. By merging or
eliminating these groups via the following steps, the
number of groups decreased.

Region growing

After FCM clustering, the image was divided into 32
binary images. Some of the images were too fragmented
for proper grouping so the region-growing algorithm
was adopted to solve this problem. This algorithm pos-
tulates that pixels in the same region have similar fea-
tures. By selecting initial seed points and utilizing the
similarity of seed and adjacent pixels, partitions are
merged into larger regions.

The procedure began by determining the seed of each
group image. This was identified using the “largest con-
nected component” method to calculate all connected
regions in each image. The largest one image was then
selected as the initial seed of the image.

After defining the seed regions, the mean grayscale
values of T1 and T2 images of the seed region were cal-
culated. The normal distribution statistical concept was
applied to determine the merging criteria: for each pixel
adjoining the seed region, if the T1 and T2 grayscale
lies within two standard deviations (SD) from the mean
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Original MR images

histogram

Fuzzy-c-mean clustering

Using FCM clustering on the MR
image * and the resulting histogram, 4 of
the 32 cluster were shown here

Region growing

After the seeding area were choosed,
neighboring pixels will be merged

Knowledge-based procedure

merge the tumor groups into one image

Morphological operation

refined the border of the tumor image

Quantified validation of the results

segmented ground truth (GT) image

Figure 2 Flow Chart of the research procedures.

T1 and T2-weighted MR images * and the

Using the feature of the image to screen
and eliminate the non-tumor groups and

Using the Dilation and Erosion operator to

The segmented image made by the system
(SYS) is compared with the manually

+

J

grayscale of the seed region, this pixel is merged into
the seed region. If no more neighboring pixels exist with
a grayscale level within 2SD, the merging process stops.
Using this method, the original fragmented image
started to become more meaningful, whether it was with

or without favorable features, as shown in Figure 4. The
presence or otherwise of favorable features, could then
be used as criteria for keeping the image, as tumor-con-
taining, or eliminating it, as background, at the subse-
quent knowledge-based stage..
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Figure 3 Result after FCM clustering. FCM clustering on MR images of the brain (left), and the histogram after defuzzification (right), a total of
32 groups of binary image were produced according to the colors zones shown on the histogram, each color represent a particular tissue
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Knowledge-based techniques
In this step expert knowledge was used to extract the
brain tumor from the 32 results existing after the
region-growing stage. Four types of knowledge were
applied to select tumor image groups and exclude non-
tumor groups:

(a) Screen the image according to size: the bounding
box method

For each set image the height and width of a box
surrounding the whole image containing tissue was

calculated. Considering that the size of the tumor is
seldom more than half the size of the brain tissue,
any image group with an image box larger than half
the height and width of the brain image could be
excluded, as shown in Figure 5.

(b) Decide which side of the brain the tumor is on:
modified symmetrical-histogram analysis

Traditional symmetrical-histogram analysis can detect
tumors located in either brain hemisphere, but fails to

Figure 4 Result after Region growing. After FCM clustering, some image may be too fragmenting to be properly classified (upper left and
lower left). In this occasion, a seed area is selected within the image (upper middle and lower middle), and after pixel aggregation, these
fragment could grow into more meaningful image. The upper row image now could be identified as tumor-containing image, where as the
lower row image will be classified as background, and be readily processed at later stage.
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Figure 5 The bounding box method. Using brain tissue image (left 1) as standard, the image group whose image box is larger than 1/2
height and width of the brain image will be excluded (left 2), otherwise will be preserved (right 1 and 2).

locate tumors located at the midline brain [31]. In this
research, a correlation coefficient was applied to over-
come this problem. Using the knowledge that tumors
have a brighter grayscale value on T2-weighted images,
and with the precondition that all brain images were
well-sliced and well-centered, the histograms of the
right and left side brain were generated. Pixels with
grayscale values of below 50 were then removed as
noise. A correlation coefficient was applied to compare
the difference between the left and right side histo-
grams. A correlation coefficient < 0.95 denotes that
the differences between both histograms are statisti-
cally correlated, and the tumor is situated on either
side of the hemisphere. In contrast, a correlation coef-

solidity value. The procedure can be summarized as
follows:

Stepl. Assuming n data needs to be separated into
c groups, first define every data set as a cluster c;,
i=1,.,n

Step2. Calculate the distance between these clusters.
Clusters with the nearest distance will be the closest
clusters: ¢; and c;.

Step3. Merge c; and ¢; to new cluster.

Step4. If the number of clusters has reached 1, or
the desired number, then stop; otherwise repeat
steps 2 and 3.

This “bottom-up” clustering method allowed the

ficient > 0.95 denotes no statistical difference between
both side histograms, meaning that the tumor might
be located in the middle of the brain hemisphere.

Using the above procedure, image groups with cor-
relation coefficients < 0.95, went through further

separation of data into groups with higher and lower
solidity. Groups with tumor tissue were included in the
first group, and those in the second group were
eliminated.

(d) Eliminate the non-tumor area based on the tissue

analysis to determine on which side the tumor was  area

located. This was performed using the absolute value
in the histogram difference as a reference point, and
comparing the grayscale values of both sides to this
point. As shown in Figure 6, the side with the higher
grayscale value is likely to contain the tumor. The
image group containing tissue from the other side of
the brain was therefore eliminated.

(c) Define the brain tumor image based on the solidity

The definition of solidity in this context can be
expressed as follows:

Solidity = image area/the smallest convex polygon
that could cover the image.

Usually, a tumor has a higher solidity value than
normal brain tissue, as shown in Figure 7. This
research, therefore, used the agglomerative hierarchi-
cal clustering algorithm [32], rather than traditional
definite value criteria to remove the groups with low

After completing the previous screening procedure, the
remaining groups included images with small area
noise, or images with a larger area, which could be
tumor, edema tissue or other meaningful tissues.
Agglomerative hierarchical clustering was then applied
again, except this time the “area” parameter was
screened. Groups with little tissue area were eliminated.
At this point an alternative semi-supervised procedure
was also employed in order to further validate results,
and for comparison with the original automatic path-
way. In this procedure the tumor-containing image
was selected manually, and the results were compared
with those from the automatic pathway, and with the
ground truth.

Finally, if results contained more than one image group,
they were put through the judgment of the logical “or”
and merged into one image. The preliminary brain
tumor image defined by the system was thus produced.
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Figure 6 The difference of bilateral side histogram analysis. By analyzing the T2-weighted MR image (left), we obtained the histogram of
bilateral brain tissue (right upper) and the curve represented their difference (right lower). Using the highest absolute value in histogram
difference curve as reference point (red line), here the grayscale value of both sides histogram were compared, and the side with higher
grayscale value is likely to have tumor. In this case, the left (green) side had higher grayscale at reference point, so the tumor is on the left side

of the brain.
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Morphological image processing

After the region-growing procedure, there are many
residual areas around the tumor region. Also, if the
tumor is not homogenous, there will tend to be small
holes within the tumor mass. The morphological proce-
dure is therefore used on these binary images to refine
the margin and content of the tumor images.

Firstly, the erosion operator was employed to separate
the residual neighbor area from the tumor, and then the
holes within the tumor mass were filled by dilation. The
resulting tumor mass was smoother at the margin and
more solid in content. This completed the process of
brain tumor segmentation.

\

Figure 7 The solidity of tumor image. Left: image with high
solidity (78.99) more likely to be tumor; Right: image with low
solidity (39.77) more likely to be normal tissue.

Validation of segmentation results

Results from the present study’s image segmentation
system (SYS) were compared with the ground truth
(GT); images segmented manually by medical experts.
In this study, all images, including the contrast-
enhanced ones, were reviewed independently by two
board-certified neurosurgeons (CL and FX). These
two experts contoured the tumors based on the con-
trast-enhanced T1-weighted MR images (CET1),
using the same contour method for the planning of
radiosurgery of brain tumors. If some challenging
condition was encountered, such as the presence of
“dural tails” (a common phenomenon existing in the
contrasted MR images of meningiomas), this would
therefore be adequately covered by the experts. Con-
tours made by CL were arbitrarily chosen as the GT,
and the reproducibility of the two observers was
calculated.

To quantify the differences between the SYS and the
GT at pixel level, results were classified into the
following:

« True positives (TP), where the SYS and the GT both
classified an image as a tumor.

o True negatives (TN), where the SYS and the GT
both classified an image as normal tissue.

o False positives (FP), where the SYS classified an
image as tumor but the GT as normal tissue.

o False negatives (FN), where the GT classified an
image as tumor but the SYS as normal tissue.
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To demonstrate the accuracy and efficiency of the sys-
tem as objectively as possible, two well-established and
commonly used scoring parameters: the percent match
(PM) and correspondence ratio (CR) [18,20,21], were
applied to scrutinize the results with the definitions: PM
= TP/GT, CR = (TP - (0.5 x FP))/GT. The PM value
uses the manually generated ground truth as a standard
to calculate the accuracy of the system. If the PM value
is 100%, all SYS tumor images segmented by the system
also exist in the ground truth, and vice versa. Concern-
ing CR, the closer the value is to 1, the closer the sys-
tem judgment is to the ground truth. Thus, if a system
has a PM value close to 100%, but the CR value is nega-
tive, then this system is judged to have good accuracy
but high error, so such a system is not ideal.

Using the above parameters, the PM and CR of the
automatic method, and also the semi-supervised alterna-
tive, were calculated. Statistical methods were employed
to verify the significances of differences. Using the same
methods, the entire automatic pathway was repeated,
this time without incorporating the region-growing pro-
cess. The results were then compared with those from
the original automatic pathway.

Results

Of 29 groups of non-contrasted T1 and T2-weighted
MR images of meningioma, the automatic algorithm
successfully segmented 23 groups, one example of
which is shown in Figure 8. The overall PM value was
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72.80 + 36.20% and the CR value was 0.43 + 0.86. Table
1 presents the detailed result values of this automatic
system. Of the 6 failed cases, one (case no. 29) was also
the only failure case in the semi-supervised group. The
semi-supervised alternative (in which the tumor image
was picked manually instead of going through the
agglomerative hierarchical clustering at the last stage of
KB procedure) successfully segmented 28 out of the 29
groups. The PM value was 87.82 + 15.91%, and the CR
value was 0.79 £ 0.15. This method was, therefore, bet-
ter than the automatic pathway. The paired t-test con-
firmed results, providing a P value of 0.02344 (< 0.05)
for PM, and 0.03392 (< 0.05) for CR; significant differ-
ences in findings. Overall results are presented as a dia-
gram in Figure 9.

Concordance of manual segmentation

Testing of the reproducibility of the manual method
using the contours made by CL as the GT provided a
mean PM value, from FX’s contouring, of 99.41 + 1.44%
and a mean CR of 0.89 + 0.06. Reversing the testing cri-
teria, using FX’s contouring as the GT, provided a mean
PM, from CL’s contouring, of 83.58 + 7.77% and a
mean CR of 0.83 + 0.07. The contours made by FX
tended to be more generous (p < 0.001, paired t-test).

Comparing the results with and without region growing
Applying FCM clustering without incorporating the
region-growing method, produced significantly worse

Figure 8 The result of tumor segmentation. One of the result were shown here, the original non-contrasted T1 (upper left) and T2 -weighted
(upper middle) MR image were processed. The tumor image segmented by semi-supervised method (lower left) and automatic method (lower
middle) were compared with “ground truth” (lower right), which was manually segmented from contrasted-enhanced T1 image (upper right).
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Table 1 Results obtained by the automatic system

Case GT SYS TP FP FN TN PM (%) CR
1 2132 3512 2012 1500 120 61904 94.37 0.59
2 855 4440 0 4440 855 60241 0.00 -2.60
3 4271 4313 4118 195 153 61070 96.42 0.94
4 1183 990 865 125 318 64228 73.12 0.68
5 4517 3577 3434 143 1083 60876 76.02 0.74
6 2270 2452 2180 272 90 62994 96.04 0.90
7 1100 1370 1099 271 1 64165 99.91 0.88
8 761 648 623 25 138 64750 81.87 0.80
9 5607 4559 4544 15 1063 59914 81.04 0.81
10 1081 1126 935 191 146 64264 86.49 0.78
11 2013 3104 0 3104 2013 60419 0.00 -0.77
12 2500 2298 2246 52 254 62984 89.84 0.89
13 1968 3198 1957 1241 1 62327 99.44 0.68
14 442 374 359 15 83 65079 81.22 0.80
15 942 2764 0 2764 942 61830 0.00 -147
16 5549 6967 5482 1485 67 58502 98.79 0.85
17 2137 2657 261 2396 1876 61003 12.21 -044
18 732 1508 0 1508 732 6329 0.00 -1.03
19 4379 4205 4158 47 221 61110 94.95 0.94
20 2589 2650 2455 195 134 62752 94.82 091
21 1397 1554 1306 248 91 63891 93.49 0.85
22 4702 6114 4584 1530 118 59304 97.49 0.81
23 1560 1537 1408 129 152 63847 90.26 0.86
24 1384 1650 1183 467 201 63685 85.48 0.69
25 588 719 566 153 22 64795 96.26 0.83
26 1662 2012 1586 426 76 245750 9543 083
27 1715 2012 1417 595 298 245530 8262 0.65
28 4495 4825 4359 466 136 242870  96.97 092
29 1329 206 206 0 1123 246510 15.50 0.16

The results were demonstrated at pixel level, together with their validation
parameters. *GT: Ground Truth; SYS: Automatic System; TP: True Positive; FP:
False Positive; FN: False Negative; TN: True Negative; PM: Percent Match; CR:

Correspondence Ratio.

results. For 9 cases PM = 0 and overall PM = 25.32,
CR = 0.23. These results are significantly less accurate
than the results from FCM incorporating the region
growing algorithm.

The results of midline tumor detection

Of 29 cases, 6 cases with tumors situated at the midline,
as confirmed by the GT, were all successfully detected,
both by the automatic method and by the semi-super-
vised alternative.

Discussion

By using only 2 non-contrasted MR images, the overall
results of our automatic method for segmentation of
the meningioma were comparable to those from other
research [18,20,21]. Adding the region-growing algo-
rithm proved to be a crucial element in the study
Without this procedure, the PM and CR values were
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significantly lower, even in the semi-supervised alterna-
tive. Here the noisy result after FCM clustering tended
to cause more error in the subsequent KB selection
process, and causes a significant increase in the calcu-
lation load. The region-growing algorithm incorporated
the neighbor factor into the clustering and this result-
ing in more meaningful data, greater accuracy in
subsequent analysis, and an increased calculation
efficiency.

In the knowledge-based selection algorithm, a relative
value, rather than an absolute value, was applied. This
approach meant that no training data was necessary. If
noticeable edema tissue existed within the image, how-
ever, this would cause error in these KB procedures
because, like tumor tissue, these tissues have a high
grayscale value in T2-weighted images. This is the main
reason for the six failure cases using the automatic
method. Inspection of these T2-weighted MR images
identified large areas of edema tissue in 5 cases. At this
point, use of a semi-supervised method would have over-
come the deficit. This is the reason for more accurate
overall PM and CR values using the semi-supervised
alternative method than the automatic pathway. Except-
ing the 5 failed cases, however, the automatic pathway
showed good accuracy and satisfactory error rates; (PM =
87.41 + 17.16% versus 87.46 £ 17.19%; CR = 0.78 + 0.16
versus 0.78 + 0.16) and comparable findings to those
from the semi-supervised group. The knowledge-based
selection applied in the present study, therefore, provides
relatively stable and reliable conditions compared to the
absolute value screening. Results also imply that, if
patient selection excluded the edema cases, the overall
results for the automatic pathway would be greatly
improved. In the future, in order to effectively resolve the
edema tissue problem, more MR sequences, such as
Fluid Attenuated Inversion Recovery (FLAIR) images,
could be included as materials. Newer MR imaging tech-
niques, such as Dynamic Susceptibility Contrast (DSC)
and Dynamic Contrast Enhanced (DCE) imaging [20],
could also be incorporated into future work.

Case no. 29 was the unusual case as it failed in both
automatic and semi-supervised groups (Figure 9). In the
other 5 cases which failed in the automatic pathway,
both the PM and CR values were significantly inferior to
the semi-supervised alternative. In this case, however,
the PM and CR values were the same in both groups,
with low PM, but good CR, values. This indicated a
poor detection rate but good correspondence. Inspection
of the MR images revealed the absence of prominent
edema tissue, which may account for the good CR
value, as false grouping of normal tissue into the tumor
image would be minimal. The heterogeneous character
of the tumor image, which results in partial detection of
the tumor tissue, may account for the low PM value.
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Figure 9 Diagram showing quantified evaluation of the results obtained by automatic pathway and semi-supervised alternative. Upper:
percent match (PM) curves of 29 cases; Lower: correspondence ratio (CR) curves of 29 cases in two groups. We can see in case no. 2, 11, 15, 17
and 18, low PM and CR were observed in automate pathway but not in semi-supervised group; Case 29 show poor PM but good CR in both
groups. Beside these cases, some trace difference could be observed in case no. 22, 26 and 28.
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During the research design phase, one of the most
challenging tasks was determining the best cluster num-
ber for analysis. A previous study proposed a cluster
number of 10 [21], but, in the present research, 10 clus-
ters were not enough to aggregate the tumor images in
every group. Since the brain is mostly composed of
eight kinds of tissue, each with distinct grayscales (gray
matter, white matter, CSF, skull, air, tumor, edema and
normal tissue), multiples of eight cluster numbers were
assayed: 10, 16, 24, 32 and 40. After clustering with
fuzzy c-mean, the separation rate of tumor stand alone
positively correlated with the cluster number, and
reached a maximum after 32, as shown in Figure 10.
However, the calculation load also increased with the
cluster number, therefore the number of 32 was selected
as the cluster number of choice.

The second major goal of this study was to effectively
detect menigioma located at the midline position of the
brain. The automatic pathway successfully detected
100% of the midline tumor cases by improving on the
traditional approach for tumor location and incorporat-
ing the concept of correlation. This stage was important
as it avoided potential failure caused by midline tumors,
which may have occurred in other related works, and
contributed to overall good results.

The final section of the study was to examine the
reproducibility of the methods. The PM and CR values
indicated differences between the two human opera-
tors. In this respect, an automatic method is superior
to a manual method as machines will usually generate
the same results using the same materials and meth-
ods. Based on their unique character, the fuzzy-based
algorithm tended to provide slightly different results

Separate Rate (%)
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80
70
G0
50
40
30
20
10
0

3

29;29

10 16 24 32 40
Cluster Number

Figure 10 The relation between cluster number in FCM and
tumor image separation rate. Could see the separation rate is
improving as cluster number increase; finally come to a plateau
when cluster numbers exceed the number of 32.
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every time the calculation was repeated, but the differ-
ences were so trivial that they could be ignored. Figure
9 reveals the slight differences in PM and CR values
for the automatic pathway compared with the semi-
supervised alternatives in three cases. Manual elimina-
tion of some of the image groups during the final
stage of the KB selection in the semi-supervised
method, but not in the automatic pathway may have
caused these variations. These slight differences did
not influence the overall results.

Conclusions

This research demonstrates the possibility of using only
two non-contrast enhanced MR images -T1 and T2
images - for brain tumor segmentation. The algorithm
integrates the fuzzy-c-mean and region growing techni-
ques and successfully detects meningiomas, even in the
brain midline. Compared with the ground truth, this
quantifiable method shows a feasible detection rate and
good accordance. The system, therefore, demonstrates
high potential for practical clinical use, and may assist
medical experts with tumor location, volumetric estima-
tion, therapeutic planning and follow-up. Future aims
include the improvement of the system’s calculation
loading, exploring the potential use of other MR modal-
ities, and experimenting with the 3D image format.
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