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Abstract

Background: We present a method utilizing Healthcare Cost and Utilization Project (HCUP) dataset for predicting
disease risk of individuals based on their medical diagnosis history. The presented methodology may be
incorporated in a variety of applications such as risk management, tailored health communication and decision
support systems in healthcare.

Methods: We employed the National Inpatient Sample (NIS) data, which is publicly available through Healthcare
Cost and Utilization Project (HCUP), to train random forest classifiers for disease prediction. Since the HCUP data is
highly imbalanced, we employed an ensemble learning approach based on repeated random sub-sampling. This
technique divides the training data into multiple sub-samples, while ensuring that each sub-sample is fully
balanced. We compared the performance of support vector machine (SVM), bagging, boosting and RF to predict
the risk of eight chronic diseases.

Results: We predicted eight disease categories. Overall, the RF ensemble learning method outperformed SVM,
bagging and boosting in terms of the area under the receiver operating characteristic (ROC) curve (AUC). In
addition, RF has the advantage of computing the importance of each variable in the classification process.

Conclusions: In combining repeated random sub-sampling with RF, we were able to overcome the class
imbalance problem and achieve promising results. Using the national HCUP data set, we predicted eight disease
categories with an average AUC of 88.79%.

Background
The reporting requirements of various US governmental
agencies such as Center for Disease Control (CDC),
Agency for Health Care Quality (AHRQ) and US
Department of Health and Human Services Center for
Medicare Services (CMS) have created huge public data-
sets that, we believe, are not utilized to their full poten-
tial. For example, CDC http://www.cdc.gov makes
available National Health and Nutrition Examination
Survey (NHANES) data. Using NHANES data, Yu et al.
[1] predicts diabetes risk using an SVM classifier. CMS
http://www.cms.gov uses the Medicare and Medicaid
claims to create the minimum dataset (MDS). Herbert
et al. [2] uses MDS data to identify people with diabetes.
In this paper we use the National Inpatient Sample
(NIS) data created by AHRQ http://www.ahrq.gov

Healthcare Utilization Project (HCUP), to predict the
risk for eight chronic diseases.
Disease prediction can be applied to different domains

such as risk management, tailored health communica-
tion and decision support systems. Risk management
plays an important role in health insurance companies,
mainly in the underwriting process [3]. Health insurers
use a process called underwriting in order to classify the
applicant as standard or substandard, based on which
they compute the policy rate and the premiums indivi-
duals have to pay. Currently, in order to classify the
applicants, insurers require every applicant to complete
a questionnaire, report current medical status and some-
times medical records, or clinical laboratory results,
such as blood test, etc. By incorporating machine learn-
ing techniques, insurers can make evidence based deci-
sions and can optimize, validate and refine the rules
that govern their business. For instance, Yi et al. [4],
applied association rules and SVM on an insurance
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company database to classify the applicants as standard,
substandard or declined.
Another domain where disease prediction can be

applied is tailored health communication. For example,
one can target tailored educational materials and news
to a subgroup, within the general population, that has
specific disease risks. Cohen et al. [5], discussed how tai-
lored health communication can motivate cancer pre-
vention and early detection. Disease risk prediction
along with tailored health communication can lead to
an effective channel for delivering disease specific infor-
mation for people who will be likely to need it.
In addition to population level clinical knowledge, dei-

dentified public datasets represent an important
resource for the clinical data mining researchers. While
full featured clinical records are hard to access due to
privacy issues, deidentified large national public dataset
are readily available [6]. Although these public datasets
don’t have all the variables of the original medical
records, they still maintain some of their main charac-
teristics such as data imbalance and the use of con-
trolled terminologies (ICD-9 codes).
Several machine learning techniques were applied to

healthcare data sets for the prediction of future health
care utilization such as predicting individual expendi-
tures and disease risks for patients. Moturu et al. [7],
predicted future high-cost patients based on data from
Arizona Medicaid program. They created 20 non-ran-
dom data samples, each sample with 1,000 data points
to overcome the problem of imbalanced data. A combi-
nation of undersampling and oversampling was
employed to a balanced sample. They used a variety of
classification methods such as SVM, Logistic Regression,
Logistic Model Trees, AdaBoost and LogitBoost. Davis
et al. [8], used clustering and collaborative filtering to
predict individual disease risks based on medical history.
The prediction was performed multiple times for each
patient, each time employing different sets of variables.
In the end, the clusterings were combined to form an
ensemble. The final output was a ranked list of possible
diseases for a given patient. Mantzaris et al. [9], pre-
dicted Osteoporosis using Artificial Neural Network
(ANN). They used two different ANN techniques:
Multi-Layer Perceptron (MLP) and Probabilistic Neural
Network (PNN). Hebert et al. [2], identified persons
with diabetes using Medicare claims data. They ran into
a problem where the diabetes claims occur too infre-
quently to be sensitive indicators for persons with dia-
betes. In order to increase the sensitivity, physician
claims where included. Yu et al. [1], illustrates a method
using SVM for detecting persons with diabetes and pre-
diabetes.
Zhang et al. [10], conducted a comparative study of

ensemble learning approaches. They compared

AdaBoost, LogitBoost and RF to logistic regression and
SVM in the classification of breast cancer metastasis.
They concluded that ensemble learners have higher
accuracy compared to the non-ensemble learners.
Together with methods for predicting disease risks, in

this paper we discuss a method for dealing with highly
imbalanced data. We mentioned two examples [2,7]
where the authors encountered class imbalanced pro-
blems. Class imbalance occurs if one class contains sig-
nificantly more samples than the other class. Since the
classification process assumes that the data is drawn
from the same distribution as the training data, present-
ing imbalanced data to the classifier will produce unde-
sirable results. The data set we use in this paper is
highly imbalanced. For example, only 3.59% of the
patients have heart disease, thus it is possible to train a
classifier with this data and achieve an accuracy of
96.41% while having 0% sensitivity.

Methods
Dataset
The Nationwide Inpatient Sample (NIS) is a database of
hospital inpatient admissions that dates back to 1988
and is used to identify, track, and analyze national
trends in health care utilization, access, charges, quality,
and outcomes. The NIS database is developed by the
Healthcare Cost and Utilization Project (HCUP) and
sponsored by the Agency for Healthcare Research and
Quality (AHRQ) [6]. This database is publicly available
and does not contain any patient identifiers. The NIS
data contains discharge level information on all inpati-
ents from a 20% stratified sample of hospitals across the
United States, representing approximately 90% of all
hospitals in the country [6]. The five strata for hospitals
are based on the American Hospital Association classifi-
cation. HCUP data from the year 2005 will be used in
this paper.
The data set contains about 8 million records of hos-

pital stays, with 126 clinical and nonclinical data ele-
ments for each visit (table 1). Nonclinical elements
include patient demographics, hospital identification,
admission date, zip code, calendar year, total charges
and length of stay. Clinical elements include procedures,
procedure categories, diagnosis codes and diagnosis
categories. Every record contains a vector of 15 diagno-
sis codes. The diagnosis codes are represented using the
International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9-CM). The International
Statistical Classification of Disease is designed and pub-
lished by the World Health Organization (WHO). The
ICD-9 codes are alphanumeric codes, 3-5 characters
long and used by hospitals, insurance companies and
other facilities to describe health conditions of the
patient. Every code represents a disease, condition,
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Table 1 HCUP data elements

Element
Name

Element Description

1 AGE Age in years at admission

2 AGEDAY Age in days (when age > 1 year)

3 AMONTH Admission month

4 ASOURCE Admission source (uniform)

5 ASOURCEUB92 Admission source (UB-92 standard coding)

6 ASOURCE_X Admission source (as received from source)

7 ATYPE Admission type

8 AWEEKEND Admission day is a weekend

9 DIED Died during hospitalization

10 DISCWT Weight to discharges in AHA universe

11 DISPUB92 Disposition of patient (UB-92 standard coding)

12 DISPUNIFORM Disposition of patient (uniform)

13 DQTR Discharge quarter

14 DRG DRG in effect on discharge date

15 DRG18 DRG, version 18

16 DRGVER DRG grouper version used on discharge date

17 DSHOSPID Data source hospital identifier

18 DX1 Principal diagnosis

19 DX2 Diagnosis 2

20 DX3 Diagnosis 3

21 DX4 Diagnosis 4

22 DX5 Diagnosis 5

23 DX6 Diagnosis 6

24 DX7 Diagnosis 7

25 DX8 Diagnosis 8

26 DX9 Diagnosis 9

27 DX10 Diagnosis 10

28 DX11 Diagnosis 11

29 DX12 Diagnosis 12

30 DX13 Diagnosis 13

31 DX14 Diagnosis 14

32 DX15 Diagnosis 15

*33 DXCCS1 CCS: principal diagnosis

*34 DXCCS2 CCS: diagnosis 2

*35 DXCCS3 CCS: diagnosis 3

*36 DXCCS4 CCS: diagnosis 4

*37 DXCCS5 CCS: diagnosis 5

*38 DXCCS6 CCS: diagnosis 6

*39 DXCCS7 CCS: diagnosis 7

*40 DXCCS8 CCS: diagnosis 8

*41 DXCCS9 CCS: diagnosis 9

*42 DXCCS10 CCS: diagnosis 10

*43 DXCCS11 CCS: diagnosis 11

*44 DXCCS12 CCS: diagnosis 12

*45 DXCCS13 CCS: diagnosis 13

*46 DXCCS14 CCS: diagnosis 14

*47 DXCCS15 CCS: diagnosis 15

48 ECODE1 E code 1

49 ECODE2 E code 2

50 ECODE3 E code 3

51 ECODE4 E code 4

Table 1 HCUP data elements (Continued)

52 ELECTIVE Elective versus non-elective admission

53 E_CCS1 CCS: E Code 1

54 E_CCS2 CCS: E Code 2

55 E_CCS3 CCS: E Code 3

56 E_CCS4 CCS: E Code 4

57 FEMALE Indicator of sex

58 HOSPID HCUP hospital identification number

59 HOSPST Hospital state postal code

60 KEY HCUP record identifier

61 LOS Length of stay (cleaned)

62 LOS_X Length of stay (as received from source)

63 MDC MDC in effect on discharge date

64 MDC18 MDC, version 18

65 MDNUM1_R Physician 1 number (re-identified)

66 MDNUM2_R Physician 2 number (re-identified)

67 NDX Number of diagnoses on this record

68 NECODE Number of E codes on this record

69 NEOMAT Neonatal and/or maternal DX and/or PR

70 NIS_STRATUM Stratum used to sample hospital

71 NPR Number of procedures on this record

72 PAY1 Primary expected payer (uniform)

73 PAY1_X Primary expected payer (as received from source)

74 PAY2 Secondary expected payer (uniform)

75 PAY2_X Secondary expected payer (as received from
source)

76 PL_UR_CAT4 Patient Location: Urban-Rural 4 Categories

77 PR1 Principal procedure

78 PR2 Procedure 2

79 PR3 Procedure 3

80 PR4 Procedure 4

81 PR5 Procedure 5

82 PR6 Procedure 6

83 PR7 Procedure 7

84 PR8 Procedure 8

85 PR9 Procedure 9

86 PR10 Procedure 10

87 PR11 Procedure 11

88 PR12 Procedure 12

89 PR13 Procedure 13

90 PR14 Procedure 14

91 PR15 Procedure 15

92 PRCCS1 CCS: principal procedure

93 PRCCS2 CCS: procedure 2

94 PRCCS3 CCS: procedure 3

95 PRCCS4 CCS: procedure 4

96 PRCCS5 CCS: procedure 5

97 PRCCS6 CCS: procedure 6

98 PRCCS7 CCS: procedure 7

99 PRCCS8 CCS: procedure 8

100 PRCCS9 CCS: procedure 9

101 PRCCS10 CCS: procedure 10

102 PRCCS11 CCS: procedure 11

103 PRCCS12 CCS: procedure 12
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symptom, or cause of death. There are numerous codes,
over 14,000 ICD-9 codes and 3,900 procedures codes.
In addition, every record contains a vector of 15 diag-

nosis category codes. The diagnosis categories are com-
puted using the Clinical Classification Software (CCS)
developed by HCUP in order to categorize the ICD-9
diagnosis and procedure codes. CCS collapsed these
codes into a smaller number of clinically meaningful
categories, called diagnosis categories. Every ICD-9 code
has a corresponding diagnosis category and every

category contains a set of ICD-9 codes. We denote each
of the 259 disease categories by a value between 1 and
259. In Figure 1 we show an example of disease category
("Breast cancer”) and some of the ICD-9 codes included
in it (174.0 -"Malignant neoplasm of female breast”,
174.1-Malignant neoplasm of central portion of female
breast”, 174.2-Malignant neoplasm of upper-inner quad-
rant of female breast”, 233.0-"Carcinoma in situ of
breast and genitourinary system”).
Demographics such as age, race and sex are also

included in the data set. Figure 2 shows the distribution
of patients across age, race and sex.
The data set is highly imbalanced. The imbalance rate

ranges across diseases from 0.01-29.1%. 222 diagnosis
categories occurs in less than 5% of the patients and
only 13 categories occur in more than 10% of the
patients. In table 2 we show the top 10 most prevalent
disease categories and in table 3 we show some of the
rarest diseases present in the 2005 HCUP data set.
One limitation of the 2005 HCUP data set is the arbi-

trary order in which the ICD-9 codes and disease cate-
gories were listed. The codes were not listed in the
chronological order according to the date they were
diagnosed. Also, the data set does not provide anon-
ymous patient identifier, which could be used to check
if multiple records belong to the same patient or to
determine the elapsed time between diagnoses.

Data Pre-processing
The data set was provided in a large ASCII file contain-
ing the 7,995,048 records. The first step was to parse
the data set, randomly select N records and extract a set
of relevant features. Every record is a sequence of char-
acters that are not delimited. However, the data set
instructions specifies the starting column and the ending
column in the ASCII file for each data element (length
of data element). HCUP provides a SAS program to
parse the data set, but we chose to develop our own
program to perform the parsing.

Table 1 HCUP data elements (Continued)

104 PRCCS13 CCS: procedure 13

105 PRCCS14 CCS: procedure 14

106 PRCCS15 CCS: procedure 15

107 PRDAY1 Number of days from admission to PR1

108 PRDAY2 Number of days from admission to PR2

109 PRDAY3 Number of days from admission to PR3

110 PRDAY4 Number of days from admission to PR4

111 PRDAY5 Number of days from admission to PR5

112 PRDAY6 Number of days from admission to PR6

113 PRDAY7 Number of days from admission to PR7

114 PRDAY8 Number of days from admission to PR8

115 PRDAY9 Number of days from admission to PR9

116 PRDAY10 Number of days from admission to PR10

117 PRDAY11 Number of days from admission to PR11

118 PRDAY12 Number of days from admission to PR12

119 PRDAY13 Number of days from admission to PR13

120 PRDAY14 Number of days from admission to PR14

121 PRDAY15 Number of days from admission to PR15

122 RACE Race (uniform)

123 TOTCHG Total charges (cleaned)

124 TOTCHG_X Total charges (as received from source)

125 YEAR Calendar year

126 ZIPInc_Qrtl Median household income quartile for patient’s
ZIP Code

Complete list of 126 HCUP data elements. The elements marked with “*”
(rows 33-47) are the ones used in the classification as input variables.

*HCUP data elements used in the classification

Figure 1 Disease codes and categories hierarchical relationship. This is a snap shot of the hierarchical relationship between the diseases
and disease categories. For instance, disease category 49 (diabetes) has a children that are represented in disease codes (ICD-9-CM).
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Feature Selection
For every record, we extracted the age, race, sex and 15
diagnosis categories. Every record is represented as a d
= 262 dimensional feature vector. Features 1-259 are
binary, one for each disease category. The remaining
three features are age, race and sex. We denote the sam-
ples that contain a given disease category as “active” and
the remaining ones as “inactive”. The active and inactive
data samples are defined only from the point of view of
the disease being classified. A snippet of the data set is
presented in table 4. For example, in table 4, sample 1 is
active for disease category 50, while sample N is
inactive.
While, in general, using only disease categories may

not lead to a valid disease prediction, the approach pre-
sented in this paper needs to be seen in the larger con-
text of our TigerPlace eldercare research [11]. By
integrating large public data sets (such as the one used
in this paper) with monitoring sensors and electronic
health records (EHR) data, we can achieve the required
prediction precision for an efficient delivery of tailored
medical information.

Learning from Imbalanced Data
A data set is class-imbalanced if one class contains sig-
nificantly more samples than the other. For many dis-
ease categories, the unbalance rate ranges between 0.01-
29.1% (that is, the percent of the data samples that
belong to the active class). For example, (see table 3)
only 3.16% of the patients have Peripheral Atherosclero-
sis. In such cases, it is challenging to create an appropri-
ate testing and training data sets, given that most
classifiers are built with the assumption that the test
data is drawn from the same distribution as the training
data [12].
Presenting imbalanced data to a classifier will produce

undesirable results such as a much lower performance
on the testing that on the training data. Among the clas-
sifier learning techniques that deal with imbalanced data
we mention oversampling, undersampling, boosting,
bagging and repeated random sub-sampling [13,14]. In

the next section we describe the repeated random sub-
sampling method that we employ in this paper.

Repeated Random Sub-Sampling
Repeated random sub-sampling was found to be very
effective in dealing with data sets that are highly imbal-
anced. Because most classification algorithms make the
assumption that the class distribution in the data set is
uniform, it is essential to pay attention to the class dis-
tribution when addressing medical data. This method
divides the data set into active and inactive instances,
from which the training and testing data sets are gener-
ated. The training data is partitioned into sub-samples
with each sub-sample containing an equal number of
instances from each class, except for last sub-sample (in
some cases). The classification model is fitted repeatedly
on every sub-sample and the final result is a majority
voting over all the sub-samples.
In this paper we used the following repeated random

sub-sampling approach. For every target disease we ran-
domly choose N samples from the original HCUP data
set. The N samples are divided into two separate data
sets, N1 active data samples and N0 inactive data sam-
ples, where N1+ N0 = N. The testing data will contain
30% active samples N1 (TsN1) while the remaining 70%
will be sampled from the N0 (TsN0) inactive samples.
The 30/70 ratio was chosen by trial-and-error. The
training data set will contain the remaining active sam-
ples (TrN1) and inactive samples (TrN0).
Since the training data is highly imbalanced (TrN1

>>TrN0), the TrN0 samples are partitioned into NoS
training sub-samples, where NoS is the ratio between
TrN0 and TrN1. Every training sub-sample has equal
number of instances of each class. The training active
samples (TrN1) are fixed among all the training data
sub-samples, while the inactive samples will be sampled
without replacement from TrN0. There will be NoS sub-
samples to train the model on. Eventually, every inactive
sample in the training data is selected once, while every
active sample is selected NoS times. After training the
model on all the sub-samples, we employ a “majority

Figure 2 Demographics of patients by age, race and sex for the HCUP data set.
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voting” approach to determine the final class member-
ships (see Algorithm 1 in Additional File 1: Appendix).
A diagram describing the process of RF and the sub-
sampling procedure is presented in Figure 3.

Random Forest
RF is an ensemble learner, a method that generates
many classifiers and aggregates their results. RF will cre-
ate multiple classification and regression (CART) trees,
each trained on a bootstrap sample of the original train-
ing data and searches across a randomly selected subset
of input variables to determine the split. CARTs are bin-
ary decision trees that are constructed by splitting the
data in a node into child nodes repeatedly, starting with
the root node that contains the whole learning sample
[15]. Each tree in RF will cast a vote for some input x,
then the output of the classifier is determined by major-
ity voting of the trees (algorithm 2 in Additional File 1:
Appendix). RF can handle high dimensional data and
use a large number of trees in the ensemble. Some
important features of RF are [16]:

1. It has an effective method for estimating missing
data.
2. It has a method, weighted random forest (WRF),
for balancing error in imbalanced data.
3. It estimates the importance of variables used in
the classification.

Chen et al. [17], compared WRF and balanced random

forest (BRF) on six different and highly imbalanced data
sets. In WRF, they tuned the weights for every data set,
while in BRF, they changed the votes cutoff for the final
prediction. They concluded that BRF is computationally
more efficient than WRF for imbalanced data. They also
found that WRF is more vulnerable to noise compared
to BRF. In this paper, we used RF without tuning the
class weights or the cutoff parameter.

Splitting Criterion
Like CART, RF uses the Gini measure of impurity to
select the split with the lowest impurity at every node
[18]. Gini impurity is a measure of the class label distri-
bution in the node. The Gini impurity takes values in
[0, 1], where 0 is obtained when all elements in a node
are of the same class. Formally, the Gini impurity mea-
sure for the variable X = {x1, x2, ..., xj} at node t, where j
is the number of children at node t, N is the number of
samples, nci is the number of samples with value xi
belonging to class c, ai is the number of samples with
value xi at node t, then the Gini impurity is given by
[15]

I
(
txi

)
= 1 −

c∑
c=0

(
nci
ai

)2

(1)

The Gini index of a split is the weighted average of
the Gini measure over the different values of variable X,
which is given by

Gini (t,X) =
j∑

i=1

ai
N
I
(
txi

)
(2)

The decision of the splitting criterion will be based on
the lowest Gini impurity value computed among the m
variables. In RF, each tree employs a different set of m
variables to construct the splitting rules.

Variable Importance
One of the most important features of RF is the output
of the variable importance. Variable importance mea-
sures the degree of association between a given variable
and the classification result. RF has four measures for
the variable importance: raw importance score for class
0, raw importance score for class 1, decrease in accuracy
and the Gini index. To estimate variable importance for
some variable j, the out-of-bag (OOB) samples are
passed down the tree and the prediction accuracy is
recorded. Then the values for variable j are permuted in
the OOB samples and the accuracy is measured again.
These calculations are carried out tree by tree as the RF
is constructed. The average decrease in accuracy of
these permutations is then averaged over all the trees
and is used to measure the importance of the variable j.

Table 2 The 10 most prevalent diseases categories

Disease Category Prevalence

Hypertension 29.1%

Coronary Atherosclerosis 27.65%

Hyperlipidemia 14.46%

Dysrhythmia 14.35%

Other Circulatory Diseases 12.02%

Diabetes mellitus no complication 12%

Anemia 11.93%

The top 10 most prevalent diseases among the 8 million samples; it shows
the percentage of the samples having that disease.

Table 3 Some of the most imbalanced diseases
categories

Disease Category Percent of Active class

Male Genital Disease 0.01%

Testis Cancer 0.046%

Encephalitis 0.059%

Aneurysm 0.74%

Breast Cancer 1.66%

Peripheral Atherosclerosis 3.16%

Diabetes Mellitus w/complication 4.7%
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If the prediction accuracy decreases substantially, then
that suggests that the variable j has strong association
with the response [19]. After measuring the importance
of all the variables, RF will return a ranked list of the
variable importance.
Formally, let bt be the OOB samples for tree t, t Î

{1,..., ntree}, y’ti is the predicted class for instance i
before the permutation in tree t and y’ti,a is the pre-
dicted class for instance i after the permutation. The
variable importance VI for variable j in tree t is given by

VItj =

∑N
i=1 βtI

(
yi = y

′t
t

)
|βt| −

∑N
i=1 βtI

(
yi = y

′t
i,α

)
|βt|

(3)

The raw importance value for variable j is then aver-
aged over all trees in the RF.

VIj =

∑ntree
t=1 VItm
ntree

(4)

The variable importance used in this paper is the Mean
Decrease Gini (MDG), which is based on the Gini splitting
criterion discussed earlier. The MDG measure the

decrease ΔI (equation 1) that results from the splitting.
For two class problem, the change in I (equation 6) at
node t is defined as the class impurity (equation 5) minus
the weight average of Gini measure (equation 2) [20,21].

I (t) = 1 −
c∑

c=0

(ni
N

)2
(5)

�I (t) = I (t) − Gini (t,X) (6)

The decrease in Gini impurity is recorded for all the
nodes t in all the trees (ntree) in RF for all the variables
and Gini Importance (GI) is then computed as [20].

GI =
∑
ntree

∑
t

�I (t) (7)

Classification with Repeated Random Sub-Sampling
Training the classifier on a data set that is small and
highly imbalanced will result in unpredictable results as

Table 4 Sample Dataset, the bolded column (Cat. 50) represents the category to predict

Cat.
1

Cat.
2

Cat.
3

.... Cat.
50

.... Cat. 257 Cat. 258 Cat. 259 Age Race Sex

Patient 1 0 0 0 .... 1 .... 0 1 1 69 3 0

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.

Patient N 1 0 0 .... 0 .... 1 0 0 55 1 1

Figure 3 Flow diagram of random forest and sub-sampling approach.
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discussed in earlier sections. To overcome this issue, we
used repeated random sub-sampling. Initially, we con-
struct the testing data and the NoS training data sub-
samples. For each disease, we train NoS classifiers and
test all of them on the same data set. The final labels of
the testing data are computed using a majority voting
scheme.

Model Evaluation
To evaluate the performance of the RF we compared it
to SVM on imbalanced data sets for eight different
chronic diseases categories. Two sets of experiments
were carried out:

Set I: We compared RF, boosting, bagging and SVM
performance with repeated random sub-sampling.
Both classifiers were fitted to the same training and
testing data and the process was repeated 100 times.
The ROC curve and the average AUC for each clas-
sifier were calculated and compared. To statistically
compare the two ROC curves we employed an Ana-
lysis of Variance (ANOVA) approach [22] where the
standard deviation of each AUC was computed as:

SE =

√
θ (1 − θ) +

(
Cp − 1

) (
Q1 − θ2

)
+ (Cn − 1)

(
Q2 − θ2

)
CpCn

, (8)

where Cp, Cn, θ are the number positive instances,
negative instances and the AUC, respectively and

Q1 =
θ

(2 − θ)
,Q2 =

2 ∗ θ2

(1 + θ)
. (9)

Set II: In this experiment we compare RF, bagging,
boosting and SVM performance without the sam-
pling approach. Without sampling the data set is
highly imbalanced, while sampling should improve
the accuracy since the training data sub-samples
fitted to the model are balanced. The process was
again repeated 100 times and the ROC curve and
the average AUC were calculated and compared.

Results
We performed the classification using R, which is open
source statistical software. We used R Random Forest
(randomForest), bagging (ipred), boosting (caTools) and
SVM (e1071) packages. There are two parameters to
choose when running a RF algorithm: the number of
trees (ntree) and the number of randomly selected vari-
ables (mtry). The number of trees did not significantly
influence the classification results. This can be seen in
Figure 4, where we ran RF for different ntree values to

predict breast cancer. As we see from Figure 4, the sen-
sitivity of the classification did not significantly change
once ntree>20. The number of variables randomly
sampled as candidates at each split (mtry) was chosen as
the square root of the number of features (262 in our
case), hence mtry was set to 16. Palmer et al. [23] and
Liaw et al. [24] also reported that RF is usually insensi-
tive to the training parameters.
For SVM we used a linear kernel, termination criter-

ion (tolerance) was set to 0.001, epsilon for the insensi-
tive-loss function was 0.1 and the regularization term
(cost) was set to 1. Also, we left bagging and boosting
with the default parameters.
We randomly selected N = 10,000 data points from

the original HCUP data set. We predicted the disease
risks on 8 out of the 259 disease categories. Those cate-
gories are: breast cancer, type 1 diabetes, type 2 dia-
betes, hypertension, coronary atherosclerosis, peripheral
atherosclerosis, other circulatory diseases and
osteoporosis.

Result set I: Comparison of RF, bagging, boosting and
SVM
RF, SVM, bagging and boosting classification were per-
formed 100 times and the average area under the curve
(AUC) was measured (ROC curves for the four classi-
fiers for diabetes with complication, hypertension and
breast cancer are shown in Figure 5, Figure 6 and Figure
7, respectively). The repeated random sub-sampling
approach has improved the detection rate considerably.
On seven out of eight disease categories RF outper-
formed the other classifiers in terms of AUC (table 5).
In addition to ROC comparison, we used ANOVA [22]
as mentioned earlier to statistically compare the ROC of
boosting and RF, since both of these classifiers scored
the highest in terms of AUC. ANOVA results compar-
ing RF ROC and boosting ROC are summarized in table
6. The lower the p value is the more significant the dif-
ference between the ROCs is. The results of ANOVA
test tells us that although RF outperformed boosting in
terms of AUC, that performance was only significant in
three diseases only (high prevalence diseases). The pos-
sible reason for performance difference insignificance
for the other 5 diseases (mostly low prevalence diseases)
might be the low number of active samples available in
our sampled dataset. For example, for breast cancer we
would have about 166 cases available.
We compared our disease prediction results to the

ones reported by other authors. For instance, Yu et al.
[1], describes a method using SVM for detecting persons
with diabetes and pre-diabetes. They used data set from
the National Health and Nutrition Examination Survey
(NHANES). NHANES collects demographic, health his-
tory, behavioural information and it may also include
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detailed physical, physiological, and laboratory examina-
tions for each patient. The AUC for their classification
scheme I and II was 83.47% and 73.81% respectively.
We also predicted diabetes with complications and with-
out complications and the AUC values were 94.31% and
87.91% respectively (Diabetes without complication
ROC curve in Figure 5).
Davis et al. [8] used clustering and collaborative filtering

to predict disease risks of patients based on their medical
history. Their algorithm generates a ranked list of diseases

in the subsequent visits of that patient. They used an
HCUP data set, similar to the data set we used. Their sys-
tem predicts more than 41% of all the future diseases in
the top 20 ranks. One reason for their low system perfor-
mance might be that they tried to predict the exact ICD-9
code for each patient, while we predict the disease category.
Zhang et al. [10] performed classification on breast

cancer metastasis. In their study, they used two pub-
lished gene expression profiles. They compared multiple
methods (logistic regression, SVM, AdaBoost,

Figure 4 RF behaviour when the number of trees (ntree) varies. This plot shows how sensitivity in RF varies as the number of trees (ntree)
varies, we varied ntree from 1-1001 in intervals of 25 and measured the sensitivity at every interval. Sensitivity ranged from 0.8457 when ntree =
1 and 0.8984 when ntree = 726. In our experiments we used ntree = 500 since the ntree did not have a large affect on accuracy for ntree >1.

Figure 5 ROC curve for diabetes mellitus. ROC curve for diabetes
mellitus comparing SVM, RF, boosting and bagging.

Figure 6 ROC curve for hypertension. ROC curve for
hypertension comparing both SVM, RF, boosting and bagging.
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LogitBoost and RF). In the first data set, the AUC for
SVM and RF was 88.6% and 89.9% respectively and for
the second data set 87.4% and 93.2%. The results we
obtained for breast cancer prediction for RF were
91.23% (ROC curve in Figure 7).
Mantzaris et al [9] predicted osteoporosis using multi-

layer perceptron (MLP) and probabilistic neural network
(PNN). Age, sex, height and weight were the input vari-
ables to the classifier. They reported a prognosis rate on
the testing data of 84.9%. One the same disease, we
reported an AUC for RF of 87%.
One of the important features of the RF approach is

the computation of the importance of each variable
(feature). We used Mean Decrease Gini (Equations 5,
6, 7) measure to achieve the variable importance (table
7). Variables with high importance have strong associa-
tion with the prediction results. For example, Man-
tzaris et al. [9] mentioned that osteoporosis (row 8) is
more prevalent in people older than 50 and occurs in
women more than men and that agrees with the first
and forth important variables (age and sex) reported
by RF (Table 7). Another example is diabetes with
complication (row 3) that often presents with fluid-
electrolyte imbalance and it’s incidence is inversely
correlated with a normal pregnancy.

Result set II: Sampling vs. non-sampling
In this section we show that classification with sampling
outperforms standalone classifiers on the HCUP data set
(table 8). RF, bagging, boosting and SVM with sampling
have higher ROC curves and reaches a detection rate of
100% faster than the standalone classifiers. For

demonstration purposes, we included the comparisons
for RF with and without sampling for three disease cate-
gories, breast cancer, other circulatory diseases and per-
ipheral atherosclerosis (ROC curve in Figure 8, Figure 9,
and Figure 10). Table 8 describes the results for the
non-sampling classification for the four mentioned
classifiers.

Discussion
Disease prediction is becoming an increasingly impor-
tant research area due to the large medical datasets that
are slowly becoming available. While full featured clini-
cal records are hard to access due to privacy issues, dei-
dentified large public dataset are still a valuable resource
for at least two reasons. First, they may provide popula-
tion level clinical knowledge. Second, they allow the
data mining researcher to develop methodologies for
clinical decision support systems that can then be
employed for electronic medical records. In this study,
we presented a disease prediction methodology that
employs random forests (RF) and a nation-wide deiden-
tified public dataset (HCUP). We show that, since no
national medical warehouse is available to date, using
nation-wide datasets provide a powerful prediction tool.
In addition, we believe that the presented methodology
can be employed with electronic medical records, if
available.

Figure 7 ROC curve for breast cancer. ROC curve for breast
cancer comparing both SVM, RF, boosting and bagging.

Table 5 RF, SVM, bagging and boosting performance in
terms of AUC on eight disease categories

Disease RF SVM Bagging Boosting

Breast cancer 0.9123 0.9063 0.905 0.8886

Diabetes no complication 0.8791 0.8417 0.8568 0.8607

Diabetes with/complication 0.94317 0.9239 0.9294 0.9327

Hypertension 0.9003 0.8592 0.8719 0.8842

Coronary Atherosclerosis 0.9199 0.8973 0.887 0.9026

Peripheral Atherosclerosis 0.9095 0.8972 0.8967 0.9003

Other Circulatory Diseases 0.7899 0.7591 0.7669 0.7683

Osteoporosis 0.87 0.867 0.8659 0.8635

Table 6 Statistical comparison of RF and boosting ROC
curves, the lower the value the more significant the
difference is

Disease p value

Breast cancer 0.8057

Diabetes no complication 0.3293

Diabetes with/complication 0.6266

Hypertension 0.2

Coronary Atherosclerosis 0.2764

Peripheral Atherosclerosis 0.8203

Other Circulatory Diseases 0.566

Osteoporosis 0.908
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To test our approach we selected eight chronic dis-
eases with high prevalence in elderly. We performed
two sets of experiments (set I and set II). In set I, we
compared RF to other classifiers with sampling, while in
set II we compared RF to other classifiers without sub-
sampling. Our results show that we can predict diseases
with an acceptable accuracy using the HCUP data. In
addition, the use of repeated random sub-sampling is
useful when dealing with highly imbalanced data. We
also found that incorporating demographic information
increased the area under the curve by 0.33-10.1%.
Some of the limitations of our approach come from

limitations of the HCUP data set such as the arbitrary
order of the ICD-9 codes and lack of patient identifica-
tion. For example, since the ICD-9 codes are not listed
in chronological order according to the date they were
diagnosed, we inherently use future diseases in our pre-
diction. This explains, in part, the high accuracy of our
prediction. In addition, the HCUP data set does not pro-
vide anonymous patient identifier, which can be used to
check if multiple records belong to the same patient and
to estimate the time interval between two diagnoses.
Hence we might use the data for the same patient mul-
tiple times.

Additionally, the data set does not include the family
history; rather it includes the individual diagnosis history
which is represented by the diseases categories.

Conclusions
In this study we used the NIS dataset (HCUP) created
by AHRQ. Few researchers have utilized the NIS dataset
for disease predictions. The only work we found on dis-
ease prediction using NIS data was presented by Davis
et al. [5], in which clustering and collaborative filtering
was used to predict individual disease risks based on
medical history. In this work we provided extensive
proof that RF can be successfully used for disease pre-
diction in conjunction with the HCUP dataset.

Table 7 Top four most importance variable for the eight disease categories

Disease Variable 1 Variable 2 Variable 3

1. Breast cancer Age Sex Secondary malignant Secondary malignant sddsmalignant malignant

2. Diabetes no complication Age Hypertension Hyperlipidemia

3. Diabetes with/complication Age Normal
pregnancy

Fluid-electrolyte
imbalance

4. Hypertension Age Hyperlipidemia Diabetes without compl.

5. Coronary atherosclerosis Age Hypertension Hyperlipidemia

6. Peripheral atherosclerosis Age Coronary
Atherosclerosis

Hypertension

7. Other circulatory diseases Age Dysthymia Anemia

8. Osteoporosis Age Race Hypertension

Table 8 RF, SVM, bagging and boostingperformance
without sub-sampling in terms of AUC on eight disease
categories

Disease RF SVMSVM Bagging Boosting

Breast cancer 0.8793 0.5 0.5085 0.836

Diabetes no complication 0.8567 0.5 0.4749 0.8175

Diabetes with/complication 0.9084 0.648 0.4985 0.8278

Hypertension 0.8893 0.6908 0.4886 0.8515

Coronary Atherosclerosis 0.9193 0.6601 0.4945 0.8608

Peripheral Atherosclerosis 0.8872 0.5 0.4925 0.8279

Other Circulatory Diseases 0.7389 0.5 0.4829 0.6851

Osteoporosis 0.7968 0.5 0.4931 0.8561

Figure 8 ROC curve for breast cancer (sampling vs. non-
sampling). ROC curve for breast cancer comparing RF with the
sampling and non-sampling approach.
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The accuracy achieved in disease prediction is com-
parable or better than the previously published results.
The average RF AUC obtained across all disease was
about 89.05% which may be acceptable in many applica-
tions. Additionally, unlike many other published results
were they focus on predicting one specific disease, our
method can be used to predict the risk for any disease.
Finally, we consider the results obtained with the

proposed method adequate for our intended use, which
is tailored health communication.

Additional material

Additional file 1: Appendix. This file contains two algorithms.
Algorithm 1, which describes the repeated random sub-sampling and
algorithm 2 which briefly explains the general random forest for
classification.
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