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Abstract
Background: DRG-systems are used to allocate resources fairly to hospitals based on their performance. Statistically, 
this allocation is based on simple rules that can be modeled with regression trees. However, the resulting models often 
have to be adjusted manually to be medically reasonable and ethical.

Methods: Despite the possibility of manual, performance degenerating adaptations of the original model, alternative 
trees are systematically searched. The bootstrap-based method bumping is used to build diverse and accurate 
regression tree models for DRG-systems. A two-step model selection approach is proposed. First, a reasonable model 
complexity is chosen, based on statistical, medical and economical considerations. Second, a medically meaningful 
and accurate model is selected. An analysis of 8 data-sets from Austrian DRG-data is conducted and evaluated based 
on the possibility to produce diverse and accurate models for predefined tree complexities.

Results: The best bootstrap-based trees offer increased predictive accuracy compared to the trees built by the CART 
algorithm. The analysis demonstrates that even for very small tree sizes, diverse models can be constructed being 
equally or even more accurate than the single model built by the standard CART algorithm.

Conclusions: Bumping is a powerful tool to construct diverse and accurate regression trees, to be used as candidate 
models for DRG-systems. Furthermore, Bumping and the proposed model selection approach are also applicable to 
other medical decision and prognosis tasks.

Background
The aim of diagnosis related group (DRG) systems is to
classify hospital patients into clinically meaningful and
comprehensible groups that consume similar hospital
resources, usually measured by their length of stay (LOS).
These homogeneous patient groups are described by sim-
ple rules, often including the patients' diagnoses, proce-
dures, sex and age. The aim of DRG is to use these
parameters as an estimate for the resource consumption
of the hospital's individual patients. Among other pur-
poses, e.g. to monitor quality of care and utilization of
services, one of their most important applications is a fair,
performance-based allocation of available resources
among hospitals.

Similar to the British Healthcare Resource Groups
(HRG) [1] system and the Canadian Case Mix groups
(CMG) [2] system, the Austrian DRG-system [3] is based
on conjunctive rules only and no disjunctions are used, as
is the case in other DRG-systems like the Australian AR-
DRG [[4], Chapter H.3] and the German G-DRG [5] sys-
tem. A major advantage of only using conjunctive rules is
the possibility to interpret them as a tree structure, which
gives a compact intuitively interpretable representation of
the statistical model. Basically, these rules can be created
by regression tree methods which, however, often have to
be readjusted according to medical knowledge. Unfortu-
nately, this manual adjustment usually yields a decrease
of predictive accuracy.

Despite the possibility of manually adapting the original
tree alternative models can be searched more systemati-
cally. One possibility for such and approach arises from
an important characteristic of regression trees, i.e., their
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solutions are unstable. Thus minor changes in the data
can result in completely different trees. Nevertheless, all
of these trees can be statistically accurate. Through sys-
tematic resampling of the data by bootstrapping, a wider
range of trees can be constructed. In this work, bumping
[6] a bootstrap-based method proposed by Tibshirani and
Knight is used.

In this article, we show that bumping allows us to build
diverse and more accurate trees compared to the tree
constructed by the currently used Classification and
Regression Trees (CART) algorithm [7], while being
equally or less complex. As it is shown in the results sec-
tion, the statistically most accurate trees are too complex
for the DRG-application. We propose to select the final
models in a two-step approach from preprocessed mod-
els. In a first step the tree size is chosen based on the
models' accuracies as well as economical and medical
considerations. These considerations require a lot of
domain knowledge and are very difficult to express
numerically. Therefore, the final tree size can not be
selected based on statistics alone, but has to be chosen
manually. In a second step, given the pre-specified tree
size, an accurate and medically reasonable model can be
selected. In this way, statistically suboptimal, manual
alterations of models are minimized.

The Austrian DRG-System
Sine 1997 the Austrian hospital financing system is based
on an activity-based hospital financing system called
Leistungsorientierte Krankenhausfinanzierung (LKF). The
aim was to replace the beforehand used per diem-based
payment scheme by a case-based one with following main
objectives [8]:

• Consolidate rapidly increasing costs by reducing the
LOS
• Reduce costs by substituting inpatient care through
ambulatory care
• Make the hospital system more efficient
• Increase the transparency of costs and services
• Improve data quality
• Maintain the quality of medical services
• Ensure modern scientific methods in medical care

In the Austrian DRG-system in-hospital admissions are
classified into homogeneous groups called Leistungsori-
entierte Diagnosefallgruppen (LDF). The current model
of 2009 is formed by a catalog of 979 patient groups
resulting from a three-step classification procedure, sum-
marized in Figure 1. First, the hospital patients are
divided into two groups. In case a patient consumes a
predefined individual medical service a procedure-ori-
ented LDF, Medizinische Einzelleistung (MEL), applies.
Otherwise a LDF group related to the patient's main diag-
nosis, Hautdiagnosegruppe (HDG), is selected. In the
next step these two groups are clustered, based on their

clinical similarity as well as on economical and statistical
criteria, resulting in 204 MEL groups and 219 HDG
groups. In the last step, patients corresponding to the
MEL or HDG groups are further divided into 979 LDF,
with the intention of finding groups with more homoge-
neous LOS. In this step, the patients' specific main diag-
nosis, secondary diagnoses, procedures, age and gender
serve as possible split variables. The aim of using the LOS
as the dependent variable is its good relationship with the
total costs and its availability [8]. This final step of finding
models to classify patients into the LDF groups is subject
of this work and is displayed as Step 3 in Figure 1.

For the construction of the current LDF model the
CART algorithm, a predictive tree model for regression
and classification problems, was used. A main advantage
of regression tree models is that they can be interpreted
as simple rules without requiring any knowledge about
the algorithm itself. This is particularly important as the
final model is not only based on statistics, but its medical
suitability also has to be evaluated by domain experts. For
hospital management and budgeting these simple rules
provide transparent information.

Methods
Regression Trees
The aim of regression tree analysis can be stated by
explaining a continuous response variable Y by a vector of
n predictor variables X = X1, X2,...,Xn, which can be an
arbitrary mix of continuous, ordinal and nominal vari-
ables. The CART algorithm recursively splits the data
into two groups based on a splitting rule. The partition-
ing intends to increase the homogeneity of the two result-
ing subsets or nodes, based on the response variable. The
partitioning stops when no splitting rule can improve the
homogeneity of the nodes significantly.

Splitting points are termed internal nodes and nodes
without successors are called terminal nodes. A binary

Overview of the three-step classification procedure of the 
Austrian DRG-system.
Figure 1 Overview of the three-step classification procedure of 
the Austrian DRG-system.
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tree with m terminal nodes has m - 1 internal nodes.
While the number of terminal nodes represents the num-
ber of patient groups in the model, the number of internal
nodes can easily be interpreted as the required number of
rules for classifying patients. In this paper the number of
internal nodes is used as an measure of tree size or com-
plexity, as for our application it is a more interesting
interpretation than the total number of nodes. For regres-
sion problems the terminal nodes are formed by the aver-
ages of the response variables. The result can be
represented by a tree structure, where nodes are con-
nected via lines indicating the chain of recursive parti-
tioning. Depending on the context, the terms split and
rule are used throughout the manuscript, which, however
both refer to what we have defined as a splitting rule. Two
examples of a regression tree that determines the LDF
group of the main diagnoses group HDG0502 are dis-
played in Figure 2.

The CART algorithm can be summarized by the follow-
ing three steps [[7], Chapter 2]:

1. Examine every allowable split on each predictor
variable. Commonly the binary splits are defined as Xi
<c for continuous variables and as Xi ? C for categori-
cal variables, where C is a finite number of categories
b1, b2,...,bm.
2. Select and execute the split that minimizes the
impurity measure in the nodes. Samples that fulfill
the criterion of the binary split propagate down into
the descendant left node and the other variables into
the right node. In our analysis we used the least

square cost function, which is computationally effi-
cient and the standard implementation of the CART
algorithm.
3. Recursively continue step 1 and 2 on the descen-
dant nodes until the homogeneity of the nodes cannot
be improved significantly. Additionally, often addi-
tional stopping criteria are defined, e.g. minimum
sample sizes in the terminal nodes.

Trees constructed in the described fashion tend to
grow too big and have too few observations in the termi-
nal nodes. In order to overcome this problem the trees
are recursively pruned back to smaller size. In the DRG
application we iteratively pruned back the internal node
which led to the smallest degeneration in accuracy, until
only one internal node remained. From there all tree sizes
are evaluated separately.

Besides financial issues and medical preferences to split
one HDG or MEL group further up than another, statisti-
cally the accuracy-complexity tradeoff of selecting the
right sized tree can be assessed by the cost-complexity
criterion defined as [[7], Chapter 3]:

where R(T) is the Mean Squared Error (MSE) and | |
is the number of terminal nodes, or the number of inter-
nal nodes minus one, of model T. α is a non-negative con-
stant which regulates the additional cost for more
complex trees.

R T R T Tα α( ) ( ) | |= +

T

Two different trees constructed by bumping from the HDG0502 data. The two trees have different split points and variables, but 
have very similar predictive accuracy.
Figure 2 Two different trees constructed by bumping from the HDG0502 data. The two trees have different split points and variables, but 
have very similar predictive accuracy.
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Requirements and Review of Alternative Tree Methods
There are many alternative regression tree algorithms,
mainly differing by their tree structure, splitting criteria,
pruning method and handling of missing values. In addi-
tion quite a lot of hybrid algorithms have been proposed,
e.g. Quinlan's M5 algorithm [9] fits a linear regression
model in each of the leaves to improve accuracy. Ensem-
bles of trees [10] have become commonly used which are,
on the other hand, less easy to interpret as the resulting
model consists of more than one tree. Moreover, regres-
sion trees with soft splits [11] and methods to combine
multiple trees into a single tree [12] were introduced.
Both methods provide more accurate trees which, how-
ever, do not offer a distinct split point. Although, apart
from the models accuracy, its low complexity, interpret-
ability as well as its simple tree structure are most desir-
able properties for the DRG application.

The CART algorithm is a greedy algorithm which
builds trees in a forward stepwise search. Therefore, its
results are only locally optimal, as splits are chosen to
maximize homogeneity at the next step only. By perturb-
ing the data bumping identifies different trees in a greedy
manner, while some of these models may be close to a
global or local maximum. Besides the used bumping
method, there are two other common groups of algo-
rithms to find more globally optimal trees that fulfill our
requirements of simplicity and interpretability, which are
discussed in the following.

The first approach is to build trees in a globally more
optimal way. This can be done by calculating the effects
of the choice of the attribute deeper down in the tree,
which in principle can be accomplished by an exhaustive
search [13]. However, this is computationally intractable
for larger data-sets. As a consequence, the search space is
usually limited by heuristics. According to previous stud-
ies, look-ahead procedures are not always beneficial over
greedy strategies and have been criticized [14,15]. On the
contrary several authors [16-18] reported a significant
improvement in tree quality. Murthy and Salzberg [14]
conclude that limited look-ahead search on average pro-
duces shallower trees with the same classification accu-
racy. In some cases the trees from the look-ahead
procedures are even both, less accurate and bigger than
the trees produced by a greedy strategy. Quinlan and
Cameron-Jones [15] argue that these rather unpromising
results are due to oversearching the hypothesis space,
resulting in an overfit of the training data.

Shi and Lyons-Weiler [19] presented the Clinical Deci-
sion Modeling System (CDMS), which allows searching
for random classification trees that fulfill user specified
constraints about model complexity and accuracy. Simi-
lar to our approach they follow the idea of constructing a
set of models first and leave the selection of a clinically
meaningful tree to the user of their software.

The second group of algorithms built the tree in a
greedy manner first and improve the tree structure later
by the use of optimization methods, e.g. evolutionary
algorithms [20], Bayesian CART [21,22], simulated
annealing [23] and tabu search [24].

Evolutionary algorithms are a family of algorithms that
use stochastic optimization based on concepts of natural
Darwinian evolution. For tree algorithms genetic opera-
tions can be applied to modify the tree structure and the
tests that are applied in the internal nodes. Based on
these operations new populations of trees are explored
iteratively. The newly generated population is then
assessed by a fitness function, which evaluates the quality
of an individual within one population. Individual trees
that are assessed to have a high fitness are more likely to
be used in the next round, whereas the other models are
rejected.

Kalles [25] classification tree algorithm uses a fitness
function that takes the two quality attributes of misclassi-
fication rate and tree size into account. A survey of fitness
approximations is given in [26]. An evolutionary
approach that is applicable for classification and regres-
sion trees is presented in [20].

Bayesian CART [21,22] algorithms aim to stochastically
optimize pre-specified CART trees in an approximated
Bayesian way. The space of all possible trees is explored
by Monte Carlo methods, which give an approximation to
a probability distribution over the space of all possible
trees. Modification of the tree structure is conducted by
employing different move types, including grow and
prune steps, as well as a change step which changes the
split at an internal node. In contrast to evolutionary algo-
rithms Bayesian CART is not population oriented, but
only modifies one tree at a time.

Simulated annealing [23] is a stochastic search method
that is inspired by the annealing of metals. An initial solu-
tion is modified by permutations and controlled by an
evaluation function. Uphill moves, i.e., changes to a worse
solution are accepted by the degree of badness and a
parameter called Temperature (T). When T is high the
search is almost random, while at a lower temperature the
updates are greedier. During the iteration T is slowly
decreased and the time spent at a specific temperature is
increased. The basic idea of simulated annealing is to
avoid to get stuck in a local minimum to early when T is
high and to find the local optimal solution when T is low.

From an initial tree model, tabu search [24] iteratively
contacts several neighborhood moves, i.e., modifications
of the tree, and selects the move with the best solution
among all candidate moves for the current iteration. A set
of admissible solutions is stored in a so called candidate
list. The size of the candidate list determines the tradeoff
between time and performance. Reversal moves are
avoided by making selected attributes of moves tabu, i.e.,
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forbidden. Tabu search allows searching for solutions
beyond local optimum while still making the best possi-
ble move at each iteration.

Model Search by Bootstrap
Bootstrap methods are most commonly based on the idea
of combining and averaging models to reduce prediction
error. Examples of such methods include Bagging [27],
Boosting [28] and Random Forests [10]. The basic idea
behind Bagging and Random Forests is to reduce variance
by averaging a number of B models, created on the basis
of B different data-sets. In contrast, Boosting reduces the
overall training error by recursively fitting models to the
residuals of the previously constructed regression tree.
Although these methods can improve the accuracy and
the variability of the results significantly, the final model
itself loses its interpretability and the influence of the pre-
dictor variables becomes unclear.

In contrast to other bootstrap methods the result of
bumping is not an ensemble of trees but only single trees,
which are built on different bootstrap samples. The boot-
strap samples themselves are formed by random sam-
pling with replacement from the original training data,
while each bootstrap sample has the same size as the
original training data-set. This procedure is repeated B
times, producing B bootstrap data-sets, from which, in
turn B models can be built.

Bumping was successfully applied in combination with
several learning algorithms including Classification
Trees, Linear Regression, Splines and parametric density
estimation [6], Linear Discriminant Analyis (LDA) [29],
Neural Networks [30] and Self Organizing Maps (SOM)
[31].

Tibshirani and Knight [6] selected the best tree regard-
ing accuracy on the original training-set. In our applica-
tion the best j trees for each tree complexity, measured by
the number of internal nodes, are of interest. This is
because we want to construct different models first and
leave the decision about the final model to medical
domain experts. The bumping procedure can be summa-
rized as follows:

1. A set of bootstrap samples z*1, z*2,...,z*B are drawn
from the training-set z
2. Models are fit to each bootstrap sample giving pre-

diction (x) for each bootstrap b = 1, 2,...,B at input
point x. As a convention the original training-set z is
included among the B bootstrap samples as well.
3. For each tree complexity, the best trees are selected
based on their average prediction error on the origi-
nal training-set z.

In the following section the evaluation of the selected
trees on independent data is further discussed. Addition-

ally, the evaluation criteria to assess the number of statis-
tically accurate model choices are defined.

From the presented methods that allow searching for
alternative tree models, only bumping and evolutionary
algorithms offer a diverse set of model choices. However,
in principle the other methods could be modified to store
an arbitrary amount of accurate candidate trees that are
created during the search process.

A particular advantage of bumping compared to other
non-greedy regression tree methods is the possibility to
computationally effective construct and select the best
models for each tree size. By the use of bumping all candi-
date trees can simply be grown to full size first and sec-
ondly be pruned back iteratively by one node. As a result,
for each tree size the best model can be selected from the
B bootstrap trees. Other algorithms that search for glob-
ally optimal candidate models would tend towards trees
that are optimal for some tree complexity. These trees
would either be very complex, or would at least have sim-
ilar complexity for all candidate trees if the models' qual-
ity is measured by accuracy and the complexity of the
tree. However, iterative pruning of these models does not
necessarily result in optimal models with smaller tree
size. Therefore, in order to build optimal trees for each
tree size, each model complexity, determined by the
number of internal nodes, would have to be handled sep-
arately.

For look-ahead algorithms this computational require-
ments would be very high as binary trees with a given
number of nodes can have different forms. That is, there
are many possible arrangements, called topologies, for a
given number of internal nodes. Therefore, for each tree
complexity a number of topologies Cn would have to be
considered. Where Cn grows exponentially with the num-
ber of nodes n and is given by the Catalan number [32]:

where Cn is the number of topologies for trees with n
internal nodes. The number of binary trees with n = 1 to
n = 6 internal nodes are 1, 2, 5, 14, 42, 132.

Evaluation Criteria
The performance of bumping compared to the standard
CART algorithm is evaluated based on its ability of find-
ing homogeneous patient groups with similar LOS. That
is modeling and predicting the LOS of hospital patients,
as it is described in the third step of the three-step classi-
fication procedure, summarized in Figure 1.

Tree size has a big influence on the accuracy of models.
Since bumping compares different models on the training
data, the models must have similar complexity [[7], Chap-
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ter 8], given by the number of internal nodes. Therefore,
only models with the same number of nodes are com-
pared in our analysis. We limited model sizes to a maxi-
mum number of 16 internal nodes resulting in a
maximum of 17 patient groups and a tree depth of 5 cor-
responding to a maximum of 5 rules to classify patients.
As it can be seen in Figure 3 more complex models only
gave relatively small improvements in predictive error
and were considered as too complex for our application.
As a comparison, in the LKF model 2009 the most com-
plex tree has 11 internal nodes and few trees have more
than 4 internal nodes. For each comparison B = 200 boot-
strap samples were drawn from the training-set. We used
the R package rpart [33] to build regression trees. The
suitability of the bootstrap method is evaluated in two
ways, which are described in the following.

Accuracy of the Best Bootstrapped Tree
In this first evaluation step we want to show that the best
bootstrapped tree offers increased predictive accuracy
compared to the CART algorithm. The difference in
accuracy is assessed by the use of 10-fold cross-validation
[[34], Chapter 7]. In 10-fold cross-validation the data is
first partitioned into complementary subsets called folds.
The model is then built on 9 folds and the remaining fold
is used as a test-set. This analysis is repeated 10 times,
where each of the folds is used as the test-set once.
Finally, the estimate of predictive accuracy is calculated
from the average performance of the 10 models on their

associated test-sets. The evaluation on independent data
is especially important as a wider search of the hypothesis
space can lead to overfitting of data [15].

To avoid overfitting, each terminal node should have a
minimal amount of observations mmin. However, in our
comparison, we did not restrict the minimum number of
mmin. The reason is, that we want to avoid the effect of
trees stopping to split with mmin - k observations, where k
is a small number of instances, while similar trees with
mmin observations further split up. To give an example
where this is important imagine that the standard CART
tree stops splitting at node j with mmin - 1 nodes. One of
the 200 bootstrap trees is very similar to the standard
CART tree but has mmin observations in node j. As a
result the bootstrap tree splits at j while the CART tree
stops splitting. Thus, this marginal difference of one more
observation in j results in two different tree-topologies
which can have significantly different predictive accuracy.

Number of Accurate Model Choices
In the second step of our evaluation the possibility to
construct diverse choices of accurate trees by the use of
bootstrap sampling is presented. The estimation of accu-
racy takes the whole data-set into account. In this part of
the evaluation, where we assess the number of diverse
choices of accurate trees, we limited the minimum num-
ber of observations to 30, which we thought of to be large

Reduction of the MSE obtained by the best bootstrapped tree for different tree sizes.
Figure 3 Reduction of the MSE obtained by the best bootstrapped tree for different tree sizes.
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enough to avoid overfitting as well as to be a minimum
requirement to form a patient group in the LKF model.

The DRG-Data
The basis for our analysis are 8 data-sets, 4 MEL and 4
HDG groups of the Austrian DRG-system 2006. The
data-sets consist of information about the patients' main
diagnosis, secondary diagnoses, procedures, number of
diagnoses, number of procedures, sex and age, as well as
the patients' length of stay. The characteristics and a short
description of the medical meaning of the evaluated data-
sets are summarized in Table 1. Permission to use the
data was granted by the Bundesministerium für Gesund-
heit, Familie und Jugend (BMG) [35].

Results
Accuracy of the Best Bootstrapped Tree
Results of the relative predictive accuracy of the best
bootstrapped tree compared to the CART tree are dis-
played in Figure 4. The individual Boxplots refer to one

data-set and one possible tree complexity each and result
from the 10 test-sets from the cross-validation procedure.
Although the bootstrap based trees are not always better
than the standard CART trees, it can be observed that on
average they offer increased accuracy for most data-sets
and tree complexities. The high variability of the relative
performance is also due to a relative small portion of test-
data (10%) of each fold. However, as each observation
serves as a test-sample in one of the folds, the average of
the results gives a good estimate of the predictive accu-
racy. No obvious relationship between the variability of
the relative performance and the complexity of the trees
can be observed.

Table 2 summarizes the results in less detail by display-
ing the average change in relative accuracy for each data-
set and tree size. It can be observed that for 5 of the 8
data-sets the average accuracy improved for all evaluated
tree sizes. The HDG0106 main diagnosis data-set is the
only one where the best bootstrap trees performed worse
than the standard CART trees. The bootstrap method

Comparison of the best bootstrap based tree with the standard CART tree.
Figure 4 Comparison of the best bootstrap based tree with the standard CART tree.
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also performed worse for models with small tree sizes (2-
4 internal nodes) for the MEL0501 data-set as well as for
trees with 10 and 14 internal nodes for the MEL0101
data-set. However, the majority of the bootstrap trees
outperformed the standard CART trees. Averaged over
all data-sets an improvement of 1.06-4.90% for the differ-
ent tree sizes could be achieved. No specific reason for

the worse performance, of the bumping methodon the
two data-sets HDG0106 and MEL0501 could be found.

Figure 3 illustrates the reduction of the total MSE by
models with different tree complexities estimated by 10-
fold cross validation. It can be observed that the predic-
tive error is already reduced with a small number of splits
and the improvements obtained by additional splits
become progressively smaller with increasing tree com-

Table 1: Description of the evaluated data-sets.

Data-Set Description Sample
Size

Variables
(Interval,Nominal)

HDG0106 Parkinson's disease 6155 114 (109,5)

HDG0202 Malignant neoplasms 3933 55 (47,8)

HDG0304 Eye diagnoses 9067 41 (36,5)

HDG0502 Acute affections of the 
respiratory tract and 
middle atelectasis

8251 100 (92,8)

MEL0101 Interventions on the 
skull

875 60 (54,6)

MEL0203 Small interventions in 
connective tissue and 
soft tissue

17268 58 (52,6)

MEL0401 Interventions on the 
outer and middle ear, 
designed to treat a 
liquorrhoe

4102 44 (40,4)

MEL0501 Interventions on the 
esophagus, stomach 
and diaphragm

3432 86 (80,6)

Table 2: Relative average improvement. 

Tree Size HDG0106 HDG0202 HDG0304 HDG0502 MEL0101 MEL0203 MEL0401 MEL0501 Average

2 0.00 1.12 2.55 0.71 1.20 3.74 3.34 -1.52 1.39

3 0.00 2.78 3.33 1.65 5.96 1.88 3.92 -1.97 2.19

4 -0.36 5.57 3.52 1.23 5.77 3.30 4.28 -1.05 2.78

5 0.42 3.18 3.85 2.30 7.43 0.26 3.81 -0.84 2.55

6 -0.24 4.38 5.47 1.13 9.65 12.03 2.33 4.41 4.90

8 -0.11 6.05 1.75 1.15 1.06 12.91 2.67 3.63 3.64

10 -0.06 3.99 3.16 0.69 -2.93 5.09 1.94 2.83 1.84

12 -0.42 4.14 3.24 1.75 2.89 1.61 1.24 4.95 2.43

14 -1.87 3.35 1.82 1.20 -0.36 0.00 2.15 2.17 1.06

16 -0.76 2.11 2.52 1.27 1.38 1.18 1.89 0.65 1.28

Relative average improvement of the best bootstrapped tree compared to the standard CART tree using 10-fold cross validation.
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plexity. Although very large trees often give the best pre-
dictive performance, these complex trees are difficult to
interpret and hard to work with.

The average improvement in relative accuracy by the
bootstrap method often offers models with the same
accuracy but less complex rules. For example, models
with 3 internal nodes compared to models with 2 internal
nodes offer an average increase in accuracy of 1.60%,
while the accuracy of the bootstrap method achieved an
average improvement of 1.39%. For the data-sets
HDG0304, MEL0203 and MEL0401 the best boot-
strapped tree with 2 internal nodes even outperforms the
CART tree with 3 internal nodes. This effect becomes
even more significant for larger tree sizes where one or
even several rules can be omitted without degeneration
in performance.

Number of Accurate Model Choices
In the second step the number of trees constructed by
bumping that are at least as accurate or better than the
standard tree is evaluated. Models are considered dissim-
ilar when at least one split variable differed between the
trees. For groups of trees where all the split variables are
the same, but the split points differ the most accurate tree
is selected and considered as a candidate model.

In Table 3 the numbers of distinct accurate trees are
broken down into accuracy classes for each tree complex-
ity. The results are displayed as the mean, minimum and
maximum number of different trees constructed on the 8
evaluated data-sets and are within an accuracy class. To
give an example, for models with 4 internal nodes on
average 23.3 distinct trees with a minimum performance
in relative accuracy of -1% were constructed. The mini-
mum number of distinct trees constructed on one of the

data-sets is 6 and the maximum number is 67. From these
23.3 different models an average of 7.4 trees have a rela-
tive improvement of accuracy > 1% and in turn 3.9 trees
achieved a relative improvement of > 3%.

The results show that even for very low tree complexi-
ties alternative models can be found. For simplest models,
with only 2 internal nodes, an average of 3.4 different
trees with at least similar accuracy [-1%, +1%] were
found. For slightly more complex models with 3 rules the
average number of models with at least similar accuracy
increased to 14.1 and 4.8 trees offered improve accuracy
of > 1%, compared to the standard CART tree. It can be
observed that with increasing model size the number of
different trees increases to 187 for models with 16 inter-
nal nodes, while many of these models only differ by
minor important splits at the bottom of the trees, which
do not contribute much to the reduction of impurity and
are medically very similar.

Therefore the similarity of trees should be further dis-
tinguished. How to assess statistical similarity of trees by
means of topography and similar partitioning is discussed
in [36,37]. However, in the DRG-application we are
mainly interested in the choices of split-variables regard-
ing their medical meaning. In our analyses nodes differ-
ing further up in the tree are considered as more
influential, as more patients are affected by these rules
and they also contribute more to the reduction of the
total variance. As an estimate on which levels the differ-
ences occur the results from Table 3 can be taken into
account.

Conclusions
Based on the evaluation of 8 large data-sets taken from
the Austrian DRG system, we showed that bumping can

Table 3: Number of diverse trees. 

Tree Size [-1 %, ∞] [+1 %, ∞] [+3 %, ∞]

2 3.4 (0,9) 0.1 (0,1) 0.1 (0,1)

3 14.1 (0,45) 4.8 (0,27) 1.3 (0,9)

4 23.3 (6,67) 7.4 (0,23) 3.9 (0,21)

5 30.3 (10,45) 12.4 (0,37) 7.1 (0,34)

6 39.8 (7,66) 10.4 (0,47) 4.3 (0,34)

8 42.9 (12,84) 2.5 (0,8) 0.0 (0,0)

10 60.1 (10,115) 9.0 (0,29) 0.1 (0,1)

12 63.4 (6,181) 12.1 (0,93) 0.0 (0,0)

14 76.1 (5,183) 13.1 (0,70) 8.8 (0,70)

16 82.5 (5,187) 16.6 (0,98) 1.9 (0,15)

Number of diverse trees with an improvement in relative accuracy of [min%, max%] compared to the CART tree, displayed as mean(min, max) 
referring to the mean, minimum and maximum number of trees constructed on the 8 evaluated data-sets.
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be used to construct diverse and accurate candidate mod-
els for DRG-systems that are based on conjunctive rules.
Compared to other methods that allow a broader search
of the hypothesis space, bumping can be used computa-
tionally more efficient. The presented results show that
on average the predictive accuracy of the best bootstrap
based tree offers improved accuracy compared to the tree
from the standard CART algorithm. Furthermore, less
complex trees can be found that are non-inferior com-
pared to the single tree constructed by the original algo-
rithm.

During the whole development of the Austrian DRG-
system medical experts have been involved in the evalua-
tion of the resulting regression trees. Many times the sta-
tistical optimal tree was not selected because of medical
expert opinion. From discussions with medical experts,
we know that a single, data-driven model is not always
the medical correct one and different options have to be
presented for medical evaluation. With our approach of
constructing diverse models for different pre-specified
tree sizes, we allow a wide range of candidate models to
be considered. For these candidate models suitable tree
sizes can be selected, based on the cost-complexity crite-
rion as well as on economical and medical consider-
ations. Subsequently, given a desired tree complexity,
medical domain experts can chose a final model. In this
way, statistically suboptimal, manual alterations of mod-
els can be minimized.

This presentation illustrates the possibilities of bump-
ing, which will be used in the next years of the mainte-
nance and further development of the Austrian DRG-
system. Besides its relevance to DRG-systems, bumping
and the proposed two-step model selection process are
especially useful to assist in any kind of classification or
regression problems in medical decision and prognosis
tasks [38-40]. This is because domain specific knowledge
can be used to guide the selection of a medically mean-
ingful and statistically accurate model.
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