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Abstract

Background: Scoring systems are a very attractive family of clinical predictive models, because the patient score
can be calculated without using any data processing system. Their weakness lies in the difficulty of associating a
reliable prognostic probability with each score. In this study a bootstrap approach for estimating confidence
intervals of outcome probabilities is described and applied to design and optimize the performance of a scoring
system for morbidity in intensive care units after heart surgery.

Methods: The bias-corrected and accelerated bootstrap method was used to estimate the 95% confidence
intervals of outcome probabilities associated with a scoring system. These confidence intervals were calculated for
each score and each step of the scoring-system design by means of one thousand bootstrapped samples. 1090
consecutive adult patients who underwent coronary artery bypass graft were assigned at random to two groups of
equal size, so as to define random training and testing sets with equal percentage morbidities. A collection of 78
preoperative, intraoperative and postoperative variables were considered as likely morbidity predictors.

Results: Several competing scoring systems were compared on the basis of discrimination, generalization and
uncertainty associated with the prognostic probabilities. The results showed that confidence intervals
corresponding to different scores often overlapped, making it convenient to unite and thus reduce the score
classes. After uniting two adjacent classes, a model with six score groups not only gave a satisfactory trade-off
between discrimination and generalization, but also enabled patients to be allocated to classes, most of which
were characterized by well separated confidence intervals of prognostic probabilities.

Conclusions: Scoring systems are often designed solely on the basis of discrimination and generalization
characteristics, to the detriment of prediction of a trustworthy outcome probability. The present example
demonstrates that using a bootstrap method for the estimation of outcome-probability confidence intervals
provides useful additional information about score-class statistics, guiding physicians towards the most convenient
model for predicting morbidity outcomes in their clinical context.

Background
Many models to predict the risk of adverse health events
have recently been proposed in a wide range of medical
fields. Their main goal has been to help physicians in
clinical management and/or follow-up of critical patients
and also to improve the quality of care, to teach and
train inexperienced medical staff and for educational
purposes, such as worksite health promotion programs
[1].

Two different approaches are employed to define pre-
dictive risk rules. The first uses probability models
based on logistic regression, Bayesian classification or
artificial neural networks, which enable estimation of
diagnostic probability, usually also providing reliable
individual prognostic information [2-6]. The second uti-
lizes very simple scoring systems, in which the predictor
variables are usually selected and scored subjectively by
expert consensus or objectively using statistical methods
[7,8]. Scoring systems are frequently preferred by clini-
cians and health operators because they are so simple
that individual scores can be assessed immediately,
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without using any data processing system. For example,
they are often employed to help physicians select treat-
ment options and allocate resources in intensive care
units, where control of vital functions is the most
important goal. Scoring systems are therefore currently
used in many clinical applications, despite the fact that
they are generally less accurate than probability models
and fail to provide precise individual risk estimation.
However, since they rely on identifying cut-off values to
dichotomize quantitative variables and their trustworthi-
ness depends on the availability a sufficient proportion
of adverse outcomes for their design, their correct
design is essential for a reliable interpretation of the
scores obtained [4,9].
A common problem is the effective exportability of any

risk-prediction model to clinical scenarios different from
those in which the model was designed; predictive mod-
els must be locally validated and tuned to provide risk-
adjusted outcomes [3,4,9]. Model customization is often
indispensable because standardization of local practices
is difficult and patient populations may differ [10-12].
Another important component of model accuracy is

agreement between predicted probabilities and observed
proportions, known as calibration, which allows a mod-
el’s prognostic ability to be evaluated [5]. For dichoto-
mous outcomes concerning the presence (or absence) of
an adverse health event, true risk probabilities cannot be
known intrinsically. Nevertheless, it is sometimes useful
to estimate the occurrence of these events using a con-
tinuous scale. In particular, an estimated probability of
the patient’s outcome is usually preferred to a simpler
binary decision rule. Model calibration is independent of
discrimination, since there are models with good discri-
mination but poor calibration. A well-calibrated model
gives probabilities that can be reliably associated with
the true risk of incurring outcomes. While for probabil-
ity models, calibration can be assessed using the
Hosmer-Lemeshov test [13], this test may not be com-
pletely appropriate for models with discrete outputs
(such as scoring systems).
In this study we describe an approach that can be

used for the statistical interpretation of diagnostic and
prognostic ability of simple scoring systems. It uses a
numerical bootstrap technique to estimate the confi-
dence interval of the risk probability associated with an
integer score [14-16]. We use the method to design and
optimize the performance of a predictive scoring system
for morbidity of heart surgery patients in an intensive
care unit (ICU).

Methods
Training and testing samples
To describe the method used to assess and optimize the
performance of a predictive scoring system, we used the

experimental data of a previous study [9], based on a set
of 1090 consecutive adult patients who underwent
coronary artery bypass grafting and were admitted to
the intensive care unit of the Department of Surgery
and Bioengineering of Siena University. A collection of
78 preoperative, intraoperative and postoperative vari-
ables were considered as likely risk predictors that could
be associated with the development of morbidity in the
ICU. A detailed description of these variables can be
found in the paper by Cevenini et al. [9].
A dichotomous (binary) variable was chosen as ICU

outcome (morbidity). Morbidity outcome was defined
for patients developing at least one of the following clin-
ical complications: cardiovascular, respiratory, neurologi-
cal (central nervous system), renal, infectious and
hemorrhagic complications. The percentage morbidity
in the whole patient set was 20.7%.
Normal and morbid cases were assigned at random to

two groups of equal size (545 cases each) so as to define
random training and testing sets with equal percentage
morbidities. To ensure that this allocation of cases did
not introduce systematic sampling errors, training and
testing data was compared using the Fisher exact test
for dichotomous variables and the z-test or Mann-Whit-
ney test for continuous normally or non-normally dis-
tributed variables, respectively [17]. No significant
difference was found between training and testing data,
setting statistical significance at a p-value less than 0.05.

Scoring system
The model used to assess cardiac postoperative morbid-
ity was a simple scoring system in which the integer
score of morbidity risk was obtained by summing a
weighted combination of selected binarized predictor
variables [4]. In a previous paper this scoring system
was compared to other types of models when applied to
prediction of patient outcomes in the ICU [9]. Besides
having discrimination similar to various other methods
(the Bayes rule, logistic regression, k-nearest neighbour
and artificial neural networks), its performance was very
similar to the Higgins scoring model, which is a well-
known and extensively employed scoring system in
post-operative ICUs [18].
The variables were first made dichotomous and then

coded with binary values (0 or 1), comparing original
values with set cut-off points. Once a cut-off point was
selected for a given variable, the resulting 2 × 2 classifi-
cation matrix of training data enabled sensitivity and
specificity to be computed [17]. Of course, sensitivity
and specificity both varied with changes in cut-off point.
In the present study, the cut-off point for each variable
was chosen as the point of the ROC (receiver operating
characteristic) curve closest to the upper left corner
(100% sensitivity, 100% specificity).
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The discrimination power of each binary-coded vari-
able was then evaluated on the basis of the correspond-
ing 95% confidence interval (CI) of the odds ratio
[17,19]. Only binary variables with an odds ratio signifi-
cantly greater than 1 (p < 0.05) on the training data
were considered likely to be chosen as potential morbid-
ity predictors during selection of model features by a
forward stepwise algorithm.
At the first step, the forward algorithm of feature selec-

tion chose the binary variable with the highest area under
the ROC curve (AUC) on the training data. At any subse-
quent step the variable giving the highest increment to
AUC was entered. Various stopping criteria accounting
for increments to AUC were defined on the training data
from one step to another [20]. Too restrictive a criterion
risked stopping the algorithm of variable selection when
only a few predictors had been entered in the scoring
system, thus reducing the possibility of associating an
effective probability of morbidity with each integer score.
On the other hand, conclusive selection of the optimal
predictor set was also made on the basis of the testing
data, optimizing the capacity of the model to maintain
good predictive performance on data not used for training.
Thus we used a rather soft stopping criterion on the train-
ing data, so that the forward procedure stopped when the
cumulative increment in AUC obtained in five consecutive
steps was less than 1%. The model integer score was
simply computed by summing the binary values of the
selected variables. At each step, formerly selected variables
were also reconsidered for entry in the model. This
allowed the model to assign different weights (scores) to
each predictor variable by adding its corresponding binary
value several times.
The model score for a generic test patient was simply:

s si i

i

d

=
=
∑ 

1

(1)

where d is the number of predictors in the model, si
the score associated with the ith predictor and li a coef-
ficient assigned a value of 0 or 1 after comparison of the
ith predictor with its corresponding cut-off point.

Confidence interval estimation
In general, a confidence interval for an unknown para-
meter θ is more informative than a point estimate for θ
alone. The construction of confidence intervals is an
area in which the bootstrap has achieved major success,
and several techniques are available [15,21].
Bootstrapping is a highly computer-intensive statistical

procedure for estimating the sampling distribution of an
estimator by sampling with replacement from the original
sample. It can be used to produce good approximate

confidence intervals when the statistical distribution is
unknown or so complex that conventional techniques are
not valid and no additional samples are available [15].
The key to the strategy is to create alternative versions of
data that “we might have seen”. Instead of generating
observations from a known theoretical distribution, we
generate observations from the distribution of the sample
itself - the empirical distribution. After all, available data
gives us a lot of information about the relative probabil-
ities of different values, and in certain senses this empiri-
cal distribution is actually the least prejudiced estimate
possible of the underlying distribution - anything else
imposes biases or preconceptions, which are possibly
accurate but also potentially misleading. Each simulation
results in a new sample, typically of the same size as the
original, by randomly selecting (with replacement) indivi-
duals from the original sample. “With replacement”
means that at each step in the selection process, every
individual from the original sample is again eligible to be
selected, whether or not he/she has already been selected.
Thus, in each bootstrap sample, some of the original
individuals may not be represented and others may be
represented more than once.
With respect to other numerical methods, bootstrap-

ping methods show a lower bias or variance and exploit
computer processing power to estimate even complex
statistical parameters in a simpler way than analytical
methods [15,16,21].
A natural question when employing the bootstrap

approach to estimate confidence intervals concerns the
number of bootstrap samples needed to achieve accurate
intervals. Based mainly on empirical evidence, several
researchers [14] have reported that one thousand boot-
strap samples are enough to accurately estimate boot-
strap confidence intervals.
The percentile interval is the simplest bootstrap

method for calculating a confidence interval. To calcu-
late a 95% confidence interval it is enough to select the
bootstrap estimates which lie on the 2.5th percentile and
97.5th percentile. The percentile intervals are very simple
to use but comparison with exact statistical methods
have shown them to have unsatisfactory coverage in
some cases. Part of the problem with percentile confi-
dence intervals is that the bootstrap estimates are biased
with respect to the original estimate and the standard
error varies with the value of the estimate. Consequently
the percentile bootstrap has been extended in many
different ways to increase confidence accuracy [22].
The bias-corrected and accelerated (BCa) bootstrap

method is considered a substantial improvement over
the standard percentile method [21]. It employs two
coefficients, called bias correction and acceleration, to
incorporate information on bias and change in standard
error of the estimator into the estimation procedure. An
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approximate BCa confidence interval is second-order
accurate, i.e. its coverage probability differs from its
advertised coverage probability by terms which go to
zero at a rate of n-1 where n is the sample size in the
case of independent identically distributed observations
[14,22]. On the contrary the standard intervals, obtained
by taking the parameter estimator and an estimate of its
standard deviation, are first-order accurate (i.e. the dif-
ference goes to zero at rate n-½). Evidently, if the sample
size is made sufficiently large, the second-order-accurate
method will be superior to the first-order one.
The BCa bootstrap intervals are not only asymptoti-

cally more accurate than the standard intervals, but they
are also more correct [15]. Confidence intervals are said
to be correct when they are optimal in the sense of
being the shortest possible for the given coverage [23].
In the present study the BCa bootstrap method was

used to estimate the confidence intervals of the prog-
nostic probabilities associated with estimated integer
scores [14,15]. The 95% confidence intervals of patient
morbidity percentages were calculated for each score
and each step of model design, using one thousand
bootstrapped samples generated from the training data.
All computations were made using MATLAB code.

Results
The circles in Figure 1 show the AUC values obtained
using the above procedure for the forward selection of
model features on the training data. The stopping criter-
ion arrested the stepwise algorithm at the thirteenth
step, after eleven predictor variables were selected: two
variables (O2ER and IABP) entered twice.
Table 1 summarizes the whole set of variables selected

on the basis of training data only. Three variables
referred to preoperative information about congestive
heart failure (CHF), peripheral vascular disease (PVD)
and emergency (EM). All these variables were intrinsi-
cally dichotomous. In particular, emergency cases were
defined as unstable angina, unstable hemodynamics, or
ischemic valve dysfunction that could not be controlled
medically [18]. Four selected variables were related to
surgery features: mitral valve replaced with artificial
valve (MVR) or repaired surgically (MR), intra-aortic
balloon pump (IABP) and cardio-pulmonary bypass time
(CPBt). While the first three surgical variables were
intrinsically dichotomous, the last one was made dichot-
omous setting a cut-off point equal to 2 hours, i.e. CPBt
≥2 hours was considered a morbidity predictor. Finally,
the remaining four variables were postoperative data
collected in the first three hours after admission to the
ICU. Cardiac inotropic drugs (Card-ID) and anti-
arrhythmic drugs (AD) were intrinsically dichotomous,
whereas oxygen extraction ratio (O2ER) and carbon
dioxide production (VCO2) were made dichotomous

(O2ER ≥40% and VCO2 < 180 ml/min were taken as
morbidity predictors).
The stars in Figure 1 indicate the AUC values calcu-

lated, step by step, from testing data using the model
developed on the training data. Although we see that
AUC obtained on training data continued to go up until
the last step, no appreciable increase in AUC in the test-
ing data was observed after step 7, after which model
generalization worsened. Actually, a reasonable compro-
mise between discrimination and generalization seemed
to be reached at step 7.
If the aim of the scoring system is not only assessment

of a risk score but also a reliable prediction of the prob-
ability of morbidity outcome, the 95% confidence inter-
val of the prognostic probability associated with each
integer score has to be calculated extending the analysis
to a wider range of steps.
Figure 2 shows the statistical properties of model

scores identified by the BCa bootstrap method, from
step 2 to step 9. For each step, 95% CI from training
data was plotted in a whisker diagram where the corre-
sponding probability of morbidity on testing data (stars)
and the percentage occurrence of each score were also
reported.
Step 2 shows that the estimated probability of morbid-

ity significantly increases with the score. The scoring
system gave three integer scores (0, 1 and 2) when a
satisfactory number of patients was observed, the mini-
mum being 33 (6.1%) with the highest score. The risk
probabilities calculated on testing data always fell within
the corresponding confidence interval of the training
data. However, the large separation between two conse-
cutive CIs suggests that other variables (and therefore
other score values) could be considered in the model to
obtain a finer class division. Moreover, Figure 1 indi-
cates that the discrimination capacity of the scoring sys-
tem corresponding to step 2 was not good enough.
Of course, inclusion of an additional variable at step 3

led to distribution of patients in four score classes, but
the few cases (13 or 2.4%) with the highest score
affected CI size, so that a wide overlap was observed
between scores of 2 and 3. Besides, the risk probability
computed on the testing patient with a score of 3 fell
outside the CI obtained from the training data. This evi-
dence suggested combining patients with scores of 2 or
3 in a single class. A larger number of cases would nar-
row the confidence interval, separating it from the
others. Indeed, reduction to three classes (score = 0,
score = 1 and scores ≥2) reproduced a scenario not too
dissimilar with respect to step 2, although it had the
positive effect of balancing the distribution of cases
within each class.
Analysis of the results of step 4 led to a conclusion

similar to that for step 3. In fact the confidence intervals

Cevenini and Barbini BMC Medical Informatics and Decision Making 2010, 10:45
http://www.biomedcentral.com/1472-6947/10/45

Page 4 of 9



corresponding to scores of 2 and 3 again overlapped,
while only three training cases reached the maximum
score.
The results obtained from step 5 showed interesting

enhancement of model prognostic ability. Of course
patients having a score of 3 or 4 could be profitably
pooled in a single class to eliminate the CI overlap and
enlarge class size. This class pooling did not influence
the discrimination capacity of the scoring system. No
appreciable decrease was observed with respect to the
unmodified model when calculating AUC of training
and testing data (0.798 and 0.772, respectively). The
modified scoring system was characterized by four score
classes (0, 1, 2, ≥ 3), thus enabling finer class division
than the previous-step models and ensuring good
separation of the estimated 95% confidence intervals
(see Figure 3). Comparison of the results of the simpler
step-2 model with those shown in Figure 3 indicated

that the scoring system with four classes effectively split
the lowest risk class of the simpler model into two
distinct classes associated with very low (less than 10%)
and low (between 10% and 20%) probability of morbid-
ity. The change was not so evident for the moderate
and high risk classes.
Because a probability estimate of a patient’s outcome

is very useful in the ICU if patients at risk for high
morbidity are correctly recognized, it could be worth-
while increasing the number of classes, at the risk of
some CI overlap. This can be done by continuing to
analyze further steps. Of course the number of cases in
each class significantly decreases, especially for higher
scores. Figure 2 shows that cases with scores greater
than 6 were too few in the sample, so we focused on
the results obtained at step 7, which seemed to be a
reasonable compromise between discrimination and
generalization (Figure 1). Unfortunately, the confidence
intervals of the highest scores overlapped considerably,
so that patients with scores of 5 or 6 were united in a
single risk class. The corresponding scoring system had
six score classes: 0, 1, 2, 3, 4 and ≥5. It maintained the
same discrimination as the original model with seven
classes. For both models AUC was 0.820 when calcu-
lated on training data, and decreased negligibly on test-
ing data (from 0.788 to 0.780). Figure 4 shows the 95%
confidence intervals of the prognostic probabilities of
the six-class model. Patients with scores of 0, 1, 2, 3
and ≥5 had clearly separated confidence intervals for
morbidity probabilities. In particular, patients with
scores ≥5 had high probability of developing morbidity
events in ICU. Alas, patients with score 4 could have a
similar probability of morbidity to patients belonging to
the two contiguous classes. In summary, this scoring
system allowed finer class division than the model of
Figure 3 (the number of classes increased from 4 to 6)
but the price paid was overlapping of the 95% confi-
dence interval of one patient class with two others. On
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Figure 1 AUC calculated with training (circles) and testing data
(stars) for each step of the forward stepwise algorithm of
feature selection performed on the training set. The predictor
entered is also reported step by step.

Table 1 Dichotomous variables entered in the score model

Acronym Description Training N (%) Testing N (%)

O2ER O2 extraction ratio ≥40% 116 (21.3%) 129 (23.7%)

Card-ID Cardiac inotropic drugs 74 (13.6%) 69 (12.7%)

PVD Peripheral vascular disease 116 (21.3%) 104 (19.1%)

EM Emergency 45 (8.3%) 48 (8.8%)

VCO2 CO2 production <180 ml/min 256 (47.0%) 261 (47.9%)

CPBt Cardio-pulmonary bypass time ≥2 hours 223 (40.9%) 203 (37.2%)

AD Anti-arrhythmic drugs 29 (5.3%) 27 (5.0%)

IABP Intra aortic balloon pump 11 (2.0%) 10 (1.8%)

MVR Mitral valve replaced with artificial valve 8 (1.5%) 12 (2.2%)

CHF Congestive heart failure 25 (4.6%) 30 (5.5%)

MR Mitral valve repaired surgically 12 (2.2%) 8 (1.5%)
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Figure 2 95% confidence intervals of morbidity probability estimated with the bias-corrected and accelerated bootstrap method from
training data for competing scoring systems. Stars indicate the probability of morbidity calculated on the testing data. The percentage
occurrence of each score and the predictor entered at a given step are also reported.
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the basis of the present analysis using the bootstrap
technique, the medical team must have sufficient infor-
mation to choose the best scoring system for the clini-
cal context.

Discussion
Models for the prediction of patient risk are increasingly
used in critical care because they allow diagnostic and
prognostic information to be derived precisely and eval-
uated quantitatively. Scoring systems are a very attrac-
tive kind of model in clinical practice, due to their

simplicity of application, especially where a rapid and
effective decision has to be taken for correct evaluation
of patient status.
Despite their simplicity, when carefully designed, the

accuracy of scoring systems has proven not sufficiently
worse than more complex models, such as logistic
regression, Bayesian classification rule or artificial neural
networks, to exclude their clinical application [9,18].
A major limit is calibration, i.e. identification of a proper
quantitative association between score values and prog-
nostic risk probabilities. Reliable individual prediction of
this probability is very important in clinical practice,
being a useful tool for medical decision making, patient
risk reduction, optimal planning of clinical resources
and welfare cost saving.
An idea could be to directly estimate the risk prob-

ability by dividing the score of the test patient by the
maximum possible score. However, this method may
lead to unreliable results and the Hosmer-Lemeshov test
(developed for logistic-regression models) may not be
appropriate for models with discrete outputs such as
scoring systems [13]. Of course, a more straightforward
approach is to focus on the statistics of the score classes
determined by the model. In the original paper of
Higgins and colleagues [18] the risk levels of test
patients were categorized on the basis of similar out-
comes in the training set. However, an accurate estimate
of the uncertainty associated with parameter estimates is
important to avoid misleading inference. This uncer-
tainty is usually summarized by a confidence interval,
which is claimed to have a specified probability of
including the true parameter value. In particular, confi-
dence intervals combine point estimation and hypothesis
testing in a single inferential statement of great intuitive
appeal. Thus for predictive scoring systems, a crucial
point is assessment of the confidence intervals of the
estimated risk probabilities.
The bootstrap technique is a resampling method for

statistical inference commonly used to estimate confi-
dence intervals [14,15,21]. Although all bootstrap confi-
dence intervals fail to perform well in some situations,
this should not overly discourage the use of bootstrap
confidence intervals. Some intervals work very well in
many situations, and even when they do not work so
well, they may still be better than most alternatives. The
bootstrap method is more transparent, simpler and
more general than conventional approaches. Under-
standing the rationale behind it does not requires any
deep knowledge of mathematics or probability theory.
The assumptions on which it depends are less restrictive
and more easily checked than the assumptions on which
conventional methods depend. The method can be
applied to situations where conventional methods may
be difficult or impossible to find.
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Figure 3 95% confidence intervals of morbidity probability
estimated with the bias-corrected and accelerated bootstrap
method for the scoring system with four score classes. Stars
indicate the percentage of morbid patients observed for each score
class in the testing data.
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Figure 4 95% confidence intervals of morbidity probability
estimated with the bias-corrected and accelerated bootstrap
method for the scoring system with six score classes. Stars
indicate the percentage of morbid patients observed for each score
class in the testing data.
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On the basis of the above considerations, we proposed
a more informative approach to develop and select com-
peting scoring systems to predict adverse outcomes in
medical applications. The model selection not only
accounts for discrimination power and generalization of
the predictive model, but also for the trustworthiness of
the estimated prognostic probability associated with
each score class. In particular for each scoring system
the 95% confidence intervals of prognostic probabilities
are estimated by the BCa bootstrap technique. As an
example, the procedure was applied to data collected in
heart-surgery patients who underwent coronary artery
bypass graft. Since much has happened in the field of
heart surgery in recent years, mortality is now low and
morbidity has been considered a valid end point and a
more attractive target for developing the risk model.
The low prevalence of adverse events negatively influ-
ences the estimation of confidence intervals for prognos-
tic probabilities, so that end points corresponding to
quite rare events, such as death after heart surgery,
must be avoided in designing a risk model.
The illustrative example uses a sample of 1090

patients, which was divided into one training set and
one testing set of equal size. Cross validation would
naturally be a more efficient approach, though more
demanding computationally. However, our choice can
be considered satisfactory, because sample size was large
enough. It also allowed us to easily define training and
testing sets with equal percentage morbidities and verify
that the random allocation of patients to training and
testing did not introduce systematic sampling errors.
The procedure developed enabled us to evaluate and

compare several different models in the example consid-
ered here. In our opinion, the model with six score
classes (Figure 4) has many advantages. First, the scoring
system is based on only six variables, two of which give
information about preoperative status, one is related to
surgery, and the other three are postoperative variables.
Despite the low number of predictors, the model shows
good discriminating power, also achieving a satisfactory
compromise between discrimination and generalization.
Finally, it allows patients to be divided into a reasonable
number of classes, most characterized by well separated
confidence intervals of prognostic probabilities. The
only limit of the model is the presence of one score
class which has a morbidity-probability confidence inter-
val partially overlapping the two adjacent score classes,
so that patients with a score of 4 should be cautiously
likened to those with score greater than 4.
Two intrinsically dichotomous preoperative variables

(emergency status and peripheral vascular disease) are
used in the scoring system. Emergency status is known
as a significant preoperative predictor of poor outcome.
Emergency patients are more likely to have other risk

factors on admission to the ICU, such as low cardiac
index, decreased serum albumin, higher alveolar-arterial
oxygen gradient, elevated central venous pressure, and
tachycardia [18]. Peripheral vascular disease is another
important morbidity predictor after coronary artery
bypass surgery, especially in predicting severe or mild
neurological complications [24].
The postoperative variables are the oxygen extraction

ratio (≥40%), carbon dioxide production (< 180 ml/min)
and the need for cardiac inotropic drugs after the opera-
tion. In particular, the weight of O2ER is twice that of
the other predictors, indicating a key role for this vari-
able. This important role confirms the results of a pre-
vious study, in which increased O2ER immediately after
heart surgery was indicated as an independent predictor
of prolonged ICU stay [25]. O2ER reflects a balance
between oxygen consumption and oxygen delivery, pro-
viding information about compensatory increased
extraction in hypovolemia and heart failure.
The only intraoperative variable in the model is car-

dio-pulmonary bypass time. This variable has been iden-
tified as a risk factor in similar studies [3,18]. In
particular, the role of CPBt in the determination of
hyperlactatemia during cardio-pulmonary bypass has
been highlighted by other authors [26,27]. Hyperlactate-
mia is a well-recognized marker of circulatory failure,
and its severity has been associated with mortality in
different clinical conditions [28,29]. In particular, high
blood lactate levels during cardiopulmonary bypass are
associated with tissue hypoperfusion and may contribute
to severe postoperative complications. Patients with high
blood lactate levels during cardiopulmonary bypass gen-
erally need greater and longer hospital care because
postoperative morbidity is significantly more frequent
[30]. Despite this evidence, the association between
hyperlactatemia and postoperative mortality is a much
debated question, because different authors have come
to different conclusions [30,31]. Finally, data used to
develop the scoring system did not account for hyper-
lactatemia directly but only for CPBt, suggesting that
the probability of morbidity may not be properly esti-
mated in off-pump patients.

Conclusions
When using a scoring system to predict outcomes of
critical patients, a proper quantitative association
between score values and prognostic risk probabilities is
an issue of primary importance. To avoid misleading
inference, a trustworthy model should not only ensure
good discrimination and generalization but also an accu-
rate estimate of the uncertainty associated with a prog-
nostic probability.
In this paper a bootstrap technique was used to com-

pute the confidence intervals of prognostic probabilities
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when designing and selecting competing scoring sys-
tems. The approach was applied to data of patients who
underwent coronary artery bypass grafting to evaluate
morbidity risk in the intensive care unit. In the example
considered, a model with six score classes showed var-
ious advantages with respect to competing scoring sys-
tems. Besides having a satisfactory trade-off between
discrimination and generalization, the model also
allowed patients be divided into a reasonable number of
classes, most characterized by well separated confidence
intervals of prognostic probabilities. Of course, this does
not mean the model is necessarily the best, especially
when overlapping of confidence intervals of prognostic
probabilities associated with the integer scores must be
avoided. However, the example demonstrates that the
technique allows useful additional information to be
gained about the statistics of the score classes, guiding
physicians towards the most convenient model for asses-
sing morbidity in their clinical context.
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