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Abstract

Background: A common disclosure control practice for health datasets is to identify small geographic areas and
either suppress records from these small areas or aggregate them into larger ones. A recent study provided a
method for deciding when an area is too small based on the uniqueness criterion. The uniqueness criterion
stipulates that an the area is no longer too small when the proportion of unique individuals on the relevant
variables (the quasi-identifiers) approaches zero. However, using a uniqueness value of zero is quite a stringent
threshold, and is only suitable when the risks from data disclosure are quite high. Other uniqueness thresholds that
have been proposed for health data are 5% and 20%.

Methods: We estimated uniqueness for urban Forward Sortation Areas (FSAs) by using the 2001 long form
Canadian census data representing 20% of the population. We then constructed two logistic regression models to
predict when the uniqueness is greater than the 5% and 20% thresholds, and validated their predictive accuracy
using 10-fold cross-validation. Predictor variables included the population size of the FSA and the maximum
number of possible values on the quasi-identifiers (the number of equivalence classes).

Results: All model parameters were significant and the models had very high prediction accuracy, with specificity
above 0.9, and sensitivity at 0.87 and 0.74 for the 5% and 20% threshold models respectively. The application of
the models was illustrated with an analysis of the Ontario newborn registry and an emergency department dataset.
At the higher thresholds considerably fewer records compared to the 0% threshold would be considered to be in
small areas and therefore undergo disclosure control actions. We have also included concrete guidance for data
custodians in deciding which one of the three uniqueness thresholds to use (0%, 5%, 20%), depending on the
mitigating controls that the data recipients have in place, the potential invasion of privacy if the data is disclosed,
and the motives and capacity of the data recipient to re-identify the data.

Conclusion: The models we developed can be used to manage the re-identification risk from small geographic
areas. Being able to choose among three possible thresholds, a data custodian can adjust the definition of “small
geographic area” to the nature of the data and recipient.

Background
The disclosure and use of health data for secondary pur-
poses, such as research, public health, marketing, and
quality improvement, is increasing [1-6]. In many
instances it is impossible or impractical to obtain the
consent of the patients ex post facto for such purposes.
But if the data are de-identified then there is no legisla-
tive requirement to obtain consent.
The inclusion of geographic information in health

datasets is critical for many analyses [7-15]. However,

the inclusion of geographic details in a dataset also
makes it much easier to re-identify patients [16-18].
This is exemplified by a recent Canadian federal court
decision which noted that the inclusion of an indivi-
dual’s province of residence in an adverse drug event
dataset makes it possible to re-identify individuals
[19,20].
Records from individuals living in small geographic

areas tend to have a higher probability of being re-iden-
tified [21-23]. Some general heuristics for deciding when
a geographic area is too small with respect to identifia-
bility have been applied by national statistical agencies
[24-29]. For example, the US Health Insurance
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Portability and Accountability Act (HIPAA) Privacy Rule
defines a small geographic area as one having a popula-
tion smaller than 20,000.
Common disclosure control actions for managing the

re-identification risks from small geographic areas are
to: (a) suppress records in the small geographic areas,
(b) remove from the disclosed dataset some of the non-
geographic variables, (c) reduce the number of response
categories in the non-geographic variables (i.e., reduce
their precision), or (d) aggregate the small geographic
areas into larger ones. None of these options is comple-
tely satisfactory in practice. Options (a) and (b) result in
the suppression of records or variables respectively. The
former leads to the loss of data and hence reduces the
statistical power of any analysis, and can also result in
bias if the suppressed records are different in some
important characteristics from the rest of the data. The
latter is often difficult to implement because variables
critical to the analysis of the data cannot be removed.
Options (c) and (d) reduce the precision of the informa-
tion in the dataset through generalization. The former
generalizes the non-geographic information in the data-
set which may make it difficult to detect subtle trends
and relationships. The latter can reduce the ability to
perform meaningful analysis and can conceal variations
that would otherwise be visible at smaller geographical
scales [30-35].
Given the detrimental effects of such disclosure con-

trol actions, it is important to have accurate and propor-
tionate methods for assessing when a geographic area is
too small.
The uniqueness of individuals is often used as a surro-

gate measure of re-identification risk [36]. An individual
is unique if s/he is the only individual with a specific
combination of values on their personal characteristics
that are included in a dataset. There is a monotonically
decreasing relationship between uniqueness and geo-
graphic area population size: uniqueness decreases as
population size gets larger. A recent study developed a
model to decide when a geographic area is too small
based on the uniqueness of its population [37]: if
uniqueness within a geographic area is approximately
zero then the geographic area is not too small.
However, using zero uniqueness as a threshold for dis-

closure control is quite stringent and can result in
excessive record or variable suppression and/or aggrega-
tion. Higher uniqueness thresholds have been found
acceptable and have been applied in practice. Specifi-
cally, previous disclosures of cancer registry data have
deemed thresholds of 5% and 20% population unique-
ness as acceptable for public release and research use
respectively [38-40].
In this paper we extend this line of work by develop-

ing models to determine whether a Forward Sortation

Area (FSA - the first three characters of the Canadian
postal code) is too small based on the 5% and 20%
uniqueness thresholds by analyzing Canadian census
data. We also provide data release risk assessment
guidelines for deciding which one among the 0%, 5%,
and 20% threshold models to use for disclosure control.

Methods
Our approach was to construct models to determine if
the percentage of unique records in a particular FSA
was above the 5% and the 20% thresholds. These models
characterize each FSA in terms of its population size,
and also take into account the characteristics of the
non-geographic variables in the dataset that can be used
for re-identification.

Definitions
Quasi-identifiers
The variables in a dataset that can be used to re-identify
individuals are called the quasi-identifiers [41]. Examples
of common quasi-identifiers are [37,42-44]: dates (such
as, birth, death, admission, discharge, visit, and specimen
collection), race, ethnicity, languages spoken, aboriginal
status, and gender.
Equivalence Class
An equivalence class is defined as the group of records
having a given set of values on the quasi-identifiers. For
example, “50 year old male” represents the equivalence
class of records with the “50” value on the age quasi-
identifier and “Male” on the gender quasi-identifier. The
number of records that have these two values on the
quasi-identifiers is the size of the “50 year old male”
equivalence class.
Uniqueness
The uniqueness of records in the dataset is based only
on the quasi-identifiers. For example, if our quasi-identi-
fiers are age and gender, then say, the only 90 year old
female in the FSA “N3E” would be a unique record on
these quasi-identifiers within that geographic area.
Other sensitive variables that are not considered quasi-
identifiers are not taken into account in the computa-
tion of uniqueness. If an equivalence class is of size one,
then that represents a unique record.
Focus on the Forward Sortation Area (FSA)
The postal code is the basic geographical unit that we
will use in our analysis. The postal code is frequently
collected because it is readily available, and conse-
quently, it is used as the geographical location of resi-
dence in health datasets [45-50]. The full six character
postal code is often more specific than needed for many
analyses. Further, in combination with other variables
the full postal code would make it easy to re-identify
individuals, especially in residential urban areas [43].
While there are many potential ways of aggregating
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geographic regions to construct larger areas for analysis
[35], the FSA, a higher level in the postal code geo-
graphic hierarchy, is the unit that we considered.

Dataset
The dataset we used comes from the 2001 Canadian
census. The census has two forms: the short form and
the long form. Approximately a 20% sample of the
population completes the long form, and the remainder
completes the short form. The long form individual
level data is made available to researchers by Statistics
Canada through its Research Data Centers (RDCs).
The RDC long form dataset only has geographic infor-

mation at the level of the census tract. Because our
desired analysis is at the FSA geographic unit, we devel-
oped a gridding methodology, described in Additional
file 1, to assign the FSAs to individual records based on
their census tracts. Census tracts are only defined for
urban areas and do not cover Prince Edward Island
(PEI). Therefore, rural FSAs and PEI were excluded
from our analysis.
Table 1 contains the list of quasi-identifiers that were

analyzed from the long form census file. These were
selected to be representative of commonly used quasi-
identifiers in health and health systems research. The
table also includes the number of response categories
for each quasi-identifier as they were used in our
analysis.

Quasi-identifier Models
A quasi-identifier model consists of two or more quasi-
identifiers (qid). To manage the scope of the analysis we
consider only combinations of up to and including

5 qids. A total of 358 quasi-identifier models were ana-
lyzed. This results from the following approach of com-
bining the qids.
Initially, for the 11 qids listed in Table 1, there are

some similarities related to ethnicity and therefore
they were treated as a group: HLNABDR, ETH1-6,
RELIGWI, and DVISMIN. We defined a generic ethni-
city variable, and whenever that generic ethnicity vari-
able appears in a model it was replaced by one of the
above four variables. Each substitution represented a dif-
ferent model. Thus, this gives 8 distinct qids: gender,
age, ethnicity (generic), schooling, marital status, total
income, aboriginal identity and activity difficulties.
Categorizing the 8 distinct qids by their utility by an

intruder for re-identification gives the following two types:

• High utility to an intruder: gender, and age
• Possibly used for re-identification/sensitive: ethni-
city, schooling, marital status, total income, aborigi-
nal identity and activity difficulties

The different models were defined by the number of
qids in the model and by having at least one sensitive
qid included in each model.
For models including both age and gender, there are

42 models for the 8 distinct qids as follows:

• 5 qids: have age and gender and 20 combinations
of 3 of the 6 sensitive qids.
• 4 qids: have age and gender and 15 combinations
of 2 of the 6 sensitive qids.
• 3 qids: have age and gender and each of the 6 sen-
sitive qids.

Table 1 The list of quasi-identifiers that were analyzed from the census file

Variable Name in the 2001
Census RDC File

Definition # Response
categories(*)

SEXP Gender 2

BRTHYR Year of birth (from 1880 to 2001).
Age: We defined age categories based on 5 year ranges.

24

HLNABDR Language: Language spoken most often at home by the individual at the time of the census. 4

ETH1-6 Ethnic Origin: Refers to the six possible answers for the ethnic or cultural group(s) to which the
respondent’s ancestors belong.

26

ASRR Aboriginal Identity: Persons identifying with at least one Aboriginal group. 8

RELIGWI Religious denomination: Specific religious denominations, groups or bodies as well as sects, cults,
or other religiously defined communities or systems of belief.

3

TOTYRSR Total Years of Schooling: Total sum of the years (or grades) of schooling at the elementary, high
school, university and college levels. Only available for individuals age 15+.

9

MARST Marital Status (Legal) 5

TOTINC Total income: Total money income received from all sources during the calendar year 2000 by
persons 15 years of age and over. We defined categories in $15K ranges.

22

DVISMIN Visible minority status 4

DISABIL Activity difficulties/reductions: Combinations of one or more activity difficulties/reduction. 4
(*)The number of response categories excludes non-specific responses such as missing values, not available or “other”.
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• 2 qids: have age and gender only - there is only
one model.

Then substituting each of language, religion and visi-
ble minority for ethnicity gives an additional 48 models:
30 (3 × 10) models for 5 qids (ethnicity appears in 10 of
the 20 models), 15 (3 × 5) models for 4 qids (ethnicity
appears in 5 of the 15 models), and 3 (3 × 1) models for
3 qids (ethnicity appears in one of the 6 models).
The subtotal for this group of models containing both

age and gender is 90 (42+48).
We repeated the above process for each one of age

and gender in combination with the sensitive qids. That
is there are 56 models containing:

• 5 qids: have age and 15 combinations of 4 of the 6
sensitive qids.
• 4 qids: have age and 20 combinations of 3 of the 6
sensitive qids.
• 3 qids: have age and 15 combinations of 2 of the 6
sensitive qids.
• 2 qids: have age and each of the 6 sensitive qids
only.

Similarly to the previous group, by taking into account
the ethnicity related variables, there are a sub-total of
134 models for this group.
Lastly, age is replaced with gender for an additional

134 models. Adding up the sub-totals gives a total num-
ber of 358 quasi-identifier models.
For each quasi-identifier model, we denote its maxi-

mum number of equivalence classes as its MaxCombs
value. The MaxCombs value for any quasi-identifier
model can be computed from Table 1. For example, if
we consider the four quasi-identifiers: Age, Marital Sta-
tus, Schooling, Religion, then there are 24 (age) × 5
(marital status) × 9 (years of schooling) × 3 (religion) =
3,240 possible values on these variables, which is the
MaxCombs value. The MaxCombs values range from 6
to 718,848 across all quasi-identifier models.

Estimating Uniqueness
There are a number of different approaches that can be
used to estimate uniqueness in the population from the
20% sample.
The first study to examine uniqueness in the general

population was conducted in the US by Sweeney [51].
Relying on the generalized Dirichlet drawer principle,
she made inferences about uniqueness in specific geo-
graphic areas. This principle states that if N objects are
distributed in k boxes, then there is at least one box
containing at least N

k




 objects (i.e., the largest integer

within the brackets). If N ≤ k then there is at least one
box with a single object (i.e., a unique).

Sweeney made the conservative assumption that if
there is any unique in a particular geographic area, say
an FSA, then that FSA is high risk. She then reported
the percentage of individuals in high risk geographic
areas. For example, if we consider a quasi-identifier
model with a MaxCombs value of 48 (the k value), then
any FSA with a population smaller than 48, say 15 (the
N value), would likely have a unique individual in it,
and therefore all 15 individuals would be considered at
a high risk of uniqueness.
However, this approach will tend to overestimate the

percentage of uniques because not all individuals in the
FSA will be unique. For example, in the case above, on
average, 26% of the 15 individuals would be non-unique.
Furthermore, the Sweeney method does not help us
with estimating if uniqueness is above 5% or 20% for a
particular FSA.
An earlier study, which predicted when a geographic

area is too small, was based on the zero uniqueness
threshold utilizing a public use census file [37]. That
study assumed that as sample uniqueness approached
zero, the population uniqueness also approached zero.
This assumption is not suitable for directly estimating
population uniqueness at a 5% or 20% threshold.
Another approach to estimate equivalence class sizes

was taken by Golle [52], where he assumed a uniform
distribution of dates of birth of individuals living in a
geographic area in assigning them to equivalence classes.
However, that approach was driven by the author only
having access to high level census tabulations, and was
limited to a single variable. In our case the uniform dis-
tribution assumption cannot be justifiably extended to
all of the quasi-identifiers.
For our analysis we used the individual-level Canadian

census dataset. Given that the long form census dataset
is a 20% sample of the Canadian population, we utilized
uniqueness estimators to determine the proportion of
unique records for each combination of FSA and quasi-
identifier model. The reason we need to estimate popu-
lation uniqueness is because sample uniqueness does
not necessarily equate to population uniqueness, and we
are interested in population uniqueness.
One estimator developed by Bethlehem et al. [36,53]

over-estimates with small sampling fractions and under-
estimates as the sampling fraction increases [54]. We
therefore adopted a different estimation approach devel-
oped by Zayatz [31,55]. While this approach tends to
over-estimate the number of population uniques for small
sampling fractions, our 20% sampling fraction would be
large enough to alleviate concerns about bias [54].

Prediction Models
Based on the uniqueness estimate for each quasi-identi-
fier model and FSA, two binary variables were
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constructed: the first is 1 if the estimated uniqueness for
a particular FSA and quasi-identifier model was above
5% and zero otherwise, and the second was 1 if the esti-
mated uniqueness was above 20% and zero otherwise.
This is illustrated in Table 2 through a series of exam-

ples. Here we have seven example FSAs, and for each
one a set of quasi-identifiers (quasi-identifier model) is
shown. For example, for the “K7N” we have the “age ×
sex” quasi-identifier model. For each FSA and quasi-
identifier model combination we show the uniqueness
estimate. Recall that we only have data on 20% of the
population, therefore the uniqueness estimate gives us
the percentage of individuals in that FSA who are
unique on their quasi-identifier values. For instance, in
“L6P” 16.7% of the population are unique on their gen-
der, aboriginal status, schooling, and language spoken at
home. The last two columns of the table indicate
whether the estimated uniqueness is greater than 5%
and greater than 20% respectively. Such a table was con-
structed for all FSAs and for all quasi-identifier models.
This table had 342,606 rows.
We developed one binary logistic regression model

[56] with the 5% binary variable (denoted by I05) as the
response variable, and another with the 20% binary vari-
able (denoted by I20) as the response variable. The pre-
dictor variables in this model characterize the FSA and
the quasi-identifiers in the quasi-identifier model.
An FSA can be characterized by its population size,

which was obtained from the census data. We denote
this variable by POP. For example, the “K7N” FSA in
Table 3 has a POP value of 6,228, and the “L6P” FSA
has a POP value of 2,247. The POP variable ranged
from 200 to 78,457.
In a previous study it was shown that MaxCombs was

a good predictor of uniqueness [37]. We therefore use it
to characterize the quasi-identifier model used. Table 3
includes the MaxCombs values for each of the quasi-
identifier models in our example, as well as the response
variables for the logistic regression models. The data in
Table 3 are an example of the raw values that we used
in building the regression models. An observation is an

FSA by quasi-identifier model combination (as shown in
Table 3). For example, there is one observation for the
“K7N” FSA for the quasi-identifier model “age × sex”.
The 5% model was defined as:

logit  05 0 1 2         b POP b MaxCombs b POP MaxCombs

where π05 is the probability that an observation is high
risk (uniqueness greater than 5%) and the b parameters
were estimated. The logistic regression models were
estimated and evaluated using SAS version 9.1. We
included an interaction term in the model so that we
can adjust the relationship between MaxCombs and
uniqueness according to the population size of the FSA
(instead of creating a separate model for each FSA). The
20% model was similarly constructed.
To avoid collinearity with the interaction term in the

model, both predictor variables were centered [57]. Col-
linearity occurs when there are linear dependencies
among the predictor variables, and between predictor
variables and the intercept [58]. Because both POP and
MaxCombs have large values, the interaction term in
the logistic regression model can create overflow pro-
blems during computation. We therefore scaled the pre-
dictor variables by 10,000.

Table 2 Example uniqueness estimates, POP and MaxCombs values for some FSA and quasi-identifier combinations.

Example of Uniqueness Estimates for FSA and Quasi-identifier Model Combinations

ID FSA Quasi- Identifiers Uniqueness (Û ) Û >5% Û >20%

1 K7N Age, Sex 0% N N

2 M2K Age, Aboriginal, Religion 1.7% N N

3 K1A Sex, Marital Status, Language 14.3% Y N

4 L6P Sex, Aboriginal, Schooling, Language 16.7% Y N

5 H3T Age, Aboriginal, Income, Marital Status, Language 56.0% Y Y

6 L1 M Sex, Disability, Marital Status, Schooling, Ethnicity 67.80% Y Y

7 K1A Age, Disability, Income, Marital Status, Schooling 94.70% Y Y

Table 3 Example of what the raw data used to build the
models looked like.

Example of Raw Data Used in Building the Logistic Regression
Models

ID POP MaxCombs I05 I20

1 6,228 48 0 0

2 14,047 576 0 0

3 100 40 1 0

4 2,247 576 1 0

5 12,916 84,480 1 1

6 7,080 9,360 1 1

7 100 95,040 1 1

(b) The population uniqueness binary value is used in the logistic regression
model with the other predictor variables. We used the 2001 Canadian Census
population values.
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Influential observations were identified and removed
[59]. As noted below, models on different subsets of the
data were constructed during our evaluation. The per-
centage of influential observations varied from less than
0.5% to 2.2% across these models.

Unbalanced Dataset
Our dataset was unbalanced. This means that the pro-
portion of observations with uniqueness less than 20%
was quite small, and similarly for the proportion of
observations with uniqueness less than 5%. Constructing
regression models with an unbalanced dataset can result
in poor model fit, inaccuracy in predicting the less pre-
valent class, and may even impede the convergence of
the numeric maximum likelihood estimation algorithms.
There are three approaches for dealing with an unba-

lanced dataset: (a) a down-sampling or prior correction
approach reduces the number of observations so that
the two classes in the logistic regression model are
equal, (b) the use of weights, and (c) an alternative cor-
rection which uses the full dataset and shown to be an
improvement over weighting by King and Zeng (KZ)
[60]. It has been noted that the weighting approach suf-
fers a loss in efficiency compared to an unweighted
approach when the model is exact [61], and the KZ
method is shown to be better than using weights [60].
We therefore built models using two approaches and
compared their results: (a) re-balancing using down-
sampling, and adjusting the parameter estimates accord-
ingly [60,62,63], and (b) the KZ method [60].

Method for Model Evaluation
We compared both methods for dealing with the unba-
lanced dataset problem on three values: the area under
the curve (AUC) of the Receiver Operating Characteristic
curve [64,65], sensitivity, and specificity. The latter two
metrics are defined more precisely in Figure 1 (the AUC
is based on the definitions of specificity and sensitivity).
The AUC has an intuitive interpretation: it is the esti-

mated probability that a randomly selected observation
that is above the uniqueness threshold will have a higher
predicted probability from the logistic regression model
than a randomly selected observation that is below the
uniqueness threshold [66,67]. Sensitivity is defined as
the proportion of actually high risk records (above the
threshold) which were correctly predicted as such. Spe-
cificity is defined as the proportion of actually low risk
records (below or equal to the threshold) which were
correctly predicted as such. For computing the above
metrics, if the predicted probability on the 5% threshold
model was greater than 0.5 then the FSA was deemed
to have a uniqueness greater than 5%. A similar pre-
dicted probability cut-off was used for the 20% threshold
model.

We used 10-fold cross-validation to generate the train-
ing and test datasets, which is a generally accepted practice
to evaluate prediction models in the machine learning lit-
erature [68,69]. That is, we divided the dataset used to
build the logistic regression model into deciles and used
one decile in turn as the test dataset, and the remaining
nine deciles to build (train) the model. In the context of
ten-fold cross-validation, the down-sampling and KZ
methods were performed separately on the nine training
deciles each time a model was estimated. All the predic-
tions across the 10-folds were then tabulated in a 2 × 2
confusion matrix and the prediction accuracy was evalu-
ated as illustrated in Figure 1. A confusion matrix shows
the cross-tabulation of the number of observations pre-
dicted to be above/below the threshold vs. the number of
observations that were actually above/below the threshold.

Results
Description of Canadian FSAs
Our models pertain to urban FSAs. We therefore pro-
vide a descriptive comparison of urban vs. rural FSAs in
Canada.
The population distribution for FSAs in the nine

Canadian provinces is shown in Figure 2, and overall in
Figure 3. Except for New Brunswick, rural FSAs tend to
have more people living in them. The majority of the
population lives in urban FSAs, except for Newfound-
land, and to a lesser extent Saskatchewan, where the
population is more evenly split between rural and urban
FSAs. Table 4 shows the distribution of FSAs based on
whether they are rural or urban. Even though they have
smaller populations, the majority of FSAs are urban
rather than rural. Figure 4 shows that in terms of physi-
cal size rural FSAs tend to have a considerably larger
area than urban ones.

Model Comparison
The two approaches for building the logistic regression
models are compared in Table 5 for the two uniqueness
thresholds. These results were obtained using 10-fold
cross-validation. In terms of the AUC, the differences are
very small and for practical purposes their predictive
accuracies can be considered equivalent. The table also
shows the sensitivity and specificity results using a pre-
dicted probability threshold of 0.5, which is consistent
with the way that the models would be used in practice.
Here we see that both modeling approaches had very simi-
lar specificity, but down-sampling had higher sensitivity
for both uniqueness thresholds. Therefore, we will use the
down-sampling model results in the rest of this paper.

Model Results
Both models had a significant goodness of fit (p < 0.001)
[56]. The model parameters are shown in Table 6. All
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model parameters are significant, including the interac-
tion term.

Discussion
Using the Models
In this paper we developed models to predict whether
the population in a geographic area has uniqueness
above the 5% and 20% thresholds using data from the
Canadian census. We also demonstrated that the predic-
tion models are sufficiently accurate to meet the risk
and utility needs of data custodians and data recipients
respectively. The areal unit that we studied was the
urban FSA.
The logistic regression models can be used to deter-

mine whether or not the FSAs in actual datasets are too
small. The MaxCombs value is computed based on the
quasi-identifiers in the dataset. For each FSA, its popula-
tion value can be determined from the Statistics Canada
population tables. With these two values we can predict
the probability that the percentage of uniques is above
the 5% or 20% uniqueness thresholds. If the predicted
probability is above 0.5, then disclosure control actions
are necessary. For example, records in that FSA must be
suppressed or combined with another FSA in the data-
set. Alternatively, some variables may need to be
removed or generalized to reduce the MaxCombs value.
Because the predictor variables in the models were

centred and scaled, this also has to be done when using
the models for actual prediction. Let the MaxCombs
value for a particular dataset be denoted by M. We
index the FSAs in a dataset by j. Let the population size
for a particular FSA in the dataset be denoted by Sj.

We have the centered and scaled MaxCombs value:

   M
M 59861

10000
(1)

and the centered and scaled population size value:

 
 

S
S

j
j 21120

10000
(2)

Then an FSA is considered to be high risk under the
5% threshold if the following condition is true:

1

1 779 1 137 8 37 3 6 5
0 5

         e M S j M S j. . . .
. (3)

and an FSA is considered to be high risk under the
20% threshold if the following condition is true:

1

1 63 3 11 8 6
0 5

         e M S j M S j. .
. (4)

For the FSAs that are flagged through equations (3) or
(4) then one should apply disclosure control actions.

Generalization of Models
There are two types of generalizations for these models:
generalization to other quasi-identifiers and generaliza-
tions to other urban areal units apart from the FSA.
Our results indicate that MaxCombs is a very good

predictor of uniqueness. The value of MaxCombs does
not care what type of quasi-identifiers we have - it is
only affected by the number of response categories in

Figure 1 Definition of prediction evaluation metrics. Low Risk means that the (predicted) percentage of unique records is below or equal to
the 5% or 20% threshold. High Rish means that the (predicted) percentage of unique records is above the 5% or 20% threshold.
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the quasi-identifiers. A previous study has shown that
taking into account the distribution of the quasi-identi-
fiers using an entropy metric did not result in any
improvement in the prediction of uniqueness [37]. One
explanation for this is that we have a ceiling effect: the
prediction accuracy is quite high already that the addi-
tion of distribution information cannot make a signifi-
cant improvement. Consequently, a strong case can be
made that the models can be used with other demo-
graphic quasi-identifiers even if they are not explicitly
represented in the census dataset, and if the MaxCombs
is within the range used in our study.
Another question is whether there is a basis for gener-

alizing the results to other urban areal units, for

example, full postal codes (which are subsets of FSAs)
or regions (which are aggregates of FSAs) ? Given that
the prediction models are quite accurate using only the
population size as a characteristic of the area, then there
is no a priori reason not to be able to apply the models
to other areas as long as their population sizes are
within the range used for our models and that they are
for urban Canadian areas.

Application of Models
We applied the models to evaluate whether the FSA
sizes were appropriate on two data sets: the newborn
registry of Ontario (Niday) and emergency department
data from the children’s hospital in Ottawa. In this

Figure 2 The population sizes for urban and rural FSAs in Canadian provinces.
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application we assume that the disclosure control action
taken is the suppression of records in small FSAs.
The Niday registry captures information about all

births in the province. We used a data extract for all
births during 2005-2007 fiscal years. There were 164,272
usable records in the registry during that period. The
quasi-identifiers that were considered were: mother’s
age, baby’s month and year of birth, baby’s gender, and
the primary language spoken at home.
The proportion of records in the Niday registry that

would have to be suppressed under each of the three

thresholds was computed. The results of this analysis
are shown in Table 7. For example, under the 0%
uniqueness threshold, 85% of the dataset would be in
FSAs that are deemed too small. These small FSAs
would have to be suppressed. As can be seen, there is a
pronounced difference between using the 0% threshold
and the others, with far less data having to be sup-
pressed for the 5% and 20% thresholds. These results
demonstrate that, where the risk profile is acceptably
low, using a higher threshold can result in significantly
more data being made available.
Using a similar approach, Table 7 also shows the

results for the emergency department data for all pre-
sentations from 1st July 2008 to 1st June 2009, which
consisted of 107,269 records. This data consists of date
of presentation and the age of patient. With the 0%
threshold 93% of the records would have to be sup-
pressed, whereas only 54% would be suppressed for the
5% threshold, and none for the 20% threshold.

Selection of Threshold
An important decision when using the above models is
selecting which of the three uniqueness threshold to
use: 0%, 5%, or 20%. The most stringent uniqueness
threshold of zero percent would be appropriate for data-
sets that are released to the public. This threshold
would result in the most suppression and aggregation.
The most permissive 20% threshold can be used when

Figure 3 The population sizes for urban and rural FSAs in Canada overall.

Table 4 Distribution of FSAs based on whether they are
urban or rural.

Prov Total
Rural

Total
Urban

Grand
Total

%
Rural

%
Urban

AB 12 138 150 8.00% 92.00%

BC 18 171 189 9.52% 90.48%

MB 10 54 64 15.63% 84.38%

NB 110 110 0.00% 100.00%

NL 13 22 35 37.14% 62.86%

NS 14 62 76 18.42% 81.58%

ON 56 466 522 10.73% 89.27%

QC 39 374 413 9.44% 90.56%

SK 11 37 48 22.92% 77.08%

Grand
Total

173 1434 1607 10.77% 89.23%
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disclosing data to trusted recipients where the overall
risks are quite low. This larger threshold would result in
the least suppression and aggregation.
To assist with deciding which of the thresholds is

most appropriate under a broad set of conditions, three
general criteria have been proposed in the context of
secondary use [70-72]:

• Mitigating controls that are in place at the data
recipient’s organization.

Mitigating controls evaluate the extent to which the
data recipient has good security and privacy prac-
tices in place. A recent checklist can be used for
evaluating the extent to which mitigating controls
have been implemented [73]. The fewer security and
privacy practices that the data recipient has in place,
the lower the threshold that should be used.

Figure 4 Areas in km2 for urban and rural FSAs in Canadian provinces.

Table 5 Comparison of unbalanced data modeling
methods.

Model Evaluation for the 5% Uniqueness Threshold

AUC Sensitivity Specificity

Down-Sampling 0.9849 0.87 0.996

KZ 0.9849 0.449 0.992

Model Evaluation for the 20% Uniqueness Threshold

AUC** Sensitivity Specificity

Down-Sampling 0.947 0.74 0.98

KZ 0.949 0.59 0.949

**We tested the difference between the AUC values, and the difference was
statistically significant between the two methods only for 20% uniqueness at
an alpha level of 0.05

Table 6 Logistic regression model results for the 5% and
20% thresholds using down-sampling.

Logistic Regression Model for 5% Threshold

Intercept POP MaxCombs POP ×
MaxCombs

Coefficient 779.1 -37.35 137.8 -6.5

95% CI (744, 815.5) (-60.46,
-13.72)

(131.6,
144.2)

(-10.61, -2.36)

p-value <0.0001 <0.0017 <0.001 0.0019

Logistic Regression Model for 20% Threshold

Intercept POP MaxCombs POP ×
MaxCombs

Coefficient 63.3 -6 11.8 -1

95% CI (61.85,
64.74)

(-6.83, -5.16) (11.59, 12.1) (-1.16, -0.86)

p-value <0.0001 <0.0001 <0.0001 <0.0001
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• The extent to which a disclosure (inadvertent or
otherwise) constitutes an invasion of privacy for the
patients.
Additional file 2 contains a set of items that have
been developed based on the literature to evaluate
the invasion-of-privacy construct [74-79]. This set of
items was subsequently reviewed by a panel of 12
Canadian privacy experts for completeness, redun-
dancy, and clarity. The greater the risk of an inva-
sion of privacy, the lower the threshold that should
be used.
• The extent to which the data recipient is motivated
and capable of re-identifying the data.
Additional file 2 contains a set of items that have
been developed based on the literature to evaluate
the motives and capacity construct [80-83]. This
construct captures the fact that some data recipients
can be trusted more than others (e.g., researchers vs.
making data available to the general public). The set
of items was subsequently reviewed by a panel of 12
Canadian privacy experts for completeness, redun-
dancy, and clarity. The greater the risk that the data
recipient is motivated and has the capacity to
re-identify the database, the lower the threshold that
should be used.

Admittedly, the use of these checklists remains quali-
tative, but they do provide a starting point for deciding
what an appropriate threshold should be.

Limitations
The FSAs that were included in our analysis were from
urban areas in Canada. As described in Additional file 1,
the reason is that the census tract information from the
census file that we used is only defined for urban areas.
Therefore, FSAs from rural areas were not covered.
However, it should be noted that the majority of the
Canadian population lives in urban areas.
Our analysis was based on data from the 2001 census.

There will be changes in the population over time and
therefore the models may not be an accurate reflection
of uniqueness the further from 2001 we are. Future stu-
dies should replicate this research on subsequent census
data (the 2006 census data was not available in the Sta-
tistics Canada RDC when we conducted this study).

We used the estimated uniqueness values as the cor-
rect values, and validated our prediction model on that
basis. However, the uniqueness estimate will not be per-
fect and such errors will negatively affect the overall
accuracy of the 5% and 20% prediction models.
The MaxCombs value can only be computed for

quasi-identifiers with a finite number of response cate-
gories. Continues variables that are not discretized can-
not be sensibly captured using our approach.

Conclusions
Disclosure control practices for small geographic areas
often result in health datasets that have significantly
reduced utility. These practices include the suppression
of records from individuals in small geographic areas,
the aggregation of small geographic areas into larger
ones, suppression of the non-geographic variables, or
generalization of the non-geographic variables. Previous
work has used a rather stringent definition of a small
geographic area: when it has no unique individuals on
the potentially identifying variables (quasi-identifiers).
However, less stringent thresholds have been used in
the past for the disclosure of health datasets: 5% unique-
ness and 20% uniqueness.
In this paper we develop models to determine whether

urban FSAs in Canada are too small by the 5% and 20%
criteria by analyzing 2001 census data. We have also
provided a set of concrete guidelines to help custodians
decide which one these thresholds to use. Within this
framework, a data custodian can manage the amount of
geographic suppression or aggregation in proportion to
the risks of disclosing a particular dataset.

Additional file 1: Mapping census geography to postal geography
using a gridding methodology. Describes the methodology we used
to assign a postal code to each record in the census file.

Additional file 2: Evaluating dimensions of risk. Presents the validated
checklists for evaluating the “invasion of privacy” and “motives and
capacity” dimensions of disclosure risk.
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