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Abstract

Background: Compared with the traditional oral administration form, injection administration is basically superior
in terms of both biological availability and therapeutic effects. However, few researches have focused on the
traditional Chinese medicinal injection due to the complicated constituents and the intricate mechanism of action.

Methods: In the present work, a novel systems pharmacology model, integrating ADME (absorption, distribution,
metabolism, and excretion) filtering such as half-life evaluation, network targeting, pathway and systems analyses, is
specifically developed for the identification of active compounds and the study of the mechanism of action of TCM
injection, which is exemplified by Reduning injection confronting the influenza.

Results: The ADME filter successfully identifies 35 bioactive compounds (31 molecules and 4 metabolites) from the
Reduning injection. The systems analysis and experimental validation further reveal a new way of confronting
influenza disease of this injection: 1) stimulating the immunomodulatory agents for immune response activation,
and 2) regulating the inflammatory agents for anti-inflammation.

Conclusions: The novel systems pharmacology method used in this study has the potential to advance the
understanding of the molecular mechanisms of action of multicomponent herbal injections, and provide clues to
discovering more effective drugs against complex diseases.

Keywords: Systems pharmacology, Reduning injection, Polypharmacology, Mechanism of action
Background
Traditional Chinese Medicine (TCM), a typical ethno-
medicine derived from the practice of ancient Chinese
herbal medicine through several thousand years of
empirical testing and refinement, has been successfully
used in taming various kinds of diseases [1]. The most
common practice in TCM is the utilization of herbal
combinations called formulae, which are capable of sys-
tematically controlling various complex diseases deter-
mined by synergistic effects among different herbs. As
demonstrated in the clinical trials, the injection, also
featured as “multiple components, multiple targets and
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complex diseases”, is normally superior to the traditional
oral administration form in the matter of both biological
availability and therapeutic effects [2]. However, even
though mixtures in herbal injection have been investi-
gated through observation and experience over years,
the mechanism of action is still unknown due to the in-
sufficient modern scientific research [3]. Thus modern
and technologic approaches are urgently needed for the
study of TCM injections.
Fortunately, the advent of -omics technologies rapidly

integrate the entirety of the human complement (such
as genomics and metabonomics) to propose a new way
of study TCM in the form of systems biology [4]. To
conduct a systems-level analysis, a comprehensive ana-
lysis of the dynamic interactions between drug(s) and a
biological system is required. Hence, bridging systems
biology and pharmacokinetics-pharmacodynamics (PK/
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PD) has led to the emergence of systems pharmacology
[5]. The term systems pharmacology describes a field of
study that applies the systems biology and PK/PD to
provide a quantitative frame-work for understanding the
dynamic interplay among variables of complex biological
systems through iteration between computational and/or
mathematical modelling and experimentation [5,6]. The
application of systems pharmacology can impact across
a wide range of drug research and development stages.
In fact, systems pharmacology has been successfully ap-
plied to TCM for screening bioactive drug ingredients
[7], predicting drug targets [8], understanding thera-
peutic mechanisms [9-11], revealing rules of drug com-
bination [12], screening synergistic drug combinations
[13], and so forth. However, an effective method which
is specifically developed for the study of herbal injection
is still lacking at the present time. Therefore, in this
work, a novel systems pharmacology-based strategy is
presented for the study of herbal injections. It is exem-
plified by a widely used TCM injection Reduning, which
mainly treats influenza diseases including virus infection,
fever, respiratory disease, inflammation, etc. [2,14].
The whole system includes four steps: (1) components

collection in Reduning injection; (2) ADME filter build-
ing and screening; (3) systems analysis for the action
mechanisms of Reduning; and (4) the experimental veri-
fication. This work pays a great deal of attention to the
ADME prediction in injection, encompassing results of
permeability, cell uptake, blood–brain penetration, pro-
tein transporting and binding, metabolism of bioactive
substances, and drug excretion. Furthermore, the appli-
cation of this systems pharmacology model may reveal
the power of the combined approach for screening bio-
active compounds, predicting the mechanisms of action,
and understanding the multicomponent therapeutic efficacy.
Figure 1 The integrative ADME filtering model. The model includes the
protein transporting and binding, metabolism of bioactive substances, and
P-glycoprotein; P450, cytochrome P450.
Methods
Chemical database for reduning injection
Reduning injection consists of three herbs including Arte-
misiae annuae L. (genus Artemisia, Asteraceae), Gardenia
jasminoides J.Ellis (genus Gardenia, Rubiaceae) and Loni-
cera japonica Thunb. (genus Lonicera, Caprifoliaceae). In
our previous work, 69 chemical constituents have been
successfully isolated and identified as seen in Additional
file 1: Table S1, including 15 iridoid compounds, 12 lignan
compounds, 11 phenolic acid compounds, 10 flavonoids
compounds, 10 caffeoylquinic acid derivatives, 5 sesquiter-
penoid compounds, 3 coumarin compounds, etc. [15]. In
addition, since the glycosyl groups of 17 compounds may
be deglycosylated by the rule of glycosidase hydrolysis re-
action, their aglycons labeled by _sg are also added, thus a
total of 86 compounds are included in the present analysis
(Additional file 1: Table S1).

Generation of ADME filters
To ensure a continuous pipeline of new drugs with rea-
sonable PK, one pivotal activity is the evaluation of ADME
parameters for a given compound. For this purpose, a
novel systematic ADME prediction model is developed as
seen in Figure 1.

Lipophilicity
It is one of the key physicochemical parameters linking
membrane permeability with the route of clearance [16].
The partition coefficient P (log P) is calculated by ALOGPS
2.1 software [17] in this work. The threshold value of log P
is set to 5 according to the Lipinski’s rule of five [18].

Aqueous solubility
Log S, a measure of aqueous solubility, is another crucial
property of drugs [19], which is also calculated using
key ADME process such as membrane penetrating, cell uptake,
drug excretion. Abbreviations: PPB, Plasma-protein binding; P-gp,
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ALOGPS 2.1 software [17] and the threshold value here
is −5< log S< −1 [20].

P-glycoprotein (P-gp)-medicated interaction
P-gp functions as a biological barrier by active efflux of a
wide variety of structurally and chemically unrelated
compounds from cells [21]. In order to classify the po-
tential P-gp substrates and inhibitors, our previous
model based on the Kohonen self-organizing map artifi-
cial neural network is applied here [22].

Plasma-protein binding (PPB) evaluation
Binding ability of a drug to human serum albumin is
one of the most factors that influence drug distribution
[23]. In this work, the model which integrates support
vector machine (SVM) prediction and the molecular
docking method is used to predict whether a compound
can bind to albumin [24].

Metabolism-related drug-drug interactions
Cytochromes P450 play a crucial role in metabolism
[25], and the potent inhibitors of P450 can lead to un-
desirable drug-drug interactions when co-administered
with other drugs [26]. Thus, a model which built from
experimental high-throughput data using SVMs and mo-
lecular signatures is used to predict whether the com-
pound is a CYP inhibitor [27]. Here, three most important
P450 (CYP) 3A4, 2D6, and 2C9 which account for more
than 80% drug metabolism [28] are taken into consider-
ation in this work.

Half-life prediction
Half-life (t1/2), which is defined as “the time taken for
the amount of compound in the body to fall by half”, is
arguably the most important property as it dictates for
the timescale over which the compound may elicit thera-
peutic effects [29]. In this work, a novel in silico model
(PreDHL) is generated to predict long or short half-life
of drugs by using the C-partial least square (C-PLS) al-
gorithm [30-32]. The building mainly includes the fol-
lowing three steps:

(1) Data sets collection. A total of 169 drugs (injection
formulation) with their half-life values, DrugBank
ID, chemical name, CAS number were collected
from Drugbank database (http://www.drugbank.ca/)
[33] (Additional file 2: Table S2). 4 hour of half-life
value was regarded as the judging boundary for long
half-life (half-life value ≥4 h) and short half-life
(half-life value<4 h). This dataset was then split into
two subsets, i.e., a training set (n=126) used to build
the model and an independent test set (n=43) to
validate the accuracy of the model;
(2) Descriptor calculation and selection. Molecular
descriptors were firstly calculated to construct the
model, 1664 chemical descriptors were calculated
using DRAGON 6 program (http://www.talete.mi.it/
index.htm), which is a useful tool to evaluate the
molecular structure–activity or structure–property
relationships [34]. Then 43 objective features were
selected based on forward stepwise algorithm.
Finally, principal component analysis (PCAs) was
employed to reduce the dimensionality of the
objective features and eventually 8 (Additional file 2:
Table S2) of them were obtained and further applied
for C-PLS modeling process. C-PLS was carried out
by the TANAGRA (version 1.4.38, http://eric.univ-
lyon2.fr/~ricco/tanagra/en/tanagra.html);

(3) Model performance. With the purpose of deriving
reliable in silico models, both internal and external
validation methods were applied. For the internal
validation, the half-life prediction model was evaluated
and verified with leave-one-out (LOO) methodology.
Meanwhile, external validation was performed by
using the test sets for all models. The prediction
performance in the classification system was
evaluated by the parameters: overall, short half-life
and long half-life accuracies. As a result, the derived
model shows impressive performance of prediction
for half-life. For internal validation, the overall accuracy,
long half-life accuracy, and short half-life prediction
accuracy are 85.21%, 84.81% and 85.56% respectively;
for external validation, the overall accuracy is 86.05%,
the long half-life accuracy is 85.00%, and the short
half-life accuracy is 86.96%.

Tanimoto similarity (TS)
Drug-like compounds are those which ‘contain func-
tional groups and/or have physical properties consistent
with the majority of known drugs’ [35]. Hence, the Tani-
moto coefficient [36] is used to remove compounds
which are deemed to be chemically unsuitable for drugs,
and the TS index is introduced to describe how herbal
compounds are comparable to known drugs in Drug-
bank database. The TS index is defined as following:

TS x; yð Þ ¼ xy

xk k2 yk k2−xy

where, x and y represent the structural feature vectors
of two compounds, respectively. In this work, the TS ≥0.18
(average value of drugs in Drugbank) is defined to select
drug-like compounds.

Drug targeting
Comprehensively determining compound-target inter-
action profiles is a critical step for elucidating the
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mechanisms of drug action [37]. To predict the target
profiles of active herbal compounds accurately, an overall
drug targeting strategy integrating our in silico prediction
model, chemogenomics method and publicly database in-
terrogation strategy is developed as following: (1) Our in
silico prediction model efficiently integrates the chemical,
genomic, and pharmacological information for drug tar-
geting on a large scale, which based on two powerful
methods: Random Forest (RF) and SVM [38]. In cases
where drug targets are identified, proteins with an output
expectation value: SVM >0.7 or RF >0.8 are listed as poten-
tial targets; (2) SEA search tool (SEArch, http://sea.bkslab.
org/), the online search tool for the Similarity Ensemble
Approach [39], where relates proteins based on the chem-
ical similarity of their ligands. The final score is expressed
as an expectation value (E-value), that is, the structural
similarity of each drug to each target’s ligand set; and (3)
STITCH 4.0 (Search Tool for Interacting Chemicals, http://
stitch.embl.de/), a combined data repository that captures
the publicly available knowledge on chemical-protein inter-
actions derived from experiments, expert-curated databases
and literature by means of text mining [40].
Furthermore, the final obtained target proteins were

applied as baits to fish their related diseases and path-
ways. The target-disease relationships were retrieved from
the TTD database (Therapeutic Target Database, http://
bidd.nus.edu.sg/group/cjttd/), and the US National Library’s
Medical Subject Headings (http://www.nlm.nih.gov/mesh),
where the diseases can be classified into different groups.
The target-pathway relationships were obtained from the
KEGG database (Kyoto Encyclopedia of Genes and
Genomes, http://www.genome.jp/kegg/).

Network generation and topological analysis
In systems pharmacology, network formed by nodes and
edges (connections between nodes), is a mathematical,
computable and quantifiable description of various rela-
tionships under the complex biological systems [41]. Net-
work parameters, such as degree and betweenness - the
basic network topological properties - can be utilized to
describe the characterization of different drug treatments
from a network perspective [42]. The degree of a node is
the number of edges associated to it, and the betweenness
of a node is the number of shortest communication paths
between different pairs of nodes. The nodes with high
centrality (degree and betweenness) can be considered the
key nodes in a network [43]. The topological properties of
these networks were analyzed using Network Analysis
plugin and CentiScaPe 1.2 of Cytoscape [44].

Measurement of nitrite concentration for experimental
validation
RAW 264.7 mouse macrophage-like cells were obtained
from the Shanghai Institute of Cell Biology, Chinese
Academy of Sciences (Shanghai, China) and maintained
at 37°C in a 5% CO2. The medium used for routine sub-
culture was DMEM (Gibco, USA) supplemented with
10% FBS (HyClone, USA). For experiments, the cells
were plated at a density of 4 × 105 cells/ml into 96-well
plates containing 100 ul medium. After 24 h incubation,
the culture medium was replaced with fresh medium
and the cells were treated with M38, M56 and M57 re-
spectively at different concentrations for 2 h, followed by
stimulation with LPS (Sigma, USA) 100 ng/ml for an
additional 20 h. Then the level of NO production was
monitored by Griess method and according to the indica-
tion on the NO assay kit (Beyotime Biotechnology, China).

Results and discussion
Druglikeness filtering
The high failure rate (50%) of drug development in clin-
ical trials is partly due to the poor PK properties of drug
candidates [45]. Moreover, an effective method which is
specifically developed for the study of herbal injection is
still lacking at the present time. Thus, establishing the
methods for the effective screening of compounds with
optimal ADME properties is of obvious necessity. As a
matter of fact, a successful drug is the combination of
biological activity and drug-like properties; in addition,
property screening allows us to optimize ADME proper-
ties in parallel with drug-like properties [46]. Hence, the
critical PK properties of an injection administered drug
can be illuminated by examining those parameters directly
correlated with ADME processes: Log P, Log S, P-gp, PPB,
P450 and half-life, and the TS index.
Compounds that successfully meet the ADME proper-

ties criteria include: overcoming 62.5% (5/8) of the ADME
barriers and the appropriate TS (≥0.18) are nominated as
candidates for formal development. Consequently, out of
the obtained 86 compounds, 31 molecules with 4 metabo-
lites have favorable PK properties are shown in Table 1.
Among them, neochlorogenic acid (M56), which is one of
the most principal active compounds of Lonicera japonica
Thunb., has been proved with good pharmacological ef-
fects as predicted in the current study [47]. Two well-
known flavonoids, quercetin (M30) and luteolin (M34)
have been proven to overcome various ADME barriers
through inhibition of P-gp [48] and cytochrome P450
[49-51]. Moreover, geniposide (M4), one of the major iri-
doid glycosides in Gardenia jasminoides J.Ellis [52], is the
potential inhibitor of cytochrome P450 [53] and substrate
of P-gp [54].
It should be emphasized that any single screening

paradigm does not fit all discovery projects [55]. In this
study, the most common ADME properties are simul-
taneously visualized in drug discovery research, elucidat-
ing the basic and complex trends for multiple properties
across various functional groups [56]. The incorporation
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http://bidd.nus.edu.sg/group/cjttd/
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http://www.nlm.nih.gov/mesh
http://www.genome.jp/kegg/


Table 1 Pharmacokinetic property predictions for the 35 molecules and their network parameters

ID Compound logS logP 2C9 2D6 3A4 PPB P-gp Y(t1/2) TS Betweenness Degree Structure

M1 L-phenylalaninosecologanin B + + + U.C. + + + - 0.34 1.60E-02 7

M2 L-phenylalaninosecologanin C + + + U.C. + + - - 0.84 9.46E-03 5

M3 secoxyloganin + + + U.C. + + - - 0.39 1.32E-02 6

M4 geniposide + + + U.C. + + - - 0.44 7.08E-02 11
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Table 1 Pharmacokinetic property predictions for the 35 molecules and their network parameters (Continued)

M8 5H,8H-pyrano[4,3-d]thiazolo[3,
2-a]pyridine-3-carboxylic acid

+ + + U.C. + + - - 0.79 0 0

M9 vogeloside + + + U.C. + + - - 0.46 1.00E-05 2

M10 7-epi-vogeloside + + + U.C. + + - - 0.46 1.00E + 00 2

M13 7,8,11-trihydroxy-1-
hydroperoxy-4-guaien-3-one

+ + U.C. U.C. + + + - 0.18 2.74E-02 4

M17 3, 3′, 5-trimethoxy-4′,
7-epoxy-8, 5′-neolignan-4, 9, 9′-triol

+ + + U.C. + - - + 0.47 0 0
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Table 1 Pharmacokinetic property predictions for the 35 molecules and their network parameters (Continued)

M19 5-benzofurancarboxylic acid,
2,3-dihydro-2-(4-hydroxy-3-methoxyphenyl)-

3-(hydroxymethyl)-7-methoxy

+ + + U.C. + - + - 0.36 6.70E-02 26

M20 5-benzofurancarboxylic acid + + + U.C. + - + + 0.44 6.93E-02 27

M21 threo-1-(4-hydroxy-3-methoxyphenyl)-2-
[2-hydroxy-4-(3-hydroxypropyl)phenoxy]-1,

3-propanediol

+ + + U.C. + + - - 0.35 8.84E-02 23

M30 Quercetin + + + - - - + - 0.28 1.75E-01 39

M31 Rutin + + + U.C. + + - + 0.68 6.51E-02 20

M33 luteolin 7-O-β-D-glucoside + + + + + - - + 0.78 2.65E-02 13
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Table 1 Pharmacokinetic property predictions for the 35 molecules and their network parameters (Continued)

M34 Luteolin + + + - - - + + 0.25 1.20E-01 35

M38 3,5-di-O-caffeoylquinic acid + + + + + - - - 0.68 1.58E-02 8

M39 3,5-di-O-caffeoylquinic methyl ester + + + + + - - - 0.68 1.45E-02 7

M41 4,5-di-O-caffeoylquinic methyl ester + + + U.C. + - - - 0.69 1.01E-02 10

M54 (2E,6S)-8-[α-L-arabinopyranosyl-(1″-6′)-
β-D-glucopyranosyloxy]-2,6-dimethylct-2-eno-1,

2″-lactone

+ + + U.C. + + - - 0.78 1.10E-04 2

M55 5-O-caffeoylquinic methyl ester + + + + + + + - 0.36 2.25E-02 16
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Table 1 Pharmacokinetic property predictions for the 35 molecules and their network parameters (Continued)

M56 5-O-caffeoylquinic acid + + + + + - + - 0.33 4.55E-03 7

M57 4-O-caffeoylquinic acid + + + U.C. + - + - 0.33 1.74E-02 11

M58 4-O-caffeoylquinic methyl ester + + + U.C. + - + - 0.36 1.96E-02 12

M61 geniposidic acid + + + U.C. + + - - 0.41 1.28E-02 5

M62 genipin-1-β-D-gentiobioside + + + U.C. + + - - 0.83 2.73E-02 4

M63 6′′-O-trans-p-coumaroylgenipin
gentiobioside

+ + + U.C. + + - - 0.45 0 0
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Table 1 Pharmacokinetic property predictions for the 35 molecules and their network parameters (Continued)

M64 6′′-O-trans-p-feruloylgenipin
gentiobioside

+ + + U.C. + + - - 0.39 0 0

M65 6′′-O-trans-sinapoylgenipin
gentiobioside

+ + + U.C. + + - - 0.34 0 0

M66 Jasmigeniposide A + + U.C. U.C. + + - + 0.40 1.00E-05 2

M69 2′-O-trans-caffeoylgardoside + + + U.C. + + - - 0.79 0 0

M1_sg L-phenylalaninosecologanin B_qt + + + U.C. + + + - 0.34 2.36E-01 42
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Table 1 Pharmacokinetic property predictions for the 35 molecules and their network parameters (Continued)

M2_sg L-phenylalaninosecologanin C_qt + + + U.C. + + - - 0.37 2.63E-01 45

M8_sg 5H,8H-pyrano[4,3-d]thiazolo[3,
2-a]pyridine-3-carboxylic acid_qt

+ + U.C. U.C. + + + - 0.23 1.37E-02 2

M66_sg Jasmigeniposide A_qt + + U.C. U.C. + + - + 0.74 3.60E-04 2

U.C.: uncertain; +: the compound can overcome the barriers; −: the compound cannot overcome the barriers.
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of the key ADME properties is firstly used as profiling
filter for sieving out the most promising molecules for
the traditional Chinese herbs, leading to the foundation
of a systematic approach for compound selection and
later stage experimentation in TCM.

Drug-target network
The drug-target network is defined as a physical bipart-
ite interaction network where the color-coded nodes de-
note herbal drugs (purple) and their target proteins
(green), and an edge links a drug node to a protein node
if the protein is the target of the drug (Figure 2). It con-
sists of 395 drug-target interactions connecting the 29
drugs to 121 targets, resulting in an average number of
target proteins per drug of 13.6.
The topology of the drug-target network can be used

to construct a kernel from the interaction profiles as fol-
lows: (1) In the drug-target network, as seen in Figure 2, it
is apparent that most drugs show relevant polypharmacol-
ogy, i.e., a drug binds to more than one target [57]. One
drug binding to multiple targets may contribute to the
overall effectiveness of the treatment, thereby giving rise to
the therapeutic polypharmacology. The potential polyphar-
macological effects of all active compounds in this work
are involved in the modulation of multiple targets,
such as the two highly connected nodes M30 (quer-
cetin, degree=39, betweenness=0.17509) and M34
(luteolin, degree=35, betweenness=0.11984). For ex-
ample, quercetin is one of the large hubs correspond-
ing to different target clusters. It has high affinities
Figure 2 The drug-target network. A drug node (circle, purple) and a ta
the protein is the target of the drug. The size of one node is proportional t
with Glycogen synthase kinase-3 beta (GSK3B), Nitric
oxide synthase, inducible (NOS2), Prostaglandin G/H
synthase 1/2 (PTGS1/2) and so forth, which induce a
highly complex pharmacological profile including anti-
inflammatory, antioxidant, etc. [58]. (2) It is also apparent
that most of the target proteins (61.9%) are cross-linked
together in this network. Hence, enhancing pharmaco-
logical synergies may be existed among active compounds
due to the fact that two drugs directed at a similar re-
ceptor target or physiological system lead to pharma-
codynamic synergy [59]. For example, Trypsin-1 (PRSS1,
degree=11, betweenness=0.03235), a well-known proteo-
lytic enzyme involved in various pathological processes in-
cluding inflammation, abnormal blood coagulation, tumor
invasion and atherosclerosis [60], possesses the large num-
ber of connections with caffeoylquinic acid derivatives like
3,5-di-O-caffeoylquinic acid (M38), 4,5-di-O-caffeoylqui-
nic methyl ester (M41) and 5-O-caffeoylquinic methyl
ester (M55). In conclusion, the drug-target network ana-
lysis can provide insights into the drug and target intera-
tion such as target binding, therapeutic polypharmacology
and herbal synergism.

Target-disease network
Influenza is often viewed as a complex disease character-
ized in its full form by the sudden onset of high fever,
then is the inflammation of the upper respiratory tree
and trachea with coryza, cough and headache [61]. We
retrieved 49 potential targets out of the predicted targets
associated with influenza related diseases, and according
rget node (circle, green) are connected to each other by blue edge if
o its degree.
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to the US National Library’s Medical Subject Headings,
these diseases were classified into 10 groups, like patho-
logical conditions, signs and symptoms, respiratory tract
diseases and immune system diseases, virus diseases,
bacterial infections, and so forth. Accordingly, we con-
structed a target-disease network resulted in 110 target-
disease interactions connecting 49 targets to 10 diseases
(Figure 3), and about half of the targets (27/49) relate to
multiple diseases.
Further analysis of the target-disease network shows

that Reduning injection probably protects human against
influenza mainly in three ways: treating respiratory tract
diseases (degree=25), enhancing innate and adaptive de-
fenses (degree=23), and treating inflammation (patho-
logical conditions, signs and symptoms, degree=19). The
overlapping targets among these three diseases (as seen
in Figure 3) indicate that different diseases share common
pathological changes and could be cured by a common
herbal combination [62]. For example, Arachidonate 5-
lipoxygenase (ALOX5) is one of the key enzymes in the
formation of proinflammatory eicosanoids from arachi-
donic acid [63], which transforms essential fatty acids into
leukotrienes (like leukotriene B4, C4, D4 and E4) [64]. In
this network, it is a current target for pharmaceutical
intervention against various diseases and has high affin-
ities with compounds M30, M34, etc. Moreover, Reduning
injection might also limit the virus infection by targeting
the viral protein directly, like DNA topoisomerase 2-alpha
(TOP2A), which inhibits the replication of virus [65].
Figure 3 The target-disease network. A target node (circle, purple) and
edge if the target is involved in the related pharmacological process. The s
Even though the definition of the complex mechanism
underlying diseases is challenging, target interactions
and their roles in understanding diseases can be charac-
terized by the bio-molecular network model. This work
gives a systems-level perspective for the further under-
standing of therapeutic polypharmacology at the mo-
lecular level, i.e., treating complex diseases by targeting
multiple targets with more than one drug in the herbal
combination [57].
Target-pathway network and systems analysis
A target-pathway network for 48 putative drug targets
of Reduning and 154 KEGG pathways are illustrated in
Figure 4. As can be observed, most of the target proteins
(42/48) appear in multiple pathways indicating that these
targets may intercede the interactions and cross-talk
between different pathways. Similarly, major pathways
(105/154) are also modulated through multiple target
proteins, and many of them have been reported as suit-
able target pathways for influenza therapies, such as
the PI3K-Akt signaling pathway (hsa04151) [66], Neu-
roactive ligand-receptor interaction (hsa04080), Calcium
signaling pathway (hsa04020), and Toll-like receptor sig-
naling pathway (hsa04620) [65].
To better elaborate the molecular mechanism of Redun-

ing injection, an integrated ‘influenza-related pathway’ is
compiled based on the following steps: (1) 48 putative
drug targets are used as a query to fish out their partners,
a disease node (square, green) are connected to each other by grey
ize of one node is proportional to its degree.



Figure 4 The target-pathway network. A target node (circle, purple) and a pathway node (hexagon, blue) are connected to each other by
blue edge if the target is mapped on the pathway. The size of one node is proportional to its degree.
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and the pathways are expanded step by step; (2) closely
connected proteins are grouped together; and (3) the
intermediate interacting partners are removed to clearly
display the underlying mechanism of Reduning. As shown
in Figure 5, 48 targets can be organized into the following
pathways indicating that multicomponent herbal medi-
cines mainly control infectious diseases by modulating in-
flammatory and immune responses.
Influenza infection can be recognized by the immune

system in multiple ways as described in Figure 5, including
Toll-like receptor signaling pathway, NOD-like receptor
signaling pathway, T-cell receptor signaling pathway and
so forth. Host innate immune system initiates a wide
range of defense mechanisms which may contribute to the
development of inflammation by the establishment of a
network of cytokines, chemokines and prostanoids [67].
Taking the NOD-like receptors (NLRs) as an example,
which are a specialized group of intracellular receptors ac-
companying with a primary role in host defense against
invading pathogens [67,68]. However, in addition to their



Figure 5 Distribution of target proteins on the compressed ‘influenza-related pathway’. Pathways are marked in pink and our putative
drug targets are marked in green. Arrows indicate activation, T-arrows indicated inhibition, and segments indicate actions that can either be
activatory or inhibitory on the specific targets.
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important functions in the host innate immune system,
they are also involved in the pathogenesis of a variety of
human inflammatory diseases due to their ability to regu-
late nuclear factor-kappa B (NF-κB) signaling, interleukin-
1-beta (IL-1β) production [68]. Furthermore, IL-1β in-
duces the expression of hundreds of genes, including
cytokines (IL-6 and TNF-α), and pro-inflammatory me-
diators (iNOS, COX2, PLA2) [69]. Another example is
the TOLL-like receptors (TLRs), they also have a crucial
role in innate regulating immunity [70] and regulating
inflammatory response by the production of inflamma-
tory cytokines such as IL-1β, TNF-α and IL-6 [71]. The



Figure 6 Effect of different treatment upon LPS-induced NO
release from RAW264.7 cells. The cells were pretreated with various
concentrations of M38 (A), M57 (B) and M56 (C) for 2 h and then
incubated with LPS (100 ng/ml) or LPS only for 20 h. Values are the
mean ± SD for n= 3, *p< 0.05 and **p< 0.01.
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best characterized regulator of TLR signaling is controlled
by the expression of many genes involved in the inflam-
matory response of NF-κB transcription factor [70].
Hence, multicomponent herbal medicine probably

control the infectious disease mainly based on two ways:
the stimulation of the immunomodulatory agents (such
as GSK3B, MAPK14, PPARγ) will probably help enhan-
cing innate and adaptive immune, and meanwhile, the
regulation of the inflammatory cytokines and pro-
inflammatory mediators (like IL-6, IL-8, TNF-α, COX2)
by herbal ingredients will probably help diminishing in-
flammation. In recent years, the continuing emergence
of drug resistance, vaccines and antiviral agents will fail
to meet global needs for the influenza, therefore our
conclusion may provide the new way of confronting the
influenza for researchers and scientists. Moreover, sev-
eral studies have suggested the crucial role of host re-
sponse in severe influenza virus infection [72] and the
importance of inflammasomes in innate immune re-
sponses [73]. Hence, the influenza virus recognition
through immunomodulatory and anti-inflammatory
agents should provide clues to making more effective ther-
apeutics agents against influenza.

Effects of M38, M56and M57 on LPS-induced NO
production in RAW264.7 cells
Macrophages are considered to play a crucial role in the
inflammation process [74]. Activated macrophages can
generate various pro-inflammatory mediators such as
TNF-α, IL-1, IL-6, NO and PGE2 [75]. Meanwhile, NO
may attend almost all stages in the development of in-
flammation, and it can be over-produced endogenously
by inducible nitric oxide synthases (iNOS) which could
be induced in response of pro-inflammatory cytokines
and LPS [76]. It also has been shown that the NF-κB sig-
nal pathway is crucial in the activation of immune cells
by up-regulating the highly expression of many cytotoxic
factors including iNOS and other pro-inflammatory cy-
tokines [77,78]. Therefore, in order to supply a prelimin-
ary evidence to testify the targets which we have
predicted in our paper, 3 typical compounds (M38, M56
and M57) from active candidates were selected and the
NO production was taken as a measuring index in our
validation experiment. Then the results were expressed
as mean ± SD of three independent experiments in Figure 6.
The statistical significance of differences among groups
were assessed using one-way analysis of variance (ANOVA)
followed by the Student’s t-test. P< 0.05 was considered
statistically significant and P< 0.01 was considered to be
very significant.
It is quite obvious that NO was significantly inhibited

by pretreatment with M57 in a dose-dependent manner
(10, 20, 40, 80 ug/ml) from our result. Also, a similar
tendency was observed in NO production at various
concentrations of M38 and M56 treated in LPS-
stimulated RAW 264.7 cells. In other words, our
present study has demonstrated that M38, M56 and
M57 have conspicuous inhibitory effect on NO pro-
duction in LPS-stimulated macrophages, and we can
conclude the three compounds could down-regulation
LPS-induced iNOS expression. Meanwhile, the finding
may explain why M38, M56 and M57 have anti-
inflammatory effects in LPS-treated RAW 264.7 cells, and
the mechanism of these processes may potentially involve
the regulation of directly or indirectly therapeutic targets
in NF-κB signal pathway.
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Conclusion
Traditional Chinese Medicine (TCM), a comprehensive
and abstruse ethnomedicine, has accumulated thousand
years of clinical experiences, however, it lacks the sys-
tematical theory and scientific explanation. In this paper,
we overcome these drawbacks above and successfully
propose a systems pharmacology-based strategy to deter-
mine the material bases and the mechanisms of action
of traditional Chinese medicinal injection by combining
pharmacokinetics (PK) with network pharmacology. Exem-
plified by Reduning injection, a Chinese medicinal prepar-
ation consists of three herbs mainly treating influenza-
related diseases, our main findings are:

1) PK modelling, as one of the elements identifying the
key properties of a drug, plays an increasingly
important role in drug development combining
with the druglikeness evaluation. In this work, the
systems-based PK models successfully provide 35
candidates (31 molecules and 4 metabolites) for the
material basis of Reduning injection. The most
common ADME properties are simultaneously and
firstly visualized as profiling filter for compound
selection in TCM, elucidating the basic and complex
trends for multiple properties across various functional
groups in a systematic approach.

2) The drug-target and target-disease networks
demonstrate the therapeutic polypharmacology of
TCM formula, i.e., treating complex diseases by
targeting multiple targets with more than one drug in
the herbal combination. The herbal medicines with
multiple components offer a unique opportunity to
explore multiple disease-causing mechanisms
simultaneously.

3) The pathway network provides the new way of
confronting the influenza with immunomodulatory and
anti-inflammatory agents, which may provide clues to
making more effective therapeutics against influenza.

As illustrated by Reduning injection, this work demon-
strates that the application of our systems pharmacology
platform can not only recover the known knowledge of
TCM but also provide new findings for uncovering the
therapeutic mechanism of herbal injection. The major limita-
tion of this approach is its direct demand for further experi-
mental validation which will be resolved in our next work.
Additional files

Additional file 1: Table S1. The detailed information of all compounds
in Reduning Injection. +:compound can overcome the barriers; −:compound
cannot overcome the barriers. L: long half-life (half-life value ≥4 h); and S: short
half-life (half-life value<4 h).
Additional file 2: Table S2. Biological activity (half-life) data and
parameters of 169 chemicals in the Drugbank. L: long half-life (half-life
value ≥4 h); and S: short half-life (half-life value<4 h).
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