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An ethyl acetate fraction derived from Houttuynia
cordata extract inhibits the production of
inflammatory markers by suppressing NF-kB and
MAPK activation in lipopolysaccharide-stimulated
RAW 264.7 macrophages
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Abstract

macrophages.

Mitogen-activated protein kinase

Background: Houttuynia cordata Thunb. (Saururaceae) has been used in traditional medicine for treatment of
inflammatory diseases. This study evaluated the anti-inflammatory effects of an ethyl acetate fraction derived from a
Houttuynia cordata extract (HCE-EA) on the production of inflammatory mediators and the activation of nuclear
factor-kB (NF-kB) and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-stimulated RAW 264.7

Methods: To measure the effects of HCE-EA on pro-inflammatory cytokine and inflammatory mediator's
expression in RAW 264.7 cells, we used the following methods: cell viability assay, Griess reagent assay,
enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting analysis.

Results: HCE-EA downregulated nitric oxide (NO), prostaglandin E, (PGE,), tumor necrosis factor-a (TNF-a), and
interleukin (IL-6) production in the cells, as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2
(COX-2) expression. Furthermore, HCE-EA suppressed nuclear translocation of the NF-kB p65 subunit, which
correlated with an inhibitory effect on IkBa (nuclear factor of kappa light polypeptide gene enhancer in B-cells
inhibitor, alpha) phosphorylation. HCE-EA also attenuated the activation of MAPKs (p38 and JNK).

Conclusions: Our results suggest that the anti-inflammatory properties of HCE-EA may stem from the inhibition
of pro-inflammatory mediators via suppression of NF-kB and MAPK signaling pathways.
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Background

Inflammation has been implicated as a pathophysiological
mechanism underlying many chronic diseases. Inflamma-
tory responses and clinical symptoms are controlled
through cytokines, nitric oxide (NO), and lipid mediators,
including prostaglandins and leukotrienes produced by
macrophages, neutrophils, and other inflammatory cells
[1,2]. Activated macrophages play a particularly important
role in the mediation of inflammation via the generation
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of tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6),
NO, and prostaglandin E, (PGE,). Of these, NO, PGE, are
generated by inducible nitric oxide synthase (INOS) and
cyclooxygenase-2 (COX-2), respectively [3,4].

Overproduction of these assorted inflammatory media-
tors is involved in the pathogenesis of atherosclerosis,
inflammatory arthritis, and cancer [5]. Thus, identifica-
tion of natural product-derived extracts that inhibit the
production of inflammatory mediators is extremely at-
tractive in terms of the development of functional foods
for disease treatment and/or prevention [6].
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Many previous studies have shown that various phyto-
chemicals exert anti-inflammatory effects by inhibiting
the nuclear factor kB (NF-«kB) signaling pathway [7-11].
NF-kB is a predominant transcription factor involved in
the regulation of immune and inflammatory responses.
The activation of NF-kB occurs via phosphorylation and
degradation of IkB bound to NF-«B, resulting in the
translocation of NF-kB into the nucleus to promote the
expression of pro-inflammatory mediators (i.e., iNOS,
COX-2, and certain cytokines) [12]. Mitogen-activated
protein kinase (MAPK) signaling pathways also modu-
late inflammatory responses through the upregulation of
cytokine expression [13]. At the molecular level, the che-
mopreventive activities of anti-inflammatory substances
are often attributed to their ability to target the compo-
nents of pro-inflammatory signaling pathways, especially
those mediated by a panel of upstream kinases and tran-
scription factors [14]. Therefore, NF-kB and MAPKs are
critical targets for the actions of anti-inflammatory
molecules.

Houttuynia cordata Thunb. (family Saururaceae) is a
perennial food plant widely distributed throughout
Southeastern Asia. This plant is a leaf vegetable that is
used as a herbal tea, in salads, or cooked with other veg-
etables [15]. Also, It has been used in traditional medi-
cine for treatment of suppuration, chronic bronchitis
and pneumonia, otitis, and cystitis [16,17]. H. cordata
contains a number of polyphenolic components and is
characterized by various pharmacological functions, in-
cluding antioxidant, anti-inflammatory, anti-tumor, and
anti-allergy properties [18-22]. Recent reports have dem-
onstrated that the volatile oil and supercritical extract
constituents of H. cordata are acutely important for the
mitigation of inflammation [20,23,24]. Another recent
study demonstrated that the ethyl acetate fraction of a
H. cordata extract exerted a protective effect against
chemokine (C-C motif) ligand 4 (CCL4)-induced acute
hepatotoxicity in mice [15].

Despite these encouraging studies, the cellular and mo-
lecular mechanisms responsible for the anti-inflammatory
activity of H. cordata have yet to be elucidated. Therefore,
the present study compared the anti-inflammatory actions
of H. cordata extract (HCE) and with those of various
HCE fractions, by measuring their ability to inhibit NO,
PGE,, TNF-q«, and IL-6 production. Next, we investi-
gated the molecular mechanisms underlying the anti-
inflammatory impact of the most efficacious fraction of
HCE, the HCE ethyl acetate fraction (HCE-EA).

Methods

Chemicals and reagents

Lipopolysaccharide (LPS), bovine serum albumin (BSA),
and other common chemicals were purchased from
Sigma-Aldrich Chemical Co. (St. Louis, MO, USA).
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Primary and secondary antibodies for Western blotting
analysis were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). ELISA Kkits were obtained from
R&D Systems (Minneapolis, MN, USA). The RNA extrac-
tion kit was obtained from Qiagen (Hilden, Germany).
The Nuclear Extract Kit was purchased from Active Motif
(Carlsbad, CA, USA). Standard compounds for ultra-high
performance liquid chromatography (UPLC) analysis of
H. cordata were as follows: chlorogenic acid (Sigma-
Aldrich, Steinheim, Germany), hyperoside (Carl Roth
GmbH, Karlsruhe, Germany), and quercitrin (Wako Pure
Chemical Industries Ltd, Osaka, Japan).

Plant materials and sample preparation

H. cordata was purchased from Omniherb Co. (Yeoungcheon,
Korea) and authenticated based on the macroscopic
characteristics described by the Classification and Iden-
tification Committee of the Korea Institute of Oriental
Medicine (KIOM). The committee was composed of
nine experts in the fields of plant taxonomy, botany,
pharmacognosy, and herbology. A voucher specimen
(KIOMO008013) was deposited in the herbarium of the
Department of Herbal Medicine Resource at KIOM. H.
cordata (3 kg) was extracted three times with 70% etha-
nol (with a 2 h reflux), and the extract was concentrated
under reduced pressure and lyophilized. The resulting
extract (663.1 g) was resuspended in water and parti-
tioned sequentially with n-hexane, methylene chloride,
ethyl acetate, n-butanol, and water, followed by in vacuo
evaporation to yield the n-hexane fraction (HCE-Hx,
70.9 g), the methylene chloride fraction (HCE-MC,
17.9 g), the ethyl acetate fraction (HCE-EA, 24.6 g), the
n-butanol fraction (HCE-BuOH, 96.6 g), and the HCE-
water fraction (228.6 g).

Cell culture

RAW 264.7 murine macrophages were obtained from the
American Type Culture Collection (ATCC, Rockville,
MD, USA) and maintained in Dulbecco’s modified Ea-
gle’s medium (DMEM) supplemented with 5.5% fetal
bovine serum (FBS) and 1% penicillin/streptomycin at
37°C in a humidified 5% CO, incubator.

Cell viability

Cell viability was measured by using the Cell Counting Kit-
8 (CCK-8) assay according to the manufacturer’s instruc-
tions (Dojindo Molecular Technologies, Inc., Rockville,
MD, USA). RAW 264.7 cells were seeded into a 96-well
plate at a density of 5x 10* cells/well. After 24 h, the
cells were treated with HCE (100 pg/mL) plus LPS
(I pg/mL), the HCE-Hx, HCE-MC, HCE-BuOH, or
HCE-water fraction (100 pg/mL) plus LPS (1 pg/mL),
the HCE-EA fraction (25, 50, 100, or 200 pg/mL) plus
LPS (1 pg/mL), or LPS alone for an additional 24 h. The
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Table 1 Sequences of primers used in real-time PCR

Gene Forward Reverse Accession no. Length (bp)
iNOS AAGGTCTACGTTCAGGACATC AGAAATAGTCTTCCACCTGCT NM_010927 187
COX-2 TTCCTCTACATAAGCCAGTGA TCCACATTACATGCTCCTATC NM_011198 200
GAPDH TGTGTCCGTCGTGGATCTGA CCTGCTTCACCACCTTCTTGA NM_008084 77
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Figure 1 Effect of H. cordata fractions on cell viability and the production of inflammatory mediators in LPS-stimulated RAW 264.7
macrophages. (A) Cells were treated with HCE or H. cordata fractions (100 ug/mL) plus LPS (1 ug/mL) or LPS alone for 24 h. Cell viability was
determined by using CCK-8 assay. (B-E) Cells were treated with various concentrations (25, 50, 100, or 200 ug/mL) of HCE-EA plus LPS (1 pug/mL)
or LPS alone for 20 h. The production of (B) NO was measured by using the Griess reagent, and the production of (C) PGE,, (D) TNF-a, and (E)
IL-6 was measured by using an ELISA kit. Values represent the mean + the standard deviation (SD) (n =3 independent experiments. *p < 0.05,
**p < 0.01, ***p < 0.001 vs. LPS alone (control)).
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Figure 2 Effect of HCE-EA on cell viability in RAW 264.7 cells.
Cell viability was measured by using the CCK-8 assay. Values represent
the mean + the SD (n = 3 independent experiments).
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CCK-8 assay was employed after another 1 h to assess
cell viability, and the absorbance at 450 nm was mea-
sured by using a Wallac EnVision™ Microplate Reader
(PerkinElmer, MA, USA).

Measurement of NO production

The nitrite concentration in the culture medium was
measured as an indicator of NO production by the
Griess reaction system (Promega, W1, USA). RAW 264.7
cells (5 x 10* cells/well) in 96-well plates were cultured
for 24 h. The cells were then treated with the samples
list above plus LPS (1 pg/mL) or LPS alone for 20 h.
The supernatant was mixed with the same volume of
Griess reagent and incubated at room temperature for
5 min. The concentration of nitrite was determined by
measuring the absorbance with a Wallac EnVision™ Mi-
croplate Reader (PerkinElmer).

Determination of PGE,, TNF-a, and IL-6 production

RAW 264.7 cells (5x10* cells/well in 96-well plates)
were treated for 20 h with HCE plus LPS (1 pg/mL), the
HCE-Hx, HCE-MC, HCE-BuOH, or HCE-water fraction
(100 pg/mL) plus LPS (1 pg/mL), the HCE-EA fraction
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Figure 3 Effect of HCE-EA on the production of inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. Cells were treated
with various concentrations (0, 25, 50, 100 or 200 pg/mL) of HCE-EA plus LPS (1 pg/mL) or LPS alone for 20 h. (A) NO content in the conditioned
medium was measured by using the Griess reagent. (B-D) PGE,, TNF-q, and IL-6 production were determined by using an ELISA kit. Each bar
represents the mean + the SD (n =3 independent experiments **p < 0.01, ***p < 0.001 vs. LPS alone (control)).

(B)
800
-y
g 600
(=]
& 400 Kk
o~
®
a 200 - - - -
0 -
0 0 25 50 100 200

HCE-EA (ug/mL) TTTITTET

(D)
25,000
20,000 |
- *%
E 415,000 |
f=]
& *xk%k
@ 10.000 -
-
~ 5,000
T =3
0 A
0 0 25 50 100 200
HCE-EA
(ng/mL) LPS (1 ug/mL)




Chun et al. BMC Complementary and Alternative Medicine 2014, 14:234
http://www.biomedcentral.com/1472-6882/14/234

(25, 50, 100, 200 pg/mL) plus LPS (1 pg/mL), or LPS
alone. The conditioned medium was then collected. The
production of PGE,, TNF-a and IL-6 in the conditioned
media was determined by using an ELISA kit (R&D sys-
tems) according to the manufacturer’s instructions.

RNA extraction and quantitative real-time polymerase
chain reaction (RT-PCR)

RAW 264.7 cells (5x10° cells/well in six-well plates)
were treated with HCE-EA (25, 50, 100, or 200 pg/mL)
plus LPS (1 pg/mL) for 6 h. To evaluate the expression
levels of iNOS and COX-2 mRNA, total cellular RNA
was extracted with an RNeasy mini kit (Qiagen) according
to the manufacturer’s instructions. Total RNA (500 ng)
was mixed with Omniscript RT mixture (Qiagen) contain-
ing oligo-dT primers and water to a final volume of 20 pL
and incubated at 37°C for 60 min. Real-time PCR was
performed by using the Rotor Gene Q system (Qiagen,
Hilden, Germany) and a reaction mixture that consisted
of SYBR Green 2 x PCR Master Mix, cDNA template,
and forward and reverse primers. The PCR protocol
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consisted of 35 cycles of denaturation at 95°C for 15 sec,
followed by 55°C for 30 sec to allow for extension and
amplification of the target sequence. The expression
levels of iNOS and COX-2 mRNA were normalized to that
of glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
via the 2- AACT method. The primer sequences employed
in this study are shown in Table 1.

Preparation of cytosolic and nuclear extracts

RAW 264.7 cells (5 x 10° cells/well in 6-well plates) were
pretreated with HCE-EA (25, 50, 100, or 200 pg/mL) for
2 h, followed by stimulation with LPS (1 ug/mL) for 1 h.
The preparation of nuclear and cytoplasmic extracts was
performed by using the Nuclear Extract Kit (Active
Motif). Lysates were collected and cleared by centrifuga-
tion, and the fractions were stored at —80°C prior to use.

Western blotting analysis

RAW 264.7 cells (5 x 10° cells/well in 6-well plates) were
pretreated with HCE-EA (25, 50, 100, or 200 pg/mL) for
2 h, followed by stimulation with LPS (1 pg/mL). The
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Figure 4 Effect of HCE-EA on iNOS and COX-2 protein and mRNA expression in LPS-stimulated RAW 264.7 macrophages. (A) Cells were
treated with the indicated concentrations of HCE-EA plus LPS (1 pg/mL) or LPS alone for 20 h. Protein expression levels of iNOS and COX-2 were
determined by Western blotting analysis. -actin was employed as a loading control. (B) Cells were incubated with the indicated concentrations
of HCE-EA LPS (1 pg/mL) or LPS alone for 6 h. mRNA expression levels of INOS and COX-2 were determined by real-time PCR analysis. The expression
level of GAPDH mRNA served as the internal control for the normalization of iINOS and COX-2 mRNA expression. Data are expressed as the mean + the
SD (n = 3 independent experiments *p < 0.05, **p < 0.01, ***p < 0.001 vs. LPS alone (control)).
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cells were collected and washed twice with cold phos-
phate buffered saline (PBS). Total cellular proteins were
extracted with a protein lysis buffer (Pro-prep, iNtRON,
Sungnam, Korea). Equal amounts of protein (20 pg) were
separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) in 12% gels, followed by
transfer onto nitrocellulose membranes. Membranes were
blocked with 5% non-fat milk and incubated with pri-
mary antibodies overnight at 4°C. The membranes were
then incubated with the corresponding horseradish
peroxidase-conjugated secondary antibodies for 1 h at
room temperature. Membranes were treated with enhanced
chemiluminescence detection reagents, and protein bands
were visualized by using a Las-4000 Luminescent Image
Analyzer (Fujifilm, Tokyo, Japan). Also, the densities of the
bands were measured with the Multi Gauge software, ver-
sion 3.0.

Chromatographic conditions

Chromatographic analysis was performed with a ultra per-
formance liquid chromatography (UPLC) system (Waters
Co., Milford, MA, USA) and a photodiode array detector.
HCE and HCE-EA samples (10 mg) were dissolved in
methanol (10 mL). Chromatographic separation was then
conducted by using an Acquity® UPLC HSS T3 column
(2.1 x 100 mm, 1.8 um, Waters Co). The mobile phase
consisted of 0.2% acetic acid in water (A) and acetonitrile
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(B), and the gradient program encompassed a linear
change in 0-12 min from 88:12 (v/v) to 75:25 (v/v). The
detection wavelength was scanned at 210-400 nm and re-
corded at 254 nm. A flow rate of 0.2 mL/min was applied,
and the sample injection volume was 1.0 pL.

Instrumentation and analytical conditions

The liquid chromatography mass spectrometry (LC/MS)
analysis was performed using an Waters UPLC system
equipped with 15 T Fourier transform ion cyclotron res-
onance mass spectrometry (15 T FT-ICR MS) (Bruker,
Billerica, MA) coupled with electrospray ionization (ESI).
The mobile phase consisted of 0.1% formic acid in water
(A) and 0.1% formic acid in acetonitrile (B) and the gradi-
ent program encompassed a linear change in 0-12 min
from 88:12 (v/v) to 75:25 (v/v). Other LC/MS analysis
condition was carried out in the same method with
UPLC-PDA. Mass spectrometric acquisition was per-
formed in scan mode using positive and mass range
from m/z 150 to 2000. The ion source dependent parame-
ters were: source accumulation, 0.020 sec; ion accumula-
tion time, 0.400 sec; ion spray voltage floating 4500 V; dry
Gas, 4.0 L/min; dry temperature, 180°C; nebulizer, 2.0 bar.

Statistical analysis
All results are presented as the mean + the standard de-
viation (SD) and are representative of three or more
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Figure 5 Effect of HCE-EA on NF-kB activation in LPS-stimulated RAW 264.7 macrophages. Cells were pretreated with HCE-EA (25, 50,
100, or 200 pug/mL) for 2 h prior to incubation with LPS (1 ug/mL) for another 1 h. Protein levels of (A) NF-kB p65 and (B) IkBa and plkBa were
determined by Western blotting analysis. Lamin B was employed as a loading control.
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independent experiments. Data were compared by using
Student’s ¢-test and P-values less than 0.05 were consid-
ered statistically significant.

Results

Effect of HCE and its associated fractions on cell viability
and LPS-induced production of NO, PGE,, TNF-q, and IL-6
The CCK-8 assay was employed to determine the effect of
HCE and the HCE-Hx, HCE-MC, HCE-EA, HCE-BuOH,
and HCE-water fractions on RAW 264.7 cell viability. As
shown in Figure 1A, The HCE-Hx and HCE-MC fractions
exhibited marked cytotoxicity toward the cells. Therefore,
HCE-Hx and HCE-MC were excluded from the remaining
experiments. Next, we investigated the impact of HCE,
HCE-EA, HCE-BuOH, and HCE-water on LPS-stimulated
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production of NO, PGE,, TNF-a, and IL-6. Of these,
HCE-EA was the most efficacious in regard to inhibition
of the LPS-induced release of inflammatory mediators
(Figure 1B-E). Thus, the HCE-EA fraction was selected for
further study to assess the anti-inflammatory mechanism
of H. cordata.

Dose-dependent effect of HCE-EA on cell viability

The influence of various concentrations of HCE-EA
on RAW 264.7 cell viability was next investigated to
establish the appropriate concentration range for the
remainder of the study. HCE-EA did not affect cell via-
bility at concentrations up to 200 pg/mL (Figure 2).
Thus, we used HCE-EA at 25-200 pg/mL in subsequent
experiments.
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Figure 6 Effect of HCE-EA on the phosphorylation of MAPKs in LPS-stimulated RAW 264.7 macrophages. (A) Cells were pretreated with
HCE-EA (25, 50, 100, or 200 pg/mL) for 2 h prior to incubation with LPS (1 pg/mL) for 30 min. Protein levels of ERK, pERK, JNK, pJNK, p38, and
pp38 MAPKs were determined by Western blotting analysis. (B) The pMAPK/MAPK protein ratio in shown. Values represent the mean =+ the SD
(n =3 independent experiments *p < 0.05, **p < 0.01, vs. LPS alone (control)).
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Figure 7 Representative UPLC chromatogram and mass spectra. (A) HCE-EA, (B) Peaks represent of standard compounds: (1) chlorogenic
acid, (2) hyperoside, and (3) quercitrin, (C) total ion chromatogram of HCE-EA, (D) mass spectra of chlorogenic acid, (E) mass spectra of hyperoside,
(F) mass spectra of quercitrin.
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Effect of HCE-EA on LPS-stimulated production of NO,
PGE,, TNF-a, and IL-6

To investigate whether HCE-EA inhibits LPS-stimulated
production of NO, PGE,, TNF-qa, and IL-6, cells were
treated with various concentrations of HCE-EA plus LPS
or LPS alone for 20 h. HCE-EA significantly decreased
NO, PGE,, TNF-a, and IL-6 levels in a dose-dependent
manner (Figure 3). The ICs, values of NO, PGE,, TNF-
a, and IL-6 were estimated to be 58.64 +5.25, 22.12 +
2.78, 70.99 + 5.84, and 40.61 + 1.54 pug/mL, respectively.

Effects of HCE-EA on LPS-stimulated expression of iNOS
and COX-2

Next, we investigated whether the inhibitory effect of
HCE-EA on NO and PGE, production was related to the
modulation of iNOS and COX-2 protein levels. Figure 4A
demonstrates that HCE-EA strongly suppressed the pro-
tein expression of both iNOS and COX-2. Furthermore,
HCE-EA also significantly repressed iNOS and COX-2
mRNA expression in LPS-stimulated RAW 264.7 cells
(Figure 4B). These results suggest that the HCE-EA-
mediated inhibition of NO and PGE, production is as-
sociated with transcriptional downregulation of iNOS
and COX-2 genes.

Effect of HCE-EA on LPS-induced NF-kB activation
Activation of NF-«B, an essential transcription factor in
the inflammatory response, occurs following the phos-
phorylation, ubiquitination, and proteolytic degradation
of IxBa. Thus, p65 levels in cytoplasmic and nuclear ex-
tracts prepared from RAW 264.7 cells were next evalu-
ated by Western blotting analysis. HCE-EA inhibited
LPS-stimulated nuclear translocation of NF-kB p65 in a
dose-dependent manner (Figure 5A). We also examined
the ability of HCE-EA to inhibit the phosphorylation
and degradation of IkBa in the cytoplasm and found that
HCE-EA promoted the cytosolic accumulation of IkBa
via suppression of IkBa phosphorylation (Figure 5B).
These results suggest HCE-EA effectively inhibits LPS-
induced NF-kB activation by blocking the nuclear trans-
location of NF-«B and the degradation of IxBa.

Effect of HCE-EA on LPS-stimulated phosphorylation of
MAPKs

The phosphorylation and activation of MAPKs are crucial
for LPS-stimulated NF-kB activation and the subsequent
activation of inflammatory mediators [25]. To investi-
gate whether HCE-EA attenuates inflammatory responses
through MAPK pathways, we employed Western blotting
to evaluate the phosphorylation levels of several MAPKs,
including extracellular signal regulated kinase (ERK) 1/2,
c-Jun N-terminal kinase (JNK), and p38. HCE-EA sup-
pressed the LPS-induced phosphorylation of JNK and p38,
but not ERK 1/2 (Figure 6). This observation is consistent
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with the hypothesis that HCE-EA blocks JNK and p38
phosphorylation in MAPK pathways to suppress inflam-
matory responses in LPS-induced RAW 264.7 cells.

Identification of the primary active components in
HCE-EA

UPLC-PDA and LC/MS analysis was next performed to
identify the primary functional compounds in HCE-EA.
The chromatogram and mass spectra of three compo-
nents (chlorogenic acid, hyperoside, and quercitrin) are
shown in Figure 7. The three components in HCE-EA
were detected at approximately 3.4, 8.9 and 11.3 min, re-
spectively (Figure 7A and B). The molecular weight of
three components was confirmed by LC/MS and their
mass spectra. The product ion scan spectra of [M + H]*
for chlorogenic acid, hyperoside, and quercitrin, showed
molecular peak at m/z 355.10, 465.10, and 449.10, re-
spectively (Figure 7C-F). As shown in Table 2, three
components were increased in HCE-EA compared with
HCE and are thus candidates for the anti-inflammatory
actions of HCE-EA.

Discussion

Inflammatory processes are distinguished by the gener-
ation of large amounts of the pro-inflammatory mediators
NO and PGE,, which are in turn generated by iNOS and
COX-2 enzymes, respectively [26]. NO signaling requires
iNOS upregulation, whereas abundant COX-2 expression
promotes PGE, production and the activation of the pro-
inflammatory PGE, signaling cascade in response to in-
flammatory stimuli [27]. Pro-inflammatory cytokines (e.g.,
TNF-a and IL-6) evoke elevated levels of iNOS and COX-
2, followed by a significant increase in NO and PGE,
production. Therefore, the present study evaluated the
anti-inflammatory actions of HCE-EA on LPS-stimulated
RAW 264.7 cells and the molecular mechanisms involved
in terms of TNF-a, IL-6, iNOS, COX-2, NO, and PGE,
production.

The current results showed that HCE-EA was more
efficacious than the other fractions at suppressing the
LPS-induced release of NO and PGE,, with no cytotox-
icity at the concentrations employed. Moreover, HCE-
EA suppressed the LPS-stimulated increase in iNOS and
COX-2 protein and mRNA expression. We also confirmed
that HCE-EA decreased the levels of pro-inflammatory cy-
tokines produced by LPS-treated RAW 264.7 cells (i.e.,
TNF-a and IL-6), and showed that the actions of HCE-EA

Table 2 Content of three compounds in HCE and HCE-EA

Material

Content (mg/g)

Chlorogenic acid Hyperoside Quercitrin
HCE 1.052+0.00 4.342+0.02 8.999+0.03
HCE-EA 12,503 £ 0.02 38.705+0.07 142,671 +£0.24
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were mediated via inhibition of the NF-kB and MAPK
signaling pathways. These pathways are well-known to
modulate levels of pro-inflammatory mediators.

NF-kB regulates the transcription of a number of
genes, including iNOS, COX-2, TNF-q, and IL-6, and is
thus important for the development of inflammatory dis-
eases [7,12,14]. Once activated, the NF-kB p65 subunit
dissociates from its inhibitory protein IxkBa and translo-
cates from the cytoplasm into the nucleus [28]. We
demonstrated herein that HCE-EA inhibits NF-«xB acti-
vation via the blockade of LPS-induced IxkBa degradation
and the subsequent nuclear translocation of the NF-xB
p65 subunit. MAPK signaling pathways are also directly
involved in the synthesis of pro-inflammatory cytokines
in activated macrophages through the induction of NF-xB
[29,30]. Therefore, NF-kB- and MAPKs- targeted thera-
peutics might be effective for the treatment of inflamma-
tory diseases, given that a wide variety of pharmacologic
agents reportedly inhibit activation steps in the NF-xB
and MAPKs signaling pathways [13,31,32]. Consistent
with these reports, the current study demonstrated that
HCE-EA dose-dependently inhibited the phosphoryl-
ation of p38 and JNK MAPKs. These results suggest
that the HCE-EA-mediated inhibition of NF-kB and
MAPK activations is related to the reduced production
of pro-inflammatory mediators in LPS-stimulated RAW
264.7 cells.

This study showed that the levels of three compounds
(chlorogenic acid, hyperoside, and quercitrin) were ele-
vated in HCE-EA compared with HCE. A previous
study reported that chlorogenic acid exerted as anti-
inflammatory actions by inhibiting the LPS-provoked
release of inflammatory cytokines in RAW 264.7 cells
[33]. Additional studies demonstrated that hyperoside
inhibited NO production in rat peritoneal macrophages
and attenuated LPS-induced inflammatory responses
through NF-kB activation and IxkB-a degradation
[34,35]. Yet another study revealed that quercitrin
markedly overturned NO production in RAW 264.7
cells and inhibited the progression of inflammation
through down-regulation of the NF-kB pathway [36,37].
Furthermore, Tian et al [15] reported that an EA fraction
derived from H. cordata was rich in the polyphenolic
compounds quercitrin, quercetin, and hyperoside, which
were responsible for the antioxidant and hepatoprotective
merits of the tea. In agreement with these previous stud-
ies, our results indicate that the ability of HCE-EA to sup-
press production of inflammatory mediators might be
attributable to its content of active components, in par-
ticular chlorogenic acid, hyperoside, and quercitrin.

Conclusions
In conclusion, HCE-EA inhibited the production of NO,
PGE,, iNOS, COX-2, TNF-a, and IL-6 in LPS-treated
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RAW 264.7 cells. The inhibitory effects were mediated
by inhibition of NF-«B activation and MAPK (p38 and
JNK) signaling pathways. Thus, HCE-EA may find utility
as an attractive agent to prevent or reverse inflammatory
responses.
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