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Abstract

Background: Sho-saiko-to (SST) (also known as so-shi-ho-tang or xiao-chai-hu-tang) has been widely prescribed for
chronic liver diseases in traditional Oriental medicine. Despite the substantial amount of clinical evidence for SST,
its molecular mechanism has not been clearly identified at a genome-wide level.

Methods: By using a microarray, we analyzed the temporal changes of messenger RNA (mRNA) and microRNA
expression in primary mouse hepatocytes after SST treatment. The pattern of genes regulated by SST was identified
by using time-series microarray analysis. The biological function of genes was measured by pathway analysis. For
the identification of the exact targets of the microRNAs, a permutation-based correlation method was implemented
in which the temporal expression of MRNAs and microRNAs were integrated. The similarity of the promoter
structure between temporally regulated genes was measured by analyzing the transcription factor binding sites

in the promoter region.

Results: The SST-regulated gene expression had two major patterns: (1) a temporally up-regulated pattern (463
genes) and (2) a temporally down-regulated pattern (177 genes). The integration of the genes and microRNA
demonstrated that 155 genes could be the targets of microRNAs from the temporally up-regulated pattern and

19 genes could be the targets of microRNAs from the temporally down-regulated pattern. The temporally
up-regulated pattern by SST was associated with signaling pathways such as the cell cycle pathway, whereas the
temporally down-regulated pattern included drug metabolism-related pathways and immune-related pathways. All
these pathways could be possibly associated with liver regenerative activity of SST. Genes targeted by microRNA
were moreover associated with different biological pathways from the genes not targeted by microRNA. An analysis
of promoter similarity indicated that co-expressed genes after SST treatment were clustered into subgroups,
depending on the temporal expression patterns.

Conclusions: We are the first to identify that SST regulates temporal gene expression by way of microRNA.
MicroRNA targets and non-microRNA targets moreover have different biological roles. This functional segregation
by microRNA would be critical for the elucidation of the molecular activities of SST.
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Background

Sho-saiko-to (SST) (also known as so-shi-ho-tang or xiao-
chai-hu-tang) is a botanical formulation composed of seven
herbal materials (see Additional file 1: Table S1) and is widely
used for the treatment of chronic hepatitis and liver cirrhosis
in Korea, Japan, and China [1]. SST and its major compo-
nents (e.g., baicalin, baicalein, glycyrrhizin, and saikosaponin-
D) have marked antiproliferative activity on hepatocellular
carcinoma [2-4], prevent liver injury [5], and promote liver
regeneration in animal models [6,7]. These pharmacologic
effects of SST involve the immunomodulation of diverse im-
mune cells and immune molecules [8,9]. However, because
of the complex nature of the chemical components of SST,
focusing only on specific components or on a few target
genes is inadequate to understand the diverse biological ac-
tivities of SST. Therefore, it is necessary to apply a multiple
target-based approach to elucidate the molecular mecha-
nisms mediated by the multiple components of SST.

Recent advances in high-throughput technology such as
the microarray has made it possible to investigate the effects
of drugs at the whole-genome level [10]. One high-
throughput technology is the microRNA array, which can
detect the expression level of whole microRNAs that have
been discovered to date [11]. MicroRNA is a small noncod-
ing RNA molecule composed of approximately 22 nucleo-
tides that pair to sites in messenger RNA (mRNA) and
directly repress post-transcription in eukaryotic cells [12].
Many reports suggest that microRNAs are involved in di-
verse biological functions such as proliferation, differenti-
ation, and development. The search for targets of microRNA
shows that many mammalian mRNAs are the conserved tar-
gets of microRNA [13]. This suggests an important role of
microRNA in regulating gene expression. Therefore, using
the information of mRNA and microRNA is important to
elucidate the precise mechanism of gene expression. The in-
tegrated multi-omics approach actually reveals a novel regu-
latory network of gene expression in diverse biological
situations such as disease research [14-16], genome research
[17], and herbal research [18,19]. We also previously re-
ported the usefulness of a genome-wide approach in eluci-
dating the molecular effects of herbal extracts [20,21].

By using an integrated genomic analysis of genes and
microRNAs in the present study, we attempted to identify
SST-induced gene expression changes in primary mouse
hepatocytes. The results indicated that SST regulated gene
expression through microRNA in a functionally coordi-
nated manner. Our approach could give perspective on the
role of microRNAs in the pharmacological effects of SST.

Methods

Primary mouse hepatocyte isolation and culture
Six-week-old male ICR mice were purchased from Samtako
Bio Inc. (Seoul, Korea). Primary mouse hepatocytes were
prepared by using the collagenase perfusion method. In
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brief, the 6-week-old male mice were anesthetized by an in-
traperitoneal injection of Zoletil-50 and 2% Rompun, which
were cannulated through the right ventricle. The livers were
perfused with ethylene glycol tetra-acetic acid (0.5 mM)
in Hepes-buffered Hank’s balanced salt solution (HBSS;
pH 74) for 5-6 min (flow rate 5 mL/min). The livers
were then perfused for another 20 min with Hepes-
buffered HBSS containing collagenase (Sigma, USA) (flow
rate 5 mL/min). The hepatocytes were dispersed, washed,
and purified on a Percoll density gradient (Sigma). Hepato-
cyte preparations with viability greater than 85%, as deter-
mined by the trypan blue exclusion protocol, were used.
The isolated hepatocytes were suspended, and then trans-
ferred to gelatin-coated culture dishes or plates at a density
of approximately 5x 10° cells/mL. The hepatocytes were
allowed to attach onto culture dishes or plates coated with
gelatin for 4—6 hours in William’s Media E (Sigma) contain-
ing 1% penicillin/streptomycin, 2 mM of L-glutamine and
10% fetal bovine serum. After the attachment, the hepato-
cytes were washed with HBSS and provided fresh medium.
They were incubated overnight at 37°C, 95% air, and 5%
carbon dioxide. The hepatocytes were then deprived of the
serum and used for experiments. All animal experimental
procedures were approved by Institutional Animal Care
and Use Committee of the Korea Institute of Oriental
Medicine (Permit Number: KIOM 12-024) and performed
in strict accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals at the
Korea Institute of Oriental Medicine.

Cell viability assay

SST was kindly provided by Dr. Hyeun Kyoo Shin (Basic
Herbal Medicine Research Group, Korea Institute of
Oriental Medicine, Republic of Korea). Preparation of
SST was described as previously [22]. In brief, crude
seven herbal medicines were extracted in distilled water
at 100°C for 2 hours, filtered, and then freeze-dried. We
confirmed the safety of SST by using an in vitro colori-
metric cell proliferation kit (methyl thiazolyl tetrazoliym
[MTT]) (Roche Applied Science, Germany) as described
previously [23]. In brief, hepatocytes were first cultured
in 48-well plates at a density of 1.0 x 10° cells/well for 24
hours. After incubation, the cells were washed with
phosphate-buffered saline and treated with different
concentrations of SST (0.1-1.0 mg/mL) for 24 hours.
The cells were hereafter washed and incubated for 1
hour with MTT (500 pg/mL). Formazan crystals were
dissolved by using dimethyl sulfoxide (100 uL/well). The
absorbance was measured colorimetrically at 570 nm.

Microarray experiment and quantitative real-time
polymerase chain reaction

Mouse primary hepatocytes were treated with 500 pg/mL
of SST at a density of 1.0 x 10° cells per 60-mm dish for
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1-24 hours in triplication. The total RNA from hepato-
cytes was isolated with Tri-reagent (Sigma) in accordance
with the manufacturer’s instructions. The quality of puri-
fied RNA was measured by using the Agilent 2100 Bioana-
lyzer (Agilent Technologies, USA); only samples with a
RNA integrity number (RIN) greater than 7.0 were in-
cluded in the microarray analysis. RNAs from the triplica-
tion of experiments at each time point were pooled to
exclude experimental bias. For the gene expression micro-
array, isolated RNA was amplified and labeled by using
the low RNA input linear amplification Kit PLUS and then
hybridized to a microarray (Agilent Mouse Whole Gen-
ome 44 K; Agilent Technologies, USA) that contained ap-
proximately 44,000 probes (approximately 26,600 unique
genes) in accordance with the manufacturer’s instructions.
For microRNA expression microarray, the microRNA was
labeled and hybridized to Agilent Mouse miRNA Micro-
array (Release 17.0) by using the Agilent miRNA Labeling
and Hyb Kit (Agilent Technologies, USA). Approximately
1100 microRNAs, based on the annotation of miRBase
Release 17.0, were presented in microarray. The arrays
were then scanned with the Agilent Microarray Scanner
(Agilent Technologies, USA). For quantitative real-time
polymerase chain reaction (Q-PCR) analysis, mRNA and
microRNA were reverse-transcribed, amplified, and de-
tected by using Tagman probes (ABL, USA) in triple time,
as described previously [24].

Microarray data analysis

The raw intensity of the probe signals was obtained by
using Feature Extraction Software (Agilent Technologies,
USA). Only array elements showing a signal intensity
greater than 1.4-fold of the local background were consid-
ered well measured. The remaining elements were nor-
malized using the quantile method [25]. The intensities
for duplicated spots were averaged. The expression ratio
of genes (or microRNAs) in the experimental samples was
then determined by comparing them with genes (or
microRNAs) in the control sample. The expression profile
was hierarchically clustered by using the Cluster program
and visualized using the TreeView program (both can be
obtained from http://www.eisenlab.org). Figure 1 shows a
schematic diagram of the overall analytical process.

Temporal expression of genes and microRNAs

The short time-series expression miner (STEM) pro-
gram—which was originally developed for the temporal
analysis of microarray experiments [26] —was used to
identify genes or expression patterns that were changed
temporally. Only genes with a fold ratio greater than 2
or less than 0.5 for at least one time point were included
in the analysis. The statistical significance of the tem-
poral patterns was calculated by using a permutation test
(n =1000) corrected by the false discovery rate (FDR).
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Figure 1 A schematic illustration of the analysis strategy.
Temporally expressed genes from the gene expression microarray
dataset have been integrated with a microRNA expression
microarray dataset in which putative target gene information of
microRNA was obtained from the MicroRNA Database (miRDB
version 4.0; http://mirdb.org). Pairs of gene and microRNA showing
statistically significant negative correlations are selected by using a
random sampling-based permutation method. The resultant targets
or non-targets of the microRNAs are subjected to pathway or
promoter analysis.

Integration of mRNA and microRNA expression

The relationship between gene expression and micro-
RNA expression was measured by using a permutation-
based correlation method. First, a list of the predicted
target genes of microRNAs, calculated by bioinformatic
analysis of large public microarray datasets, was ob-
tained from the MicroRNA Database (miRDB version
4.0) website (http://mirdb.org) [27,28]. Second, the Pear-
son correlation coefficient was measured between each
microRNA expression in the microRNA microarray and
each predicted target gene expression in the mRNA
microarray. Only gene and microRNA pairs that showed
a negative correlation coefficient were selected to form a
correlation coefficient matrix between the predicted tar-
get genes and the microRNAs. The statistical signifi-
cance of the resultant correlation coefficient matrix was
estimated by using a random sampling-based permuta-
tion [29] in which the coefficient values from the ori-
ginal dataset were compared with the values from 1000
times randomly permuted datasets. Only target genes
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and microRNAs with a FDR less than 0.01 were selected
as significant.

Pathway enrichment

The simple enriched pathways were estimated by the
DAVID program [30] in which the p values of each
pathway were calculated, based on Fisher’s exact test,
from an input list of genes. For adjustment by multiple
comparisons, the DAVID program used the FDR by the
Benjamini procedure. For another pathway analysis, the
Signaling Pathway Impact Analysis (SPIA) program [31]
was implemented by using a subgroup of differentially
expressed genes. The SPIA program calculated a global
pathway significance p value (Pg) that combines the en-
richment p values and the perturbation p values by con-
sidering pathway topology with a random bootstrap
iteration number of 3000. The FDR of the pathways was
measured by applying the Benjamini algorithm in SPIA.
The pathway information was obtained from the data-
base of the Kyoto Encyclopedia of Genes and Genomes
(KEGG, http://www.genome.jp/kegg).

Pathway activity

The activity of the pathways was measured by linearly
combining the logarithmic expression value of all genes
in each pathway to account for the accumulative effect
of small changes by many genes [32]. Statistical signifi-
cance was measured by the FDR in which the original
pathway’s activity was compared with the randomly per-
mutated activity values (1000 times). Pathways with a
EDR less than 0.01 were selected as significant and then
hierarchically clustered on the basis of similarity of activ-
ity values.

Core microRNA targets from multiple pathways

Core nodes (i.e., core genes) among multiple pathways
were measured by implementing KEGGgraph R package
(version 2.10) [33]. In brief, the core nodes were deter-
mined by calculating the relative betweenness centrality
of nodes in which the number of ingoing and outgoing
edges for each node was computed in the network struc-
ture of the multiple pathways. Nodes with a relative be-
tweenness centrality greater than 0.01 were selected as
the core microRNA targets.

Transcription factors binding sites analysis

Candidate binding sites for transcription factors in the
promoter region were identified through sequence mat-
ching of the position weight matrix by implementing
MotifDb R package (version 1.2.2, http://www.biocon-
ductor.org/packages/2.12/bioc/html/MotifDb.html) [34].
A total of 329 position weight matrices for mouse tran-
scription factors were used. Of these, 47 matrices were
from the JASPAR database (http://jaspar.genereg.net)
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[35,36] and 282 matrices were from the Universal PBM
Resource for Oligonucleotide-Binding Evaluation (UniP-
ROBE) database [37]. The nucleotide sequence of the
promoter region of the gene (-2000 bp to +500 bp from
the transcription start site) was obtained from the Mus
musculus full genome, which was provided by the Univer-
sity of California, Santa Cruz (UCSC mm10 version). The
presence of the transcription factor binding site (TFBS)
within the promoter region of each gene was predicted by
using the matchPWM algorithm in which a minimum
score for counting a match was set at 90% [36]. Based on
the resultant frequency of the matrices of the TFBS, the
similarity of genes was determined by using Jaccard’s algo-
rithm, which does not consider the absence of binding
sites in two promoters as an indication of similarity [38].
Jaccard’s algorithm is effective in the promoter clustering
of genes, as we previously reported [21].

Results

Temporal pattern of genes and microRNA expression

The cytotoxic effect of SST on primary hepatocytes was
not significant under the experimental condition (0.1
1.0 mg/mL) as shows (see Additional file 1: Figure S1).
The concentration of SST therefore chosen for the study
was 500 pg/mL because of its solubility and cytotoxicity
in the microarray analysis. The expression profiles of
genes and microRNAs, regulated by the treatment of
SST, were measured by using microarray analysis in pri-
mary mouse hepatocytes. Figure 1 depicts the overall
analysis. The expression pattern of genes shows that
1166 genes were dramatically changed in their expres-
sion levels at the time of SST treatment (Figure 2A).
Among these patterns of gene expression, Sub-cluster 1
was composed of genes that temporally increased ex-
pression, whereas Sub-cluster 2 was composed of genes
with temporally decreased expression. For a more sys-
tematic approach, we tried to isolate genes showing a
specific temporal pattern by using a time-series analysis
of the microarray. Figure 2B presents two representative
statistically significant temporal patterns: the temporal
up-regulated pattern (temporal up-pattern) and the tem-
poral down-regulated (temporal down-pattern); the FDR
was less than 0.001, which included most temporally
expressed genes that were changed by SST. The tem-
poral up-pattern included 463 temporally up-regulated
genes and the temporal down-pattern included 177
genes down-regulated by SST. However, the expression
of microRNAs did not show a clear temporal pattern
after treatment with SST (Figure 2C) (see Additional file
1: Table S2) shows the full list of temporal pattern genes.

Integration of gene and microRNA expression
To determine the putative targets of microRNA among
the genes in the two temporal expression patterns, we
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Figure 2 Temporal expression of genes and microRNAs after SST treatment in primary mouse hepatocytes. (A) Approximately 1100
differentially expressed genes with a fold ratio greater than 2 or less than 0.5 for at least one sample are clustered hierarchically. Sub-cluster 1
and Sub-cluster 2 indicate the two sub-clusters. Columns represent individual samples and rows represent individual genes. The expression ratio
is represented in colors from red (ie, high) to green (i.e, low), as indicated by the scale bar. (B) Temporally altered genes were identified by the
Short Time-series Expression Miner (STEM) analysis and classified in two patterns (false discovery rate [FDR] less than 0.001). The temporal
up-pattern comprises 463 genes and the temporal down-pattern comprises 177 genes. (C) Approximately 540 microRNAs with a minimum

developed an algorithm integrating the temporal expres-
sions of the genes and the microRNAs. By using the pre-
dicted target genes from the miRDB (http://mirdb.org)
[27,28], correlation coefficients were measured between
the temporal expression of the predicted target genes
and the microRNAs. After the permutation-based ad-
justment of the measured correlation coefficients, 174
genes with a FDR less than 0.01 were finally selected as the
putative targets of microRNA from the two temporal pat-
terns: 155 genes were identified from the temporal up-
pattern and 19 genes were identified from the temporal
down-pattern. For experimental confirmation of the expres-
sion pattern based on microarray testing, Q-PCR was per-
formed for some genes (ABCC4 from temporal up-pattern,
CYP3A11 from temporal down-pattern, and FOXA1 from
non-pattern) and microRNAs (miR-23a-3p and miR-466b-
3p). CYP3A11l was specifically the target of miR-23a-3p
(Table 1). As shows (see Additional file 1: Figure S2), the
overall patterns of gene expressions between microarray and
Q-PCR were similar. Figure 3 shows the connection map
between microRNA molecules and its target genes from
temporal up-pattern (Figure 3A) and from temporal down-
pattern (Figure 3B). Table 1 lists the microRNA targets. The

number of putative microRNA targets (19 of 177 genes) in
the temporal down-pattern was significantly lower than the
number of targets (155 of 463 genes) in the temporal up-
pattern (p value <0.001). This unbalanced distribution of
the microRNA target genes imply microRNAs have a spe-
cific biological role induced by SST. Therefore, we measured
the functional involvement of microRNA targets via path-
way analysis.

Pathway analysis of putative microRNA targets

The pathways involved in the two temporal patterns of the
genes were measured by applying two different approaches
(Table 2), by simple enrichment pathway analysis, and by
topology-based signaling pathways analysis. Simple enrich-
ment analysis of the pathways, which measures enriched
pathways from Fisher’s exact test, showed that the temporal
up-pattern induced by SST was involved in the cell cycle
pathway (i.e.,, KEGG ID mmu04110) and that the temporal
down-pattern included drug metabolism-related pathways
(e.g, mmu00982, mmu00983, mmu00980) and immune-
related pathways such as the systematic lupus erythematosus
pathway (mmu05322) and the complement and coagulation
cascade pathways (mmu04610). Topology-based signaling
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Table 1 The microRNA targets regulated by SST
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Temporal up-pattern

MicroRNA*  Target symbol Target entrez  MicroRNA  Target symbol Target entrez  MicroRNA  Target symbol Target entrez

miR-495-3p Depdc1b 218581 miR-19b-2-5p Sprr2a2 1E+08 miR-3089-3p Scara3 219151
Slc1a2 20511 Mbnl3 171170 Rad51 19361

Steap2 74051 Cep55 74107 miR-3095-5p Gsta3 14859

Zmat1 215693 Tial 21841 Cend1 12443
Fmo5 14263 miR-3092-5p Clné 76524 miR-30c-5p Fam43a 224093

Ckap4 216197 Lass3 545975 Fam49a 76820

Bcl215 229672 Gsto' 14873 miR-322-3p Ugdh 22235

Bst1 12182 Clgtnfi 56745 Mybl1 17864

Pttg1 30939 miR-450a-2-3p Slc7a2 11988 miR-343 Mybl2 17865
Osbpl3 71720 Slc1a2 20511 Nfasc 269116

Esco2 71988 Steap2 74051 miR-380-5p Cdon 57810

4930547N16Rik 75317 Dcdc2a 195208 Ccdc89 70054

miR-669d-3p Cenpi 102920 miR-466 k Zscan29 99334 miR-410-3p Pla2ri 18779
Cysltr1 58861 Dcdc2a 195208 Sema3e 20349
Gnail 14677 Ptchd1 211612 miR-449a-5p Gpro4 237175
Zmat1 215693 Saa4 20211 Hépd 100198

Rgs4 19736 miR-653-3p Igf2bp1 140486 miR-466n-3p Mest 17294
Kif23 71819 Nfasc 269116 Dcdc2a 195208

Fam55¢ 385658 Ect2 13605 miR-467 g Cxcl5 20311
Birc5 11799 Lox 16948 Dcdc2a 195208

Aspm 12316 miR-669 h-3p Snap25 20614 miR-5113 Gbp4 17472

Bub1 12235 Steap2 74051 Slc7a2 11988

Oip5 70645 Cysltr1 58861 miR-670-3p Evl 14026
Ckap2 80986 Rgs4 19736 Bcl2115 229672

miR-98-3p Clspn 269582 miR-697 Ckap4 216197 miR-692 Marcks 17118
Zfpm2 22762 Slc1a2 20511 Dcdc2a 195208
Nfasc 269116 Fzd8 14370 miR-693-3p Akric14 105387
Ect2 13605 KIf15 66277 Nfasc 269116

Ccna2 12428 miR-881-5p Serpinel 18787 miR-701-3p 1700029101Rik 70005
Rad51 19361 Slc1a2 20511 Dcdc2a 195208

Dock11 75974 Steap2 74051 miR-758-3p Tpx2 72119

miR-21-3p Nuf2 66977 Fmo5 14263 Zfpm2 22762
Steap2 74051 miR-9-5p Fam132b 227358 miR-875-3p Cxcl3 330122

Z/fpm2 22762 Lhfp 108927 Ehf 13661
Fgf13 14168 Galnt3 14425 miR-122-5p Samd5 320825
Sema3e 20349 Sort1 20661 miR-134-5p He6pd 100198
Top2a 21973 let-7f-2-3p Gm13154 433804 miR-182-3p Lhfpl2 218454

miR-30b-5p Igf2bp1 140486 Fam164a 67306 miR-188-5p Rspo3 72780
Slc1a2 20511 Ypell 106369 miR-1892 Slc7a2 11988

Cysltr1 58861 miR-107-3p Rttn 246102 miR-1897-5p Marcks 17118
Gnail 14677 Zfpm2 22762 miR-193-3p Abcc4 239273
Lox 16948 Shchp1 20419 MiR-193-5p Tspyl3 241732

Nedd4l 83814 miR-124-5p KihI13 67455 miR-1950 Axl 26362
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Table 1 The microRNA targets regulated by SST (Continued)
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miR-30d-5p

miR-466a-5p

miR-4660-3p

miR-669 I-3p

miR-30a-5p

miR-30e-5p

miR-543-3p

let-7a-2-3p

miR-137-3p

Prri
Cysltr1
Gnail
Lox
Rnf219
Nedd4l
Prct
Slc1a2
Steap2
Fam55c¢
Fgf23
Amotl1
Gtsel
Zmatl
Kif23
Aspm
Gprée4
Serpinb1b
Bmf
Fzd8
Kit
Serpinb1b
Trim59
Bmper
Prr1
Cysltr1
Gnail
Rnf219
Nedd4l
Prr
Cysltr1
Gnail
Lox
Rnf219
MIf1
Slcta2
Cysltr1
Fut4
Kifc2
4930486L.24Rik
Sema3se
Cd24a
Pamr1
Glis2
Nfasc

270906
58861
14677
16948
72486
83814
233406
20511
74051
385658
64654
75723
29870
215693
71819
12316
237175
282663
171543
14370
16590
282663
66949
73230
270906
58861
14677
72486
83814
270906
58861
14677
16948
72486
17349
20511
58861
14345
16581
214639
20349
12484
210622
83396
269116

miR-1947-3p

miR-200a-3p

miR-291b-3p

miR-29b-2-5p

miR-466i-3p

miR-669¢-3p

miR-669e-3p

miR-101a-3p

miR-101a-5p

miR-101b-3p

miR-105

miR-142-5p

miR-181b-1-3p

miR-1912-3p

miR-1942

miR-1a-1-5p

miR-1b-5p

miR-219-5p

Steap2
Cd24a
Prrx1
Slc1a2
Steap2
Thbd
Mbni3
Lhfp
Rtn1
Kif23
Kit
Fam55c¢
Gnail
Zmat]1
Tnfaip2
Slc7a2
Gbp4
Tnfaip2
Slc7a2
Adm
Tial
Fgf13
Pak3
Sult4al
Mbnl3
Kihi13
Mbni3
Sult4al
Mbni3
Ect2
Zfpm?2
Depdcla
Igf2bp3
Fgf13
Slc1a2
Gpr137b
Ptchd1
Mxra8
Zfpm2
Ehf
Dcdc2a
Ugt2b3s
Tir4
Tnfsf15
Gprc5b

74051
12484
18933
20511
74051
21824
171170
108927
104001
71819
16590
385658
14677
215693
21928
11988
17472
21928
11988
11535
21841
14168
18481
29859
171170
67455
171170
29859
171170
13605
22762
76131
140488
14168
20511
83924
211612
74761
22762
13661
195208
243085
21898
326623
64297

miR-1953
miR-195-3p
miR-200a-5p
miR-200b-3p
miR-203-5p
miR-206-3p
miR-214-3p
miR-216b-3p
miR-25-5p
miR-298-3p
miR-29¢-3p
miR-3062-5p
mMiR-3063-5p
miR-3064-5p
miR-3075-3p
miR-3085-3p
miR-3094-5p
miR-3103-3p
miR-3112-5p
miR-322-5p
miR-326-5p
miR-335-5p
miR-3473d
miR-363-3p
miR-376¢-5p
miR-378-3p
miR-378b
miR-380-3p
miR-382-3p
miR-409-3p
miR-431-5p
miR-463-5p
miR-466i-5p
miR-466 |-3p
miR-470-5p
miR-484
miR-496-3p
miR-499-5p
miR-5101
miR-5125
miR-5127
miR-5133
miR-544-3p
miR-675-3p
miR-677-5p

Steap2
Cebpd
Fgf13
Lhfp
Abcc4
Nedd9
Slc7a2
Akric14
/fp365
Ccdc89
Pxdn
Ccdc89
Pak3
Fbin2
Wisp1
Abccl
Fgf23
Scarf2
Ptchd1
Fam164a
Aif1l
Gcle
B4galt6
Adm
Prrx1
Sema3e
Igf2bp3
Mbnl3
Sdpr
Akric14
KIf15
Pla2r
Dcdc2a
Snhg11
Steap4
Csf1
Tspan8
Cdk1
II5ra
MIlt11
Col4as
Rasl12
Snhgt1
Mbnl3
Gcle

74051
12609
14168
108927
239273
18003
11988
105387
216049
70054
69675
70054
18481
14115
22402
17250
64654
224024
211612
67306
108897
14629
56386
11535
18933
20349
140488
171170
20324
105387
66277
18779
195208
319317
17167
12977
216350
12534
16192
56772
12830
70784
319317
171170
14629
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Table 1 The microRNA targets regulated by SST (Continued)
Cep55 74107 miR-26a-5p Hpgd 15446 miR-712-5p Cep55 74107
Birc5 11799 Rgs4 19736 miR-7a-5p Mlph 171531
miR-149-5p B4galt6 56386 miR-294-3p Lass3 545975 miR-877-3p Npr3 18162
Pak3 18481 Zfpm2 22762 miR-879-5p Hmmr 15366
lI5ra 16192 miR-29a-3p Col5a3 53867 miR-881-3p Ehf 13661
Axl 26362 Ppic 19038
miR-194-5p Gas2I3 237436 miR-3066-5p Gpt2 108682
Fam164a 67306 Ccna2 12428
Ppic 19038 miR-3071-5p Igf2bp1 140486
Trim59 66949 Mbnl3 171170
miR-1964-5p Csdc2 105859 miR-204-3p Kirrel3 67703 miR-465¢-5p Ugt2b1 71773
Kirrel3 67703 miR-23a-3p Cyp3all 13112 miR-466b-3p Oas3 246727
let-7e-5p Cyp2c50 107141 miR-295-5p Aldob 230163 miR-466f-3p Npat 244879
MiR-126-5p Ugt3a2 223337 miR-30e-3p Cyp2f2 13107 mMiR-466 m-3p Qas3 246727
miR-181a-5p Nipal1 70701 miR-328-5p Cyp2d22 56448 miR-5131 Ccdc85b 240514
miR-181b-5p Nipall 70701 miR-344f-5p Scd1 20249 miR-551b-5p  5033411D12Rik 192136
miR-1960 Mrci 17533 miR-3470a Dnahc17 69926 miR-676-5p Slc27a5 26459
miR-19b-1-5p Npat 244879 miR-465a-5p Ugt2b1 71773 miR-707 Slcolal 28248

"The MicroRNA name is obtained from the MicroRNA Database (miRDB version 4.0) website (http://mirdb.org) [27,28].
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Figure 3 The connection map between microRNAs and target genes altered by SST. Genes showing a negative correlation with microRNA
expression were selected as microRNA targets by implementing permutation-based correlation method (i.e, FDR less than 0.01). The green nodes
represent the 174 target genes. Of these, (A) 155 genes were selected from temporal up-pattern and (B) 19 genes were selected from the
temporal down-pattern. The red nodes represent microRNAs, of which 127 microRNAs are associated with (A) the temporal up-pattern genes

and 23 microRNAs are associated with (B) temporal down-pattern genes.
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Table 2 Pathways enriched in temporal patterns by SST

Pathways from temporal P-value* FDR** Pathways from temporal down-pattern P-value FDR
up-pattern (KEGG ID) (KEGG ID)
All genes Simple enrichment  Cell cycle (mmu04110) 841E-05 962E-03  Drug metabolism-cytochrome P450 (mmu00982)  3.57E-10 3.07E-08
analysis Systemic lupus erythematosus (mmu05322) 797E-10 343E-08

Complement and coagulation cascades (mmu04610) 345E-08 9.88E-07

Retinol metabolism (mmu00830) 4.38E-08 941E-07

Metabolism of xenobiotics by cytochrome 1.15E-06  1.97E-05
P450 (mmu00980)

Linoleic acid metabolism (mmu00591) 2.04E-06 2.92E-05

Prion diseases (mmu05020) 243E-05 2.99E-04

PPAR signaling pathway (mmu03320) 342E-05 3.67E-04

Drug metabolism-other enzymes (mmu00983) 487E-04 4.64E-03

Topology-based Systemic lupus erythematosus (mmu05322) 1.74E-10  1.36E-08

signaling pathway )
analysis Complement and coagulation 455E-10 1.77E-08

cascades (mmu04610)
Cytokine-cytokine receptor  1.69E-08  1.84E-06 Prion diseases (mmu05020) 2.82E-07 7.33E-06
interaction (MmMu04060)
Osteoclast differentiation  4.88E-06  2.66E-04 PPAR signaling pathway (mmu03320) 142E-06 2.78E-05
(mmu04380)

Cell cycle (mmu04110) 1.52E-04  555E-03 Staphylococcus aureus infection (mmu05150) 348E-06 5.42E-05

Serotonergic synapse (mmu04726) 1.18E-05 1.53E-04
Alcoholism (mmu05034) 248E-04 2.77E-03
Endocrine and other factor-regulated 7.76E-04 7.57E-03
calcium reabsorption (mmu04961)
MicroRNA targets Simple enrichment No pathway Metabolism of xenobiotics by cytochrome 145E-04 3.19E-03
analysis P450 (mmu00980)
Topology-based Cell cycle (mmu04110) 546E-03  1.00E-02 No pathway
signaling pathway
analysis
Non-microRNA targets  Simple enrichment No pathway Systemic lupus erythematosus (mmu05322) 1.63E-10  1.22E-08
analysis Complement and coagulation cascades (mmu04610) 9.24E-09  3.46E-07
Drug metabolism (mmu00982) 1.94E-07 4.85E-06
Prion diseases (mmu05020) 1.20E-05 2.26E-04
Retinol metabolism (mmu00830) 282E-05 4.22E-04
Linoleic acid metabolism (mmu00591) 201E-04 2.51E-03
PPAR signaling pathway (mmu03320) 8.76E-04 9.34E-03
Topology-based  Cytokine-cytokine receptor  1.63E-07  1.42E-05 Systemic lupus erythematosus (mmu05322) 395E-11  3.00E-09
signalairrw]g&aéhway interaction (Mmu04060) Complement and coagulation cascades (mmu04610) 1.31E-10 4.97E-09

Prion diseases (mmu05020) 1.32E-07 3.34E-06

NF-kappa B signaling 237E-05 8.95E-04 Staphylococcus aureus infection (mmu05150) 1.63E-06  3.10E-05
pathway (mmu04064)

MAPK signaling 3.09E-05 8.95E-04 Serotonergic synapse (mmu04726) 5.15E-05 7.83E-04
pathway (mmu04010)

Osteoclast differentiation ~ 4.17E-04  9.07E-03 PPAR signaling pathway (mmu03320) 9.33E-05 1.18E-03

mmu04380
(mmu ) Endocrine and other factor-regulated 6.65E-04 7.22E-03

calcium reabsorption (mmu04961)

Alcoholism (mmu05034) 9.07E-04 8.61E-03

“For simple enrichment analysis, the p values are calculated by the Fisher's exact test in the DAVID program [30]. For topology-based signaling pathway analysis,
the p value indicates the global pathway significance p value (Pg), which combines the enrichment p values and the perturbation p values in regard to pathway
topology with a random bootstrap iteration number of 3000 [31].

“The false discovery rate (FDR) correction is measured by applying the Benjamini algorithm [30,31].

pathway analysis, which calculates the enrichment score =~ mmu04110) was significantly enriched from the temporal
by taking into account the topology of each signaling  up-pattern, whereas diverse signaling pathways (e.g.,
pathway, also showed that the cell cycle pathway (i.e, immune-related pathways and metabolism-related path-
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ways) were selected as significant pathways from the tem-
poral down-pattern. In addition, the cytokine-cytokine
receptor interaction pathway (mmu04060) and the oste-
oclast differentiation pathway (mmu04380) were also sig-
nificant pathways that were associated with the temporal
up-pattern.

We measured temporal changes in pathway activity by
using the expression levels of all genes in each pathway.
Figure 4 shows that many diverse pathways were tempor-
ally activated or repressed, according to the SST treat-
ment. Pathways enriched from the temporal up-pattern
and down-pattern showed temporally increased and de-
creased activity, respectively.

The functional association of microRNA target genes
shows that only one pathway—the cell cycle pathway
(mmu04110)—was statistically significant from the tem-
poral up-pattern (the FDR was less than 0.01). From the
temporal down-pattern, we measured one pathway that
was also statistically significant: the xenobiotics metabol-
ism pathway (mmu00980). On the other hand, non-
microRNA targets from the temporal up-pattern were
associated with signaling pathways such as the cytokine-
cytokine receptor interaction pathway (mmu04060), the
NE-kB signaling pathway (mmu04064), the mitogen-
activated protein kinase (MAPK) pathway (mmu04010),
and the osteoclast differentiation pathway (mmu04380).
However, non-microRNA targets from the temporal
down-pattern were associated with diverse pathways
such as immune-related pathways and metabolism-
related pathways. (see Additional file 1: Figure S3) shows
the positions of the temporally regulated genes in each sig-
nificant pathway.

By comparing pathways involved in the microRNA tar-
gets and microRNA non-targets, we speculated that
microRNA was specific for the regulation of the cell cycle
pathway from temporal up-pattern and the xenobiotics
metabolism pathway from the temporal down-pattern.

Integration of multiple pathways

We found that only a few pathways (e.g., cell cycle path-
way and xenobiotics metabolism pathway) were associated
with microRNA target genes regulated by SST. However,
as an individual gene, the microRNA target could play
critical roles in diverse pathways. Therefore, we integra-
ted all pathways that were significantly enriched by
SST to identify key microRNA targets. From multiple
pathways associated with the temporal up-pattern, the
core microRNA targets selected were CCNA2, PTTGI,
CDK1, CCNB2, CDC25B, CCL7, MAPK12 and ESPL1
(Figure 5A). From the temporal down-pattern, CYP2F2,
CYP3A11, and CYP2C50 were selected as nodes with
multiple roles (Figure 5B). The pathways containing these
core targets of microRNA are shown below each network
structure.
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TFBS analysis

The functional segregation of genes, based on the ex-
pression pattern, suggests that the gene transcription
process would be the direct regulatory target of SST.
Therefore, we investigated the possible association of
the TFBS structure on the gene expression after SST
treatment. By using the promoter region (-2000 bp
to +500 bp from the transcription start site) of genes in-
cluded in the temporal patterns, the correlation matrix
of genes based on TFBS similarity was measured. The
resultant clustering profile shows that genes in the tem-
poral up-pattern are clearly distinguished from genes in
the temporal down-pattern. As Figure 6A shows, two
subgroups of genes were tightly clustered (ie., Up-
cluster and Down-cluster), which were primarily composed
of genes from the temporal up-pattern and down-pattern,
respectively. In addition to the main subgroups, there were
other subgroups that also consisted exclusively of temporal
up-pattern or down-pattern genes. The putative target
genes of the microRNAs were interestingly also clustered
into small subgroups (Figure 6A). This segregation of
microRNA targets was more clearly observed in the tem-
poral up-pattern genes (Figure 6B). One subgroup of
microRNA targets was closely correlated with the simi-
lar TFBS structure (depicted as MicroRNA cluster in
Figure 6B). MicroRNA target genes from the temporal
down-pattern were also primarily concentrated on one
cluster, although the number of target genes was small
(Figure 6C). This separation of genes based on TFBS simi-
larity indicates the presence of common cis-elements in
the SST-regulated gene expression.

Discussion

Despite the clinical usefulness of traditional herbal medi-
cine, the complex nature of herbal chemical components
prevents the elucidation of their exact molecular mecha-
nisms. The herbal preparation of SST is also widely pre-
scribed for the treatment of diverse liver diseases, but
without clear understanding of its molecular mecha-
nism [1]. What further complicates the situation is that
SST is composed of seven different herbal plants (see
Additional file 1: Table S1). Therefore, understanding the
molecular activity of SST is limited when focusing on only
a few major components or certain kinds of genes.

In the present study, we measured the global changes
of genes and microRNAs expression induced by SST in
cultured primary mouse hepatocytes, because the liver is
a primary target organ of SST and is responsible for me-
tabolizing xenobiotics. The expression profile shows two
temporal expression patterns of genes after SST treat-
ment, but no clear temporal pattern in microRNA ex-
pression (Figure 2). The microRNA expression levels
after SST treatment were lower than the expression
levels of genes. This suggests that a small number of
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(See figure on previous page.)

Figure 4 Pathway activities altered by SST in primary mouse hepatocytes. The temporal change of pathway activity is measured by linearly
combining the logarithmic expression value of all genes in each pathway and then clustering them hierarchically. The columns represent
individual samples and the rows represent the activity of the pathways. Red indicates high activity and green indicates low activity, as indicated
by a scale bar with arbitrary units. The pathways selected as significant in enrichment analysis are indicated in red for temporal up-pattern and

blue for temporal down-pattern.

microRNAs can regulate many genes. Therefore, it is
critical to identify accurately the microRNA target genes.
We used a correlation-based permutation approach to
exclude possible false-positive links between microRNA
and its putative target gene expression. The resultant
174 microRNA target genes were obtained from 463
temporal up-pattern genes and 19 targets were obtained
from 177 temporal down-pattern genes (Figure 3 and
Table 1). This indicates that microRNA is especially con-
centrated in the regulation of temporal up-pattern genes
(p value <0.001).

In addition to this unbalanced distribution of micro-
RNA target genes, different biological functions were as-
sociated with microRNA targets in the two temporal
patterns. For example, cell cycle pathway (mmu04110)
was specifically involved in microRNA targets from the
temporal up-pattern genes. On the other hand, non-
microRNA target genes from temporal up-pattern genes
were significantly associated (the FDR was less than
0.01) with cell signaling pathways such as the cytokine-
cytokine receptor interaction pathway (mmu04060),
the NF-kB signaling pathway (mmu04064), the MAPK
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eqclast differentiation pathway
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Mapk12) M
"/

e-cytokine receptor interaction pathway

Figure 5 The core microRNA target genes in multiple pathways regulated by SST. (A) Nodes with high relative betweenness centrality
were selected as the core microRNA targets in multiple pathways enriched in (A) the temporal up-pattern genes and (B) the temporal
down-pattern genes. Each circle represents an individual gene node and each arrow represents its regulatory edge type. Out-going edges reflect
nodes that act as regulators, whereas in-going edges reflect nodes that are subject to intermolecular regulations. The orange circles indicate the
core nodes with a relative betweenness centrality greater than 0.01. The pathways, including core nodes genes, are also indicated schematically.
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Figure 6 The clustering profile of temporally co-expressed genes by SST, based on the similarity of the transcription factor binding site
(TFBS). Genes each from (A) both temporal up- and down-patterns, (B) from the temporal up-pattern, and (C) from the temporal down-pattern
were clustered hierarchically, based on the similarity of TFBS structure in the promoter region (—2000 to +500 bp from the transcription start site).
The positions of the temporal up-pattern genes and the down-pattern genes in (A) are highlighted in upper bar with red and blue colors,
respectively. The positions of microRNA target genes are also indicated in green. The level of similarity is represented in colors from red (i.e, high)
to green (i.e, low), as indicated by the scale bar with arbitrary units. The tightly clustered subgroups are colored in yellow boxes (Down-cluster
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signaling pathway (mmu04010), and the osteoclast differen-
tiation pathway (mmu04380) (Table 2). Unlike the tem-
poral up-pattern, microRNA targets from the temporal
down-pattern were associated only with the xenobiotics
metabolism pathway (mmu00980). Non-microRNA targets
from the temporal down-pattern were involved in diverse
pathways, among which were two primary categories: the
immune-related pathway and the metabolism-related path-
way. However, the number of microRNA targets from the
temporal down-pattern was small. The SST-enriched per-
oxisome proliferator-activated receptor (PPAR) pathway is
critical in regulating metabolism and proliferation by
modulating E2F and AKT signaling in the liver regeneration
process [39].

The temporal change of activity plot (Figure 4) indi-
cated that many other pathways in addition to pathways
listed in Table 2 were also activated or suppressed,
reflecting the fact that diverse biological functions were
influenced by the SST treatment. As expected, the cell
cycle pathway (mmu04110) from the temporal up-
pattern showed increased activity, whereas the immune-
related pathways and drug metabolism pathways from the
temporal down-pattern showed decreased activity. The
regulatory role of SST on cell proliferation has interest-
ingly been previously reported in studies indicating that
SST has an antiproliferative effect on hepatocarcinoma
primarily because of anticarcinogenic components such as
baicalein, baicalin, and saikosaponin [2,40]. However,
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clinical evidence and recent reports also suggest that SST
enhances liver function by promoting the regeneration of
the liver in animal models [6,7]. Therefore, activation of
cell cycle pathway and MAPK pathway in the present
study could be explained by this liver-regenerative effect
of SST.

Another major clinical effect of SST is immuno-modu-
latory activity in diverse diseases [41,42]. As evidenced in
previous reports, SST can activate or repress immune pro-
cesses, depending on the cell type and the clinical situation
[9,43]. In our results, SST activated immune pathways such
as the cytokine receptor pathway (mmu04060), the TNF
signaling pathway (mmu04668), rheumatoid arthritis path-
way (mmu05323), NOD-like receptor signaling pathway
(mmu04621) but it also repressed other immune-related
pathways such as the systemic lupus erythematosus path-
way (mmu05322), the complement and coagulation path-
way (mmu04610), and the Staphylococcus aureus infection
pathway (mmu05150) (Figure 4).

This coordinated change, induced by SST on the activ-
ity of multiple pathways, implicates a common regula-
tory mechanism controlling the multiple pathways. We
interestingly observed that some microRNA targets (e.g.,
CCNA2, PTTGI, CDK1, CCNB2, CDC25B, CCL7,
MAPK12, and ESPL1 from the temporal up-pattern
genes and CYP2F2, CYP3A11, and CYP2C50 from the
temporal down-pattern genes) can act as core targets
connected with multiple significant pathways from non-
microRNA targets (Figure 5).

We mentioned in the previous paragraph that signal
pathways regulated by SST (e.g., the cell cycle pathway,
PPAR pathway, and MAPK pathway) could be associated
with the liver regenerative activity of SST. This can be
also confirmed by using individual core node genes. For
example, CCNA2 and CCL7, main elements of cell cycle
pathways and the cytokine receptor pathway, respect-
ively, are associated with liver regeneration in the rat
liver [44,45]. Also CDC25B can regulate mouse liver re-
generation in association with FOXM1 by promoting
hepatocyte proliferation [46,47]. CDK1, another key
element in the cell cycle pathway, plays an essential role
in the control of DNA replication in liver regeneration
[48]. These previous reports suggest that core micro-
RNA target genes in temporal up-pattern could be asso-
ciated with the liver regeneration function of SST by
enhancing cell proliferation function. On the other hand,
core microRNA target genes in the temporal down-
pattern (e.g., CYP2F2, CYP3A11, and CYP2C50) are ex-
clusively associated with cytochrome P450 metabolism.
However, there is interesting evidence that genes in-
cluded in the cytochrome P450 family are also associated
with liver regeneration. For example, early reduction of
CYP activity has been observed in the regenerating rat
liver, although the exact mechanism has not been
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elucidated [49]. The transcription of cytochrome P450
genes, including CYP3A11, moreover is reportedly sup-
pressed by immune responses such as TNF-« in primary
hepatocytes and hepatoma cells [50-52]. In consistent with
the findings of previous reports, we observed the down-
regulation of cytochrome P450 metabolism pathways and
the activation of the cytokine pathway (mmu04060) and
TNF signaling pathway (mmu04668) by SST (Table 2 and
Figure 4), which imply the involvement of drug metabolism
pathway and immune-pathways on liver regeneration
process. To conclude, pathways identified in present study
such as cell cycle pathway, drug metabolism-cytochrome
P450 pathway and immune-related pathways, and individ-
ual core node genes could be possible molecular targets in-
volved in liver regenerative process induced by SST.
However, considering that SST has diverse pharmacological
activities on various pathological conditions, the roles of
these pathways and core node genes should be more pre-
cisely measured in a variety of physiological models.

We also observed that this coordinated regulation of
gene expression by SST was predisposed in the genomic
structure. As Figure 6A shows, the similarity in mea-
surements of the TFBS clearly distinguished temporal
up-pattern genes from temporal down-pattern genes.
The present results imply that common cis-elements
present in the promoter region of the genes could deter-
mine the temporal co-expression of genes induced by
SST. Moreover, considering functions associated with
each temporal pattern, the difference in TFBS structure
between the two temporal patterns may be related to
biological functions associated with each temporal pat-
tern. For a clearer conclusion, a TFBS analysis should be
performed of all genes at a genome level. It should also
be elucidated whether resultant genes with a similar
TEBS structure may be co-expressed by SST. What was
more intriguing was that putative microRNA target
genes also were clustered into separate subgroups, espe-
cially in the temporal up-pattern genes (Figure 6B). Re-
cent research reveals that microRNA is involved in the
promoter methylation of target genes to regulate the
transcription level in association with transcription fac-
tors [53] and that this mechanism of gene expression
would form the global regulatory network [12,54-56];
however, we do not know whether methylation-based
regulation by microRNA is also involved in the present
study. Moreover, there is no report on the role of the
TEBS structure on the regulation of gene expression by
microRNA. Therefore, we expect that our finding could
give an important clue about the novel mechanism of
gene expression by microRNA.

Conclusions
The present study is the first to indicate that SST sys-
tematically regulates gene expression by microRNA. We
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demonstrated that temporally up-regulated pattern by
SST was associated with signaling pathways, including
the cell cycle pathway, whereas the temporally down-
regulated pattern included drug metabolism-related path-
ways and immune-related pathways, all of which could
possibly contribute to the liver regenerative activity of
SST. Also, this complex gene expression demonstrates
that the effects of SST would be exerted from a delicately
regulated mechanism on a genome-wide scale.
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Additional file 1: Table S1. Constituents of sho-saiko-to (SST). Table
S2. List of genes in temporal patterns. Figure S1. The cytotoxic effect of
Sho-saiko-to (SST) on primary hepatocytes. Hepatocytes are first cultured

in 48-well plates at a density of 1.0 x 105 cells/well for 24 hours. After
incubation, the cells are washed with phosphate-buffered saline and treated
with different concentrations of SST (0.1-1.0 mg/mL) for 24 hours. Viability is
measured in triplicate by using an in vitro colorimetric method (i.e, methyl
thiazolyl tetrazoliym [MTT] assay). The viability is presented as the mean
standard deviation (S.D.). Figure S2. Quantitative real-time polymerase chain
reaction (Q-PCR). Mouse primary hepatocytes are treated with 500 pg/mL of
SST at a density of 1.0 x 106 cells/60 mm dish for 1-24 hours in triplicate.
The mRNA and microRNA are then reversetranscribed amplified, and de-
tected by using Tagman probes (ABI, USA). The Q-PCR results are presented
as the mean standard deviation (SD.). Figure S3. Pathways enriched in the
temporal up-pattern and temporal down-pattern. The position of each gene
is denoted by red for the temporal up-pattern or blue for the temporal
down-pattern in the pathways.
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