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Abstract

Background: Launaea procumbens (Asteraceae) is used as a folk medicine to treat hepatic disorders in Pakistan. The
effect of a chloroform extract of Launaea procumbens (LPCE) was evaluated against carbon-tetrachloride (CCl,)-
induced liver damage in rats.

Methods: To evaluate the hepatoprotective effects of LPCE, 36 male Sprague-Dawley rats were equally divided
into six groups. Animals of group 1 (control) had free access to food and water. Group Il received 3 ml/kg of CCl,
(30% in olive oil v/v) via the intraperitoneal route twice a week for 4 weeks. Group Il received 1 ml of silymarin via
gavage (100 mg/kg b.w.) after 48 h of CCl4 treatment whereas groups IV and V were given 1 ml of LPCE (100 and
200 mg/kg b.w., respectively) after 48 h of CCl, treatment. Group VI received 1 ml of LPCE (200 mg/kg b.w.) twice a
week for 4 weeks. The activities of the antioxidant enzymes catalase, peroxidase (POD), superoxide dismutase (SOD),
glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), glutathione reductase (GSR), glutathione (GSH) and
lipid peroxidation (thiobarbituric acid reactive substances (TBARS)) were measured in liver homogenates. DNA
damage, argyrophilic nucleolar organizer regions (AgNORs) counts and histopathology were studied in liver
samples. Serum was analyzed for various biochemical parameters. Phytochemical composition in LPCE was
determined through high-performance liquid chromatography (HPLC).

Results: LPCE inhibited lipid peroxidation, and reduced the activities of aspartate transaminase, alanine
transaminase, alkaline phosphatase, and lactate dehydrogenase in serum induced by CCl,. GSH contents were
increased as were the activities of antioxidant enzymes (catalase, SOD, GST, GSR, GSH-Px) when altered due to CCl,
hepatotoxicity. Similarly, absolute liver weight, relative liver weight and the number of hepatic lesions were reduced
with co-administration of LPCE. Phyochemical analyses of LPCE indicated that it contained catechin, kaempferol,
rutin, hyperoside and myricetin.

Conclusion: These results indicated that Launaea procumbens efficiently protected against the hepatotoxicity
induced by CCl, in rats, possibly through the antioxidant effects of flavonoids present in LPCE.
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Background
The liver takes part in the metabolism, detoxification
and secretion functions in the body. It is the major tar-
get organ of chemical-induced toxicity. Liver damage in
most cases involves oxidative stress and is characterized
by progressive evolution from steatosis to chronic hepa-
titis, fibrosis, cirrhosis, and hepatocellular carcinoma.
More than 50% of individuals in the United States suffer
from liver disorders [1,2]. Although the precise mechan-
isms of the pathogenesis of liver cirrhosis are incom-
pletely understood, the role of free radicals and lipid
peroxides has garnered considerable attention [3]. It has
been found that the metabolism of carbon tetrachloride
(CCly) involves production of the highly lethal trichloro-
methyl radical (‘CCl;) and peroxy trichloromethyl
(‘OOCCl3) free radical through activation by drug-
metabolizing enzymes located in the endoplasmic
reticulum [4,5]. CCl, can cause lipid peroxidation as well
as deposition of the extracellular matrix (ECM), result-
ing in liver cirrhosis [6,7]. Clinical and experimental
examinations have shown that cirrhosis can be reversed.
Various pharmaceutical drugs have been used to
minimize and reverse the insult, but most of them lead
to appreciable side-effects during long-term treatment.
In this context, the use of an effective alternative without
side-effects is crucial to reduce the oxidative stress
which leads to hepatic disorders [8,9]. Currently, there is
great awareness of the health benefits of phenolic and
polyphenolic compounds because of their antioxidant
potential [10-12]. Dietary plants possessing phenolic and
polyphenolic compounds have been shown to exert vari-
ous biological actions. These include the scavenging of
free radicals, metal chelation, increases in enzymatic ac-
tivity. More recently, they have been shown to influence
signal transduction, release of transcription factors, and
gene expression. They have received considerable atten-
tion in the past decade because of their reputed role in
the prevention of several human disorders [13].
Medicinal plants possess quantities of phenolic and
polyphenolic constituents, and are also in demand for
use as functional foods or biopharmaceutical products.
Launaea procumbens (LP) is an important medicinal
plant used extensively in Ayurvedic and herbal medicine
in Pakistan (which promotes self-remedy, good health
and longevity) as well as being used as a food ingredient
[14]. Traditionally, it has been used in the treatment of
kidney disorders, hormonal imbalance and sexual dis-
eases [15]. According to Shaukat et al. [16] the ethanolic
extracts of LP have been used against pathogenic fungi.
Chemical characterization has revealed that LP is com-
posed of salicylic acid, vanillic acid, synergic acid, 2-
methyl-resorcinol and gallic acid [16] as well as phenolic
and polyphenolic compounds [17]. These compounds
have spasmogenic, cardiovascular, anti-carcinogenic,
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anti-inflammatory, hepatoprotective and antioxidant
properties [18]. The present study was designed to
screen the chloroform fraction of LP for phytochemical
composition using high-performance liquid chromatog-
raphy (HPLC) as well as to evaluate its hepatoprotective
potential against CCly-induced hepatotoxicity.

Methods

Ethical approval of the study protocol

The study protocol was approved by an Ethics Commit-
tee of Quaid-i-Azam University for the Feeding and Care
of Laboratory Animals.

Plant collection

LP was collected from Wah Cantonment in the district of
Rawalpindi (Pakistan) at maturity during June 2006. It was
identified and a specimen submitted at the Herbarium of
Pakistan (Quaid-i-Azam University, Islamabad, Pakistan).
Aerial parts of the plant (leaves, stem, flowers, seeds) were
dried in the shade at room temperature for 2 weeks. They
were then chopped and ground mechanically to a mesh
size of 1 mm.

Preparation of plant extract

A total of 1.5 kg powder of LP was extracted with 2 L of
absolute methanol in a separating funnel with refluxing
for 5 h. The extract was cooled at room temperature, fil-
tered, and evaporated under reduced pressure in a rotary
evaporator. It was suspended in distilled water and frac-
tionated with n-hexane, ethyl acetate and chloroform.
The chloroform fraction of Launaea procumbens (LPCE)
was dried and stored at 4°C for in-vivo studies.

HPLC of LPCE

A total of 500 mg of LPCE was extracted with 6 ml of 25%
hydrochloric acid and 20 ml of chloroform for 1 h. The
obtained extract was filtered to a volumetric flask. The resi-
due was heated twice with 20 ml of chloroform for 20 min
to obtain the extract. The combined extract was diluted
with chloroform to 100 ml. A 5-ml portion of the solution
was filtered and transferred to a volumetric flask and
diluted with 10 ml of chloroform. The sample (10 pl) was
injected into the HPLC apparatus. Samples were analyzed
on an Agilent HPLC system (Agilent, Santa Clara, CA,
USA). Separation was carried out through a 20RBAX
Eclipse XDB-C18 column (5 pm; 4.6 x 150 mm, Agilent)
with a ultraviolet—visible (UV-vis) Spectra-Focus detector
with an autosampler. Solvent A (0.05% trifluoroacetic acid)
and solvent B (0.038% trifluoroacetic acid in 83% aceto-
nitrile (v/v) were employed with the following gradient: 0-5
min, 15% B in A, 5-10 min, 50% B in A, 10—15 min, 70% B
in A. The flow rate was 1 ml/min and the injection volume
was 10 pl. Six standard compounds (myricetin, catechin,
vitexin, kaempferol, hyperoside, rutin) were run for
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comparative detection and optimized. Calibration curves
were defined for each compound in the range of sample
quantity 0.02—0.5 pg. All samples were assayed in triplicate.
All quantitative data were evaluated using analytic software.

Animals

Thirty-six male Sprague—Dawley ratss (age, 6 weeks;
190-200 g) were provided by the National Institute of
Health (Islamabad, Pakistan). They were kept in stand-
ard cages at room temperature (25+3°C) with a 12-h
dark-light cycle. They were allowed to consume stand-
ard laboratory food and water.

Experimental design

To study the antioxidant possessions of LP, rats were
equally divided into six groups. Group 1 (control) have
free access to food. Group II received 3 ml/kg of CCl,
(30% in olive oil) via the intraperitoneal route twice a
week for 4 weeks. Group III received silymarin 100 mg/kg
body weight (b.w.) via the oral route after 48 h of CCl,
treatment. Groups IV and V were given 100 mg/kg b.w.
and 200 mg/kg b.w. LPCE, respectively, after 48 h of CCl,
treatment as described above, while group VI received
only LPCE at 200 mg/kg b.w. for 4 weeks. Twenty-four
hours after the last treatment, all rats were weighed and
their blood collected; they were then killed. Livers were
removed, weighed, and perfused in ice-cold physiological
(0.9%) saline solution. Half of the liver was reated with li-
quid nitrogen for enzymatic and DNA-damage analyses,
whereas the other portion was processed for histological
analyses.

Assessment of levels of liver marker enzymes and
biochemical parameters

Serum analyses of various liver marker enzymes alanine
transaminase (ALT), aspartate transaminase (AST), alka-
line phosphatase (ALP), gamma-glutamyl transpeptidase
(y-GT), lactate dehydrogenase (LDH)), total cholesterol
(TC), high-density lipoprotein- cholesterol (HDL-C),
low-density lipoprotein-cholesterol (LDL-C) and trigly-
cerides (TGs) were estimated using standard AMP Diag-
nostic Kits (Graz, Austria).

Assessment of levels of antioxidant enzymes

Hepatic tissues were homogenized in 10 volumes of 100
mmol KH,PO, buffer containing 1 mmol ethylenediamine
tetra-acetic acid (EDTA; pH 7.4) and centrifuged at
12,000 x g for 30 min at 4°C. The supernatant was col-
lected and used for the assessment of antioxidant enzymes.
Protein concentrations in the supernatants of liver tissue
homogenates were determined using crystalline bovine
serum albumin (BSA) as a standard. All chemicals used in
enzymatic analyses were purchased from Sigma-—Aldrich
(St Louis, MO, USA).
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Catalase assay

Catalase activity was determined using the method of
Chance and Maehly [19] with some modifications. The
reaction solution of catalase activity contained 2.5 ml of
50 mmol phosphate buffer (pH 5.0), 0.4 ml of 5.9 mmol
H,0, and 0.1 ml of hepatic supernatant. Changes in the
absorbance of the reaction solution at 240 nm were
determined after 1 min. One unit of catalase activity was
defined as an absorbance change of 0.01 as units/min.

Superoxide dismutase (SOD) assay

The SOD activity of liver tissue was estimated using the
method of Kakkar et al. [20]. he reaction mixture con-
tained 0.1 ml of phenazine methosulfate (186 pmol), 1.2
ml of sodium pyrophosphate buffer (0.052 mmol; pH 7.0),
0.3 ml of the supernatant after centrifugation (1500 x g for
10 min followed by 10,000 x g for 15 min). The enzyme re-
action was initiated by adding 0.2 ml of NADH (780
umol) and stopped after 1 min by the addition of 1 ml of
glacial acetic acid. The amount of chromogen formed was
measured by recording color intensity at 560 nm. Results
are expressed in units/mg protein.

Glutathione-S-transferase (GST) assay

GST activity was assayed using the method of Habig
et al. [21]. The reaction mixture consisted of 1.475 ml of
phosphate buffer (0.1 mol, pH 6.5), 0.2 ml of reduced
glutathione (1 mmol), 0.025 ml of CDNB (1 mmol) and
0.3 ml of homogenate in a total volume of 2.0 ml.
Changes in absorbance were recorded at 340 nm, and
GST activity was calculated as nmol CDNB conjugate
formed/min/mg protein using a molar extinction coeffi-
cient of 9.6 x 10> M~ ecm™.

Glutathione Reductase (GSR) assay

GSR activity was determined using the method of Carlberg
and Mannervik [22]. The reaction mixture consisted of
1.65 ml of phosphate buffer: (0.1 mol; pH 7.6), 0.1 ml of
EDTA (0.5 mmol), 0.05 ml of oxidized glutathione (1
mmol), 0.1 ml of nicotinamide adenine dinucleotide phos-
phate (NADPH) (0.1 mmol) and 0.1 ml of homogenate in
a total volume of 2 ml. Enzyme activity at 25°C was esti-
mated by measuring the disappearance of NADPH at 340
nm. It was calculated as nmol NADPH oxidized/min/mg
protein using a molar extinction coefficient of 6.22 x 10>
Mt em™.

Glutathione peroxidase (GSH-px) assay

GSH-Px activity was assayed using the method of
Mohandas et al. [23]. The reaction mixture consisted of
1.49 ml of phosphate buffer (0.1 mol; pH 7.4), 0.1 ml of
EDTA (1 mmol), 0.1 ml of sodium azide (1 mmol), 0.05
ml of GSR (1 IU/ml), 0.05 ml of reduced glutathione
(GSH; 1 mmol), 0.1 ml of NADPH (0.2 mmol), 0.01 ml
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of H,O, (0.25 mmol) and 0.1 ml of homogenate in a
total volume of 2 ml. The disappearance of NADPH at
340 nm was recorded at 25°C. Enzyme activity was cal-
culated as nmol NADPH oxidized/min/mg protein using
a molar extinction coefficient of 6.22 x 10> M~ cm™.

Quinone Reductase (QR) assay

The activity of QR was determined using the method of
Benson et al. [24]. The 3-ml reaction mixture consisted
of 2.13 ml of Tris—HCI buffer (25 mmol; pH 7.4), 0.7 ml
of BSA, 0.1 ml of FAD, 0.02 ml of NADPH (0.1 mmol)
and 0. ml of homogenate. The reduction of dichloro-
phenolindophenol (DCPIP) was recorded at 600 nm. En-
zyme activity was calculated as nmol of DCPIP reduced/
min/mg protein using a molar extinction coefficient of
2.1x10* M~ cm™.

GSH assay

GSH was estimated using the method of Jollow et al. [25].
A total of 1.0 ml of homogenate was precipitated with 1.0
ml of 4% sulfosalicylic acid. Samples were kept at 4°C for
1 h and then centrifuged at 1200 x g for 20 min at 4°C.
The total volume of 3.0 ml assay mixture contained 0.1 ml
of a filtered aliquot, 2.7 ml of phosphate buffer (0.1 mol;
pH 7.4) and 0.2 ml of DTNB (100 mmol). The yellow
color that developed was read immediately at 412 nm on
a SmartSpec™ Plus Spectrophotometer (Bio-Rad, Hercules,
CA, USA). It was expressed as pumol GSH/g tissue.

Estimation of lipid peroxidation using levels of

thiobarbituric acid reactive substances (TBARS)

The assay for lipid peroxidation was carried out using a
modified method of Igbal et al. [26]. One milliliter of
20% TCA aqueous solution and 1.0 ml of 0.67% TBA
aqueous solution was added to 0.6 ml of phosphate buf-
fer (0.1 M; pH 7.4) and 0.4 ml of homogenate sample.
The reaction mixture was heated in a boiling water-bath
for 20 min and then moved to a bath of crushed ice be-
fore centrifugation at 2500 x g for 10 min. The amount
of TBARS formed in each of the samples was assessed
by measuring the optical density of the supernatant at
535 nm using a spectrophotometer against a reagent
blank. Results were expressed as nmol TBARS/min/mg

Table 1 Calibrations of standards
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tissue at 37°C using a molar extinction coefficient of
1.56 x10° M~ cm™.

Nitrite assay

A nitrite assay was conducted using Griess reagent. Tis-
sue was deproteinized using equal volumes of 0.3 mol
NaOH and 5% ZnSO,, and centrifuged at 6400 x g for 20
min, and the supernatant collected. A total of 1.0 ml of
Griess reagent was added into the cuvette, and the spec-
trophotometer blanked at 540 nm. Then 20 pl of super-
natant was added in a cuvette containing Griess reagent.
Nitrite concentration was calculated using a standard
curve for sodium nitrite.

DNA fragmentation assay

The DNA fragmentation assay was conducted using the
procedure of Wu et al. [27] with some modifications.
Tissue (50 mg) was homogenized in 10 volumes of a TE
solution at pH 8.0 (5 mmol Tris—HCI, 20 mmol EDTA)
and 0.2% Triton X-100. A 1.0-ml aliquot of each sample
was centrifuged at 27,000 x g for 20 min to separate the
intact chromatin (pellet, B) from the fragmented DNA
(supernatant, T). Pellet and supernatant fractions were
assayed for DNA content using a freshly prepared
diphenylamine (DPA) solution for the reaction. The
optical density was read at 620 nm using the SmartSpec
Plus Spectrophotometer. Results are expressed as %
fragmented DNA using the following formula:

% Fragmented DNA = T x 100/(T + B)

DNA ladder assay

DNA was isolated using the methods of Wu et al. [27]
to estimate DNA damage. A 5-pg aliquot of DNA of rats
was separately loaded in 1.5% agarose gel containing 1.0
pg/ml of ethidium bromide, including DNA standards
(0.5 ug per well). Electrophoresis was done for 45 min at
100 V. After electrophoresis, gels were studied under a
Gel Doc system and photographed using a digital
camera.

Compound Rt (min) a b r Linear range (ppm) LOD (ppm)
Kaempferol 19.2 625 -300 0.983 20-200 3.05
Catechin 210 12833 363.3 0.9419 10-170 2.30
Myricetin 272 12833 1334 0.9792 4-125 1.60
Hyperoside 346 6333 153.3 0.989 6-165 0.85
Rutin 46.1 5250 110 0.9885 7-250 1.05

The relationship between peak area and analyte concentration is expressed as linear regression lines (y = ax + b), where y is the peak area measured by UV
detector, x is the concentration (ppm) of the analytes, and a and b are the respective slope and intercept of the calibration curve. The correlation coefficient is r.
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Argyrophilic nucleolar organizer regions (AgNORs) counts
A silver staining technique was used according to the
methods of Trere et al. [28]. Unstained fixed slides were
dewaxed by dipping for 3 min in xylene and were
hydrated in decreasing ethanol concentrations (90%,
70% and 50%). After drying, slides were treated with one
drop of colloidal solution (2% gelatin and 1% formic
acid) and two drops of 50% AgNO; solution onto the
slides and incubated at 35°C for ~8-12 min. Progressive
staining was followed under a light microscope (Dialux
20 EB, Leitz, Wetzlar, Germany) to obtain golden-
colored nuclei and brown/black NORs. Then, slides were
washed in distilled water, treated for 1 min with 1% so-
dium thiosulfate at room temperature to stop the reac-
tion, and washed in tap water. Cells were examined
under a light microscope at 100 x magnification and the
number of AgNORs per cell counted.

Histopathological studies

For microscopic evaluation, liver samples were fixed in a
fixative (absolute alcohol 60%, formaldehyde 30%, glacial
acetic acid 10%) and embedded in paraffin, sectioned at 4-
pum thickness, and subsequently stained with hematoxylin
and eosin (H&E). Sections were studied under a light
microscope at 40 x magnification. Slides of all treated
groups were photographed and studied.

Statistical analyses

To determine the treatment effects, one-way analysis of
variance was carried using SPSS 13.0 computer software
(SPSS, Chicago, IL, USA). The level of significance
among the various treatments was determined by least
squares difference (LSD) analyses at 0.05% and 0.01%
levels of probability.

Results

HPLC quantification of flavonoids

The investigated compounds in the LPCE were quanti-
fied by integration of the peak areas at 220 nm using an
external calibration method for each analyte (Table 1).
The main flavonoids in the extract were catechin,
kaempferol, rutin, hyperoside and myricetin (Figure 1)
along with some unidentified flavonoids (Table 2).

Effect of LPCE on body weight, liver w ight and AgNORs
There was a significant decrease (P <0.01) in the body
weight whereas absolute liver weight, relative liver
weight and AgNORs count (NORs/cell) were increased
significantly with CCl, treatment as compared with the
control group. There was a consistent increase in body
weight whereas the absolute liver weight, relative liver
weight and AgNORs count decreased with LPCE treat-
ment. These parameters were also restored by silymarin
treatment. However, LPCE alone did not induce a sig-
nificant change (P> 0.05) in body weight, absolute liver
weight, relative liver weight or AgNORs count in com-
parison with the control group (Table 3).

Table 2 HPLC quantification of various flavonoids of
chloroform extract of L. procumbens

Compound Rt (min) Quantity Formula Molecular weight
Kaempferol 192 05840012 CisHigO  286.23 g/mol
Catechin 210 0.97+0.072  CysH140g  290.26 g/mol
Myricetin 27.2 04740035 CysHig0g 3182351 g/mol
Hyperoside  34.6 0.774£0.003  CyH»001,  464.38 g/mol
Rutin 46.1 038+0.04  Cy7H30016  610.517 g/mol

Mean +SE (n=3 number).
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Table 3 Effects of LPCE on body weight, liver weight, relative weight, DNA damages and AgNORS

Treatment Liver weight Relative liver weight % Change in AgNORS DNA

(9) (% to body weight) Body weight (NORS/cell) damages %
Control 5.78+0.209++ 0.0578+ 0.00209++ 26.0+0.80++ 2.167+0307++ 5.17+094++
3 ml/kg CCly 6.96+0.194** 0.0696+0.00194** 18.6+0.72%* 9.000+0.931** 35.83+0.14**
100 mg/kg Silymarin+ CCly 5.88+0.206++ 0.0588+ 0.00206++ 25.9+0.63++ 2.667+0.333++ 5.00+£0.44++
100 mg/kg LPCE+CCl4 5.98+0.128++ 0.0598+0.00128++ 23.2+0.71++ 4.667+0422++ 16.0+£0.55++
200 mg/kgLPCE+CCl, 581+0.218++ 0.0531+0.00218++ 253+047++ 3333+0.494++ 5.174£0.17++
200 mg/kg LPCE alone 5.56+0.0760++ 0.0526+0.00076++ 259+042++ 2.10£0.601++ 4.90+0.67++

Mean +SE (n=6 number).
** indicate significance from the control group at P<0.07 probability level.
++ indicate significance from the CCl, group at P<0.01 probability level.

Effect of LP on cholesterol profile

The effect of LPCE on cholesterol profile is shown
in Figure 2 a—d. Administration of CCly significantly
(P<0.01) increased the concentration of TGs, TC and
LDL-C but decreased the HDL-C level as compared with
the control group. Decrease in the HDL-C level was sig-
nificantly (P < 0.01) restored with LPCE along with CCl,
treatment at both doses of LPCE (100 mg/kg b.w. and 200
mg/kg b.w.) whereas levels of TGs, TC and HDL-C were
significantly (P < 0.01) increased only with LPCE at the
administration of 200 mg/kg b.w. to offset the CCl, insult.

Silymarin significantly restored the cholesterol profile
similar to that seen with the higher dose of LPCE. Treat-
ment of LPCE alone to rats did not cause a significant al-
teration in the biochemical parameters stated above as
compared with the control group.

Indices of hepatotoxicity: liver marker enzymes

Administration of CCl, markedly increased (P <0.01)
the activity of liver serum marker enzymes such as AST,
ALT, ALP, LDH and y-GT as compared with the control
group (Table 4). Elevation in the secretion of these
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Table 4 Effect of LPCE on liver marker enzymes

Treatment ALT AST ALP y-GT LDH

(U/L) (U/L) (U/L) (U/L) (nM/min/

mg protein)

Control 3217£2.12++ 83.83+2.74++ 248.00£3.93++ 70.50£2.23++ 48.3+2.38++

3 ml/kg CCly 91.334342%* 228.00+4.27%* 505.33+6.49** 119.33+3.12%* 77612 46"

100 mg/kg Silymarin+ CCly 32.50+2.05++ 84.67£2.75++ 249.67+3.68++ 71.33+£2.04++ 49+2.03++

100 mg/kg LPCE+CCly 79.17+3.19%++ 135.83+6.10%*++ 378.8+10.5*++ 100.6743.12%*++ 57+37%*++

200 mg/kgLPCE+CCl, 40.17+2.09++ 101.00+3.33++ 26033+3.61++ 77.00£3.59++ 50+2.96++

200 mg/kg LPCE alone 31.17+£1.824++ 82.33£3.77++ 247.00+3.99++ 71178240 ++ 45+1.88++

Mean +SE (n=6 number).

*, ** indicate significance from the control group at P<0.05 and P<0.07 probability level.

++ indicate significance from the CCl, group at P<0.07 probability level.

enzymes was significantly decreased (P <0.01) by 200
mg/kg b.w. of LPCE and silymarin as compared with the
CCl, group. However, non-significant (P> 0.05) vari-
ation was observed by administration of 200 mg/kg b.w.
of LPCE alone as compared with the control group.

Effect of the plant extract on parameters of oxidative
stress in the liver

Antioxidant polyphenolic compounds have a key role in
the detoxification of reactive oxygen species (ROS) and
help to maintain cellular balance. Administration of CCl,
significantly decreased (P < 0.01) the activity of catalase,
SOD, GST, GSH-Px, GSR and QR. Treatment of rats with
200 mg/kg b.w., of LPCE or silymarin (100 mg/kg b.w.) in
combination with CCly significantly (P < 0.01) normalized
the level of the antioxidant enzymes stated above. Non-
significant changes (P> 0.05) were found by only feeding
LPCE (Table 5).

Effects of LPCE on levels of TBARS, GSH and nitrite

Free radicals combine with polyunsaturated fatty acids
(PUFAs) to cause lipid peroxidation and increase TBARS
contents in hepatic samples. The protective effects of
LPCE on TBARS, GSH and nitrite levels among the hep-
atic samples of various groups of rats are shown in Table 6.
Administration of CCl, significantly reduced (P < 0.01)

Table 5 Effect of LPCE on hepatic oxidative stress parameters

the concentration of GSH but increased (P < 0.01) TBARS
contents and nitrite levels in hepatic samples as compared
with the control group. Levels of TBARS and nitrite were
significantly (P < 0.01) restored by the administration of
200 mg/kg b.w. of LPCE if administered with CCl,. Simi-
larly, GSH contents were significantly (P < 0.01) increased
by treatment with LPCE and silymarin as compared with
the CCly-treated group. However, non-significant
(P>0.05) changes were found with LPCE alone as com-
pared with the control group.

Effect of LPCE on DNA damage

The effects of LPCE and silymarin against CCly-induced
toxicities on qualitative DNA damage are shown in
Figure 3 whereas those on quantitative damage are pro-
vided in Table 3. DNA damage was not observed in the
control group. However, the CCl, group showed exten-
sive. DNA damage which was significantly (P <0.01)
reduced by LPCE depending on the dose as shown by a
band pattern and quantification of different groups when
compared with the CCly group.

Effect of LPCE on hepatic histoarchitecture

Sections of liver stained with H&E were examined for
hepatic damage such as necrotic cells, inflammation,
neutrophil infiltration, cellular hypertrophy, fibrosis and

Treatment CAT SOD GST (nmol/ GSH-Px (nmol/ GSR (nmol/ QR (nmol/
(U/min) (U/mg protein) min/mg protein) min/mg protein) min/mgprotein) min/mg protein)

Control 4.397£0.275++ 24.0£2.27++ 128.50+4.62++ 77.50£3.38++ 147.33+£6.01++ 163.0+7.47++

3 ml/kg CCly 2.590£0.240%* 13.5041.34%* 68.83+4.57** 51.83+2.89** 88.00+3.61** 89.0£3.69**

100 mg/kg Silymarin+ CCly  4.242+0407++ 23.0£2.34++ 126.67+421++ 77.0£3.10++ 145.33+6.23++ 160.0+6.97++

100 mg/kg LPCE+CCl, 3407+0.276%++  1883£149%*++  100.83+547**++ 69.0+3.4%++ 1121441 ++ 116.6+4.3%*++

200 mg/kgLPCE+CCl, 3.8567+0.07++ 21.97+1.67++ 123.83+1.96++ 72.042.27++ 135.1743.39++ 141.5+4.9++

200 mg/kg LPCE alone 440+0.105++ 25.17+224++ 132.67+445++ 79.8+3.03++ 149.33+6.27++ 165.50+5.02++

Mean +SE (n=6 number).
** indicate significance from the control group at P<0.07 probability level.
++ indicate significance from the CCl, group at P<0.01 probability level.
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Table 6 LPCE effects on TBARS, GSH and nitrite concentration of rat

Treatment GSH (mol/g tissue) TBARS (nmol/min/mg protein) Nitrite (mol/ml)
Control 0.738+0.0201++ 78.67+6.56++ 56.33+£2.46++

3 ml/kg CCly 0.236+0.0066** 158.83£8.57** 79.0+3.88**

100 mg/kg Silymarin+ CCl, 0.708+0.0105++ 79.00£7 45++ 57.0+2.73++
100 mg/kg LPCE+CCl4 0417£0.0135**++ 108.67£4.29%*++ 60.67+1.48""++
200 mg/kgLPCE+CCl, 0.560+0.0181*++ 91.33+6.77++ 56.17+£2.48++
200 mg/kg LPCE alone 0.743+0.0108++ 77.83£3.86++ 53.67+2.39++
Mean *SE (n=6 number).

*, ** indicate significance from the control group at P<0.05 and P<0.07 probability level.

++ indicate significance from the CCl, group at P<0.01 probability level.

fatty infiltration (Table 7). Figure 4a depicts the typical present study revealed that CCl, administration

normal histology of a liver of untreated control rats. In
rats administered CCly, hepatic injury was marked and
widespread, and included fatty changes, cellular hyper-
trophy, necrotic foci, neutrophil infiltration, and fibrosis
(Figures 4b and c). Conversely, LPCE and silymarin
treatment in combination with CCl, to rats attenuated
the hepatic injuries with considerably less or no fatty
changes or dilation of blood vessels as well as uniform
morphology of hepatocytes similar to those seen in the
control group (Figure 4d).

Discussion

Dietary polyphenols and phenolic compounds are
considered to have health-promoting effects in
humans. The biological properties of these plant con-
stituents are dependent upon their absorption in the
intestine [29,30] and have been reviewed recently
[31]. The HPLC data of the present study revealed
that LPCE possesses five important polyphenolic com-
pounds (myricetin, kaempherol, rutin, hyperoside, cat-
echin) which have a unique role in detoxification
[32]. Studies have revealed the presence of the same
phytochemicals during HPLC characterization of me-
dicinal plants [33,34]. Studies have also indicated that
flavonoids are potent antioxidant agents [35]. Hence,
natural antioxidants such as polyphenols are often
added to foods to stabilize them, and there is consid-
erable interest in their potential role as functional
foods or “nutraceuticals” [36].

Analyses of liver damage in the present study
revealed that CCl, is a potent hepatotoxin and is used
extensively for the characterization of hepatoprotec-
tive drugs [37]. Poisoning by CCl, causes multisystem
disorders involving the liver, kidneys, brain, lungs, ad-
renal glands, and myocardium [38]. Single exposure
of CCly can rapidly lead to severe centrizonal necrosis
and steatosis, and affects the activity of biochemical
enzymes, causes breakage of DNA strands, and
increases telomerase activity [39]. The results of the

caused hepatic injury which caused an elevation of
levels of serum marker enzymes such as ALT, AST,
ALP, y-GT and LDH. CCl, administration was shown
to cause severe acute liver damage in rats as demon-
strated by significant elevation of serum levels of AST
and ALT [40,41]. These enzymes were significantly
restored by treatment with LPCE, thereby revealing
its hepatoprotective ability. High levels of LDL-C and
a lower concentration of HDL-C were strongly asso-
ciated with hepatotoxicity and cardiovascular disease
because these biomolecules promote atheroma devel-
opment in arteries. Presence of significantly higher
serum concentrations of LDH, TGs, TC and LDL and
decreased levels of HDL-C upon co-treatment with
various doses of LPCE demonstrated the hepatopro-
tective effect of LP. Similar results were reported by
Sreelatha et al. [42] while working on the hepatopro-
tective effects of bioactive compounds of plants
against CCly-induced hepatic injury in rats.

M 1 2 3 4 5 9 10

Figure 3 Agarose gel showing DNA damage by CCl, and
preventive effect of chloroform extract of Launaea procumbens
showing that Lanes (from left) DNA marker (M), control (1-4),
CCl, (5, 8), 200 mg/kg b.w., LPCE + CCl,4 (9, 10).

6 7 8
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Table 7 Effect of LPCE on histology of liver
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Treatment Fatty changes Cellular hypertrophy Blood vessel Degeneration Fibrosis Inflammatory cell
and necrosis congestion of lobules infiltrations

Control - - - - - -

3 ml/kg CCl, +++ +++ 4 4 F. et

100 mg/kg Silymarin+ CCly + - - - - -

100 mg/kg LPCE+CCl, -/+ - - - R -

200 mg/kgLPCE+CCl, -/+ - - - J+ -

200 mg/k g LPCE alone - -

-, normal; +/-, mild; ++, medium; +++, severe disruption.

SOD, catalase and GSH-Px constitute a “mutually
supportive team” of antioxidant defense against ROS
[43]. Administration of CCl, into rat livers increased
lipid peroxidation, resulting in accumulation of super-
oxide radicals and consequently decreased their activ-
ities in the liver [44]. Our data revealed that CCl,
treatment significantly decreased the activities of cata-
lase, SOD, GSH-Px, GSR and QR in liver tissues. Co-
administration of various doses of LPCE markedly
decreased the toxicity of CCl, and enzymatic activ-
ities. The ameliorating effects of different plant meta-
bolites on these enzymes against the toxicity of CCl,
have also been documented [45]. It has been accepted
that the injuries induced by CCl, are attributed to its
conversion into the highly toxic CCl; and -OOCCI;
by the phase-I cytochrome P450 system in tissues.

These free radicals can bind with PUFAs to produce
alkoxy (R) and peroxy (ROO:) radicals that, in turn,
generate lipid peroxide and hydroperoxide, which
cause damage to cell membranes and various liver
diseases [46]. Elevation of TBARS the end and main
oxidative degradation product of lipid peroxidation,
functions as a marker of oxidative injury of cellular
membranes resulting during the peroxidation of
PUFA while a reduction of GSH is an important pro-
tein thiol is an important indicator of oxidative stress
[47]. GSH acts as a non-enzymatic antioxidant that
reduces the toxicity due to H,O,, hydroperoxides
(ROOH) and xenobiotics [48,49]. The data of the
present study showed that CCl, significantly
decreased GSH contents and increased TBARS con-
tents as compared with the control. Administration of

groups. Control (a), CCl, (b, c), 200 mg/kg b.w., LPCE+CCl, (d).

Figure 4 Histopathological changes caused by CCl, and preventive effect of chloroform extract of Launaea procumbens in different
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LPCE significantly increased GSH contents and
reduced TBARS contents, and this could be due to
the presence of various flavonoids in LPCE. Similar
results have been reported after the co-administration
of propolis against oxidative stress caused by CCl,
[50]. Lipid peroxidation induced by the free radicals
of CCl, combine with DNA to form adducts [17,51].
Our results showed that the DNA of rats in the CCl,
group had more damage (as assessed by quantitative
means) as compared with the control group. Adminis-
tration of LPCE significantly reduced the % DNA
fragmentation as revealed by the banding pattern of
the DNA ladder assay. Similar results have been
reported by Khan et al. [39] while studying the pro-
tective effects of Digera muricata against CCly-
induced nephrotoxicity in rats. Histopathological stud-
ies revealed that CCl; induces: extensive fatty
changes; congestion in blood vessels; cellular hyper-
trophy; necrotic foci; destruction of lobular architec-
ture; fibrosis; and nuclear degeneration in certain
areas. These were markedly diminished by administra-
tion of LPCE. These data are in good agreement with
the activities of serum aminotransferases and hepatic
lipid peroxidation levels. Other authors have revealed
findings which are in agreement with our findings
[52] while evaluating the protective effect of medi-
cinal plants against CCly-induced hepatotoxicity in
rats.

Conclusion

The present study revealed that LPCE recovered en-
zyme activities in the liver, improved DNA fragmenta-
tion, and improved cellular injuries. This study
provided evidence in favor of the pharmacological use
of LPCE as herbal medicine in the treatment of liver
disorders. The presence of antioxidant compounds
(catechin, kaempferol, rutin, hyperoside, myricetin)
may be responsible for the effectiveness of LPCE
against liver disorders.
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