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Abstract

Background: Techniques for inferring the functions of the protein by comparing their shape
similarity have been receiving a lot of attention. Proteins are functional units and their shape
flexibility occupies an essential role in various biological processes. Several shape descriptors have
demonstrated the capability of protein shape comparison by treating them as rigid bodies. But this
may give rise to an incorrect comparison of flexible protein shapes.

Results: We introduce an efficient approach for comparing flexible protein shapes by adapting a
local diameter (LD) descriptor. The LD descriptor, developed recently to handle skeleton based
shape deformations [1], is adapted in this work to capture the invariant properties of shape
deformations caused by the motion of the protein backbone. Every sampled point on the protein
surface is assigned a value measuring the diameter of the 3D shape in the neighborhood of that
point. The LD descriptor is built in the form of a one dimensional histogram from the distribution
of the diameter values. The histogram based shape representation reduces the shape comparison
problem of the flexible protein to a simple distance calculation between |D feature vectors.
Experimental results indicate how the LD descriptor accurately treats the protein shape
deformation. In addition, we use the LD descriptor for protein shape retrieval and compare it to
the effectiveness of conventional shape descriptors. A sensitivity-specificity plot shows that the LD
descriptor performs much better than the conventional shape descriptors in terms of consistency
over a family of proteins and discernibility across families of different proteins.

Conclusion: Our study provides an effective technique for comparing the shape of flexible
proteins. The experimental results demonstrate the insensitivity of the LD descriptor to protein
shape deformation. The proposed method will be potentially useful for molecule retrieval with
similar shapes and rapid structure retrieval for proteins. The demos and supplemental materials are

available on https://engineering.purdue.edu/PRECISE/LDD.

Background protein structure retrieval [2-4]. The similarity compari-
The importance of protein molecule shape has been rec-  son of protein molecule shape plays a central role in
ognized in many structural biological applications suchas  understanding of protein functions [4-8] of molecular sys-
computer aided molecular design, drug discovery, and  tems, and leads to an alternative way to discover the spe-
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cific nature of proteins efficiently besides the similarity
measure from the alignment of sequence [9,10] and sec-
ondary structure [11-16]. The underlying assumption is
that the geometrically similar molecules are likely to share
similar properties. The shape based methods could be
made independently from chemical structural knowledge.
The attractive advantage of shape based methods make
protein comparison alignment-free and therefore very
efficient. Some methods show their effectiveness for com-
paring proteins using the their surface shape [4-7,17], but
they cannot handle the deformation of the flexible pro-
tein well because proteins are treated as rigid bodies. This
intrinsic weakness leads to significant comparison errors
when flexible proteins in different conformation states are
compared to each other.

Our work concentrates on a shape-based method for the
deformation invariant shape representation using the local
diameter (LD) descriptor for flexible protein comparison.
The proposed method will mainly be used in any type of
molecular shape comparison (MSC) based applications
[2,3,18,19], for example, virtual screening of compounds
for similar shapes for drug discovery, and protein struc-
ture retrieval based on shape similarity [4].

Shape comparison

The importance of a comparison of the shape of 3D
objects' shape is increasing in the areas of computer
vision, robotics, molecular biology, and others. The shape
is usually expressed by a descriptor, which is a feature vec-
tor capturing some essence of a given shape [20-22]. A
shape descriptor generally carries a number of desirable
properties: transformation invariant, succinctness for rep-
resentation, low computation expense, expressiveness of
shape, etc. The concise form of the shape descriptor is of
great benefit in shape comparison. Instead of alignment
and superposition, a shape descriptor allows for the effi-
cient shape comparison since only a simple calculation of
some distance between feature vectors is required [23].

Additionally, the shape descriptor can be stored as an
index in a database of shapes to enable real time query
and retrieval. Protein shape analysis has been developing
as an indispensable way to overcome the challenge of
reaching the goal of disclosing the unknown functions of
proteins. In the next part we review several recent works
related to a protein shape.

The global protein shape descriptor proposed in [24]
introduces a method to compare and classify proteins
based on their topological properties. In [25], spherical
harmonic expansion was applied to compare the protein
binding pocket and ligand. A 3D shape is decomposed via
spherical harmonics, and followed by computation of the
distance in the coefficient space to evaluate the similarity
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among proteins. Petros [7] applied the spherical trace
transform to a protein shape to produce a rotation invari-
ant shape descriptor. Ingolf [6] successfully brought the
moment invariants to the comparison of protein binding
sites. In [26,27] the authors introduced a technique to
generate compact descriptors of the shapes of molecules
and of macromolecular receptor sites. The ray-tracing
technique is used to explore the volume enclosed by a lig-
and molecule, or the volume exterior to the active site of
a protein. The shape descriptor is expressed as a histogram
of the ray segment lengths obtained from the ray tracing
within the volume of the molecule. Ballester et al. devel-
oped a shape comparison method named USR for screen-
ing a huge database compound to find out the similar
molecular shapes [2,3]. Furthermore, Lee [4] used a 3D
Zernike descriptor to represent the global surface shape.
The protein surface is compactly expressed as a series
expansion of three-dimensional functions. The authors
used the global surface shape similarity based technique
for fast protein tertiary structure retrieval. By using this
simple descriptor for indexing the database, it only takes
seconds to search against a few thousand proteins.

Local diameter descriptor

Proteins undergo structural changes and shape deforma-
tion upon protein-protein or protein-ligand interaction
[28-30]. A particular conformation state carries out a spe-
cific function of the protein. Beginning with the native
conformation, the protein usually adapts its structure to
changes in its surrounding environment [29,30]. It is of
importance to represent shapes of different protein con-
formations in an invariant form. Invariancy is associated
with the shape descriptor not being effected by the defor-
mation of the protein shape. None of the descriptors
introduced above can support deformation in shape for
comparison and matching. This is because those shape
descriptors change significantly with deformation as well
as topological changes.

Local diameter (LD) scalar function is defined on the
boundary surface of a 3D shape. LD has been recently
developed for a pose-oblivious shape descriptor in [1].
Furthermore, the authors demonstrated that the local
diameter descriptor is invariant of skeleton based shape
deformation in [31]. We applied the LD descriptor to cap-
ture the invariant properties of the shape deformation due
to the motion of the protein backbone. The proposed
novel approach includes three steps for characterizing the
protein shape. First, a certain number of points is sampled
from the protein surface. Then, every sampled point is
assigned a value measuring the local diameter of the 3D
shape in the neighborhood of that point. Lastly, a shape
descriptor in the form of a 1D vector is built from the dis-
tribution of the local diameters. The LD descriptor cap-
tures the invariant essentials of the shape deformation
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and is expressed in a 1D vector. By using the LD descrip-
tor, not only could we represent the shapes of flexible pro-
teins consistently, but also we could characterize the
protein shape independent of its atom coordinates and
structural details. This approach is very computationally
efficient since it is free of structural alignment and super-
position.

Methods

In this section, we first provide a definition of the LD
descriptor and then the procedure to compute the LD
descriptor to represent the protein shape. The procedure
starts with the description of the approach to extract the
boundary points, followed by a comparison of sampling
techniques. Next we present LD descriptor calculation
algorithms, and finally, we explain the similarity measure-
ment methods for shape descriptors.

Definitions

The LD descriptor is a type of statistic based descriptor. It
starts with sampling boundary points, measures the shape
diameters on every sample point, and generates the one-
dimensional histogram. In [1], the local diameter is
defined as the distance from one surface point to the
antipodal surface point using the inward-normal direc-
tion. The authors also proved that the shape diameter is
an approximation of twice the shape radius [32]. Shape
radius measures the distance from a surface point to the
object medial axis (skeleton). The shape radius is demon-
strated to be invariant to skeleton based shape deforma-
tion.

However, the existing approaches suffer from the com-
plexity of computing the skeletons [32]. Local diameter is
an alternative way to simplify and approximate the shape
radius without any computation of the object's skeleton.
Therefore, while preserving the properties of shape radius,
the definition of local diameter is invariant to rigid body
transformation (rotation, translation, and uniform scale),
articulated deformations, and skeleton based movements
[31]. We could simulate the protein hinge-bending
motion as one type of skeleton-based movement [33-35].
Therefore, the LD descriptor is reliable for capturing the
invariancy associated with the shape deformation caused
by the protein backbone's motions.

Algorithms

The local diameter is defined by a statistical measure of
the diameters in a cone around the direction opposite to
the normal of the point. The detailed algorithms of how
to compute the LD descriptor are summarized as follows:

1. Extract the boundary from the whole volumetric
model and sample boundary points,
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2. Measure the local diameter for every sample point,
and

3. Build the LD descriptor and score the similarity
between descriptors.

Boundary points

Detection of boundary points

The volumetric representation, popularly used in biologi-
cal research fields [4,5,36], is used to represent protein
shape in this paper. A volumetric model is composed of a
set of cubic units named voxels, which is the 3D counter-
part of the 2D pixel of an image. A voxel is centered at an
integral grid point and assigned a numeric value repre-
senting some measurement, for example, the density
[37,38]. The volumetric model is built in three steps as
follows. First, we compute the Connolly surface (triangle
mesh) of the molecule using the MSROLL program [39].
Second, we place the triangle mesh in a 3D cubic grid of
n3 (e.g. n = 65) compactly. Third, each lattice point is
assigned either 1 or 0; 1 for point inside the surface and 0
for outside. The inside point is denoted as object point
and the outside point is denoted as background point. For
each lattice point, there is a set of 26 neighbor points. An
object point lies on the boundary if at least one of its 26
neighbors is a background point.

Subset of boundary points

The full boundary point set is too large to compute shape
signature effectively. To save storage and computation
costs, we carefully choose a subset but preserve the char-
acteristics of the shape. To have statistically valid sample
data, the sample density/size should be carefully deter-
mined since the more samples we take, the more accu-
rately and precisely we can reconstruct the shape
distribution; however, at the same time, a large set of sam-
ple data increases the storage and expense of shape signa-
ture computation exponentially. In addition, the sample
method is also taken into account to yield a representative
data set. We compared random sampling and clustering
sampling methods. With random sampling, every mem-
ber in the boundary point set has an equal chance of
inclusion in the sample set. The points picked out by the
random sampling method cannot yield an informative
sample set. In this paper, we utilize the K-means [40] algo-
rithm to implement a clustering sampling approach. The
K-means algorithm divides the boundary points into
groups based on the distances among them. Statistically,
points from the same cluster have similar properties, and
the cluster center can be selected to represent the whole set
of points expressively. In the experiment, the sample size
is set as the number of groups, and the point nearest to the
cluster center is chosen as the final sample point. Figure 1
shows a comparison of sample points for a protein model
using random and clustering methods. We find that the
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Figure |

Comparison of clustering sampling and random sampling techniques and effect. (A) The protein surface. (B) The
red points depicted are the random sample points. (C) The red points depicted are the clustering sample points. Note that in
figure(B) the ellipse marks a surface region where the sampled points distribute very sparsely, while the same surface region
includes evenly distributed sampled points by using the clustering sample technique. The sample size is set at 300 in the figures.

clustering-based sample method can approximate the
shape better than random sampling given the sample size.
The points sampled randomly look unevenly distributed
on the surface and then lose the local shape information.
Note that the elliptical highlighted region in Figure 1(B)
includes almost no points, while the same region in Fig-
ure 1(C) has evenly distributed sampled points.

Local diameter calculation
The algorithm for finding the local diameter for a bound-
ary point has the following steps.

1. Estimate the normal of the boundary point,

2. Define a virtual cone using this point as a vertex,
centered around the opposite direction of the point's
normal with a proper opening angle, and shoot a cer-
tain number of rays inside the cone to the opposite
side, and

3. Intersect a ray with the opposite boundary side and
record the distance from the point to the antipodal
intersection point, and

4. Sort the distances and use the median as the local
diameter.

The above steps are applied on all sample points. Figure
2(D) is a two-dimensional representation, showing the
visualization of the use of ray, cone, and cylinder. Details
of the algorithm for the normal estimation (step two) and
intersection calculation (step three) are provided below.

Normal estimation

The normal of the boundary point is unknown in the vol-
umetric model. We introduce an efficient technique based
on visibility to estimate the normal of the boundary
points [5]. The basic idea of the normal estimation is illus-
trated in Figure 2(C). The visible direction for a boundary
point is defined as the vector linking it to one of the out-
side points in its neighbor. The green arrows in Figure
2(C) denote three visible vectors of the center point. The
normal of a point is measured by the vector sum of all the
visible directions. In the case of Figure 2(C), the normal
for the center point is the vector sum of D1, D2, and D3.
The calculation of the normal performs the same proce-
dure in the 2D and 3D cases except that the number of
neighbors of one point is 8 in the 2D case while it is 26 in
the 3D case.

Ray intersection

Intersecting a ray with different objects such as a sphere
can be directly checked if the equations describing the
objects are known. Since we use a volumetric model, the
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Figure 2

Two-dimensional illustration of the scheme for the algorithm. (A) Volumetric representation of protein. The solid
dots denote the set of protein data placed on the uniform grids. The grids without solid dots are outside of the protein. (B)
The boundary contour of the protein. The region highlighted by a red square is used for the illusion of normal calculation. (C)
The figure zooms in the highlighted region in (B) to illustrate the calculation of the normal. The center point is one of the
boundary points and three open dots are defined as its visible points. The three green arrows denote the visible direction vec-
tors. The normal is the vector summation of D, D, and D;. (D) The visualization of ray intersection. A virtual cone (colored
orange) with P, as vertices is shown in the figure. A ray (colored orange) shot from point P, and the corresponding virtual cyl-
inder (colored blue) around the ray are shown. There are three circles (colored purple) describing the different clusters of
intersection points respectively.
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only known information is the coordinate of the point.
Hence, we introduced a robust algorithm [41], called LPSI
(Line and Point Sets Intersecting), for resolving the inter-
section problem. This algorithm is fast and robust and
obtains high accuracy without requiring a reconstruction
of the underlying surface from the point cloud. This
method consists of four steps:

1. Consider a virtual cylinder around the ray shot from
the cone vertices,

2. Detect whether an intersection has occurred
between that cylinder and boundary points and collect
the inclusion points, and

3. Cluster the inclusion points, and

4. The nearest cluster is picked up as the final intersec-
tion point.

Note that the reader can find the algorithm details in [41].
We provide a 2D illustration to demonstrate the frame-
work for the algorithm. See Figure 2(D). The protein sur-
face is represented as a solid dot contour; the black dots
represent the boundary points. In Figure 2(D), an orange
ray is shot from red point P1, and a blue virtual cylinder is
around the ray. We can see there are three clusters of inter-
section points, highlighted by three purple circles. The
number of points included in the three clusters is one,
two, and two respectively. The intersection algorithm
picks up the nearest cluster as the final intersection point
of the ray with the opposite boundary side.

Similarity measurement of shape descriptor

The last step is to express the values of the local diameters
in the form of a one-dimensional histogram vector. After
obtaining the local diameter of every boundary point, we
compute the distribution of those values and build the
histogram of values using 128 bins to define the descrip-
tor. In order to compare the LD descriptor with popular
shape descriptors, we introduce a distance descriptor,
called Euclidean distance (ED) [20]. The ED descriptor is
formed by three steps: 1) sampling points from the shape
surface, 2) computing the Euclidean distance between the
pairwise sampled points, and 3) computing the distribu-
tion of distance values to build the histogram given the
number of bins. Note that the distribution is estimated by
counting the number of observations of distance values
falling into a specific range adjusted by the number of
bins. The histogram built from the distribution indicates
the number of distance values per unit bin.

In order to quantize the measurement of the shape simi-
larity, we need to define an appropriate scoring function
for the distance metric in some vector space. As men-
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tioned above, the shape descriptor is a histogram based
1D vector and is constructed by dividing the distance
range from the maximum to minimum measurement into
128 equal sized ranges and counting the number of obser-
vations that fall into different ranges. Therefore, each
descriptor is a 128 length long 1D vector which can be
expressed mathematically as I = (I, I,..., I) k = 128. There
have been a number of standard ways of comparing two
vectors as described in [20]. The popular standards
include L1 norm, L2 norm, A2 measure, and Bhattacharyya
distance. In fact, the experimental results tell us that using
different metrics slightly affects the comparison and
retrieval results. Although we tested different types of met-
rics for shape descriptors, we have found that L1, and L2
norms are simple and give better results. The equations for
L1, known as Manhattan distance, and L2 norm, known
as Euclidean distance, are given below:

Npiy

dia(AB) =D [ 14() ~ 15(0)] (1)
i=1
Npiy

dia(AB)= | 11 (0) = 150) ()

i=1

where N;;, is the number of bins of histogram, and I, and
I denote shape descriptors of the two proteins, A and B,
respectively.

Results

We have implemented the LD descriptor and assessed its
performance from the experimental results. The experi-
mental comparison of the LD descriptor and existing
structure based and shape-based methods will be studied
in future work while applying the LD descriptor in differ-
ent applications. The algorithms presented in the paper
are implemented on a Pentium D 3.2 GHz computer with
1 G RAM running Windows XP. The proteins for the
experiments have been chosen from the Database of Mac-
romolecular Movement (MolMovDB) [42], which catego-
rizes conformational changes of protein and allows the
user to animate and visualize a particular motion through
the Morph server. This database has been used in predict-
ing protein structures and hinge predictor [43,44]. There
are two critical parameters, the opening angle of the cone
and the number of rays in the cone that have to be care-
fully chosen in the experiments. The importance of cone
angle has been discussed in [1,31]. A small cone angle
would make the LD descriptor too sensitive to local fea-
tures and would lead to poor discrimination between dif-
ferent objects as well. On the other hand, a large opening
angle would bring extra noise and errors due to the rays
intersecting to unrelated parts of the object [31]. The
number of rays indicates the sampling density for rays
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shooting from the vertex within the cone. The number of
rays would not affect much the performance of the LD
descriptor. The authors in [1] tested the effect of various
parameter settings and found that the opening angle of
120° and 50 rays are reasonable settings. In the experi-
ments, we followed the setting in [1] choosing 120° and
50 rays. Here, we are not focused on a detailed analysis of
the biological significance of the proteins, but the robust
performance of the shape descriptor and we analyze the
possible reasons causing incorrect comparison.

Visualization of Local Diameters

Figure 3 shows a protein (PDB: 1QCRE) with color
regions on the surface. The conformational deformations
of this protein can be viewed from the Morph Server. In
the figure it is shown that the protein consists of a domain
and a long helix chain. We can see in the motion movies
on the web-server that the domain rotates about the hinge
(pointed by an arrow in the figure) to different extents.
Surface points are colored differently according to their
local diameter values. The color bar on the right side indi-
cates that a red color means the large diameter and the
blue color means a small diameter. The figure shows that
the points from the domain are predominately yellow and
green while the points from the helix chain are predomi-
nately blue. This supports the notion that the domains
have much larger diameters than those of the helix chain.

Figure 3

http://www.biomedcentral.com/1472-6807/9/29

Furthermore, because the protein surface is usually undu-
lated, this causes some surface points from the domain to
have a small local diameter. We can find that those very
small protrusions located on the surface of the domain are
blue colored, indicating that those points have a low value
of local diameter.

To summarize this section, the LD descriptor can measure
the local diameter very well. The body of the domain usu-
ally has large diameters.

Shape Deformation Invariance

In order to show the potential of the LD descriptor as
shape deformation invariant, we choose some proteins
that have conformational changes for test purposes. We
tested some complex shape deformations (see Figure 4) to
demonstrate the capability of the LD descriptor for its
insensitivity to the protein shape deformation.

Two illustrative examples of proteins (PDB: 1BPB and
2BPG) are shown in the top part of Figure 4. The two con-
formations have a large shape change and even the shape
topology is changed due to a small contact (highlighted
by an ellipse in the figure) between the top portion with
the bottom domain. The LD descriptor is shown in Figure
4(C). The plot shows that the histograms for the two
shapes match well, indicating that the shape descriptor is

12

N A O

lllustration of local diameter for surface points. Different colors represent different values of the local diameter. The

colorbar on the right side indicates the range of values.
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—— 1BPB
ED 2BPG

Figure 4 (see legend on next page)
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Figure 4 (see previous page)

LD descriptor is compared to the Euclidean distance (ED) descriptor. The protein in (A) transforms into the protein
in (B) by bending the top portion of the protein. The arrow points to the touching regions between the top portion and the
bottom rigid part, which means that the topology changes during this deformation. (C) shows the LD descriptor. (D) shows
the ED descriptor. The red and blue color are used to distinguish two different proteins (PDB: 2BPG (left) and PDB: 1BPB
(right)). The LD and ED descriptors in (C) and (D) are two histogram based vectors. Here each histogram is constructed by
dividing the distance range from the maximum to minimum measurement into 128 equal size ranges and counting the number
of observations that fall into different ranges. The horizontal axis of the histogram is labelled with the range of distance meas-
urement, and the vertical axis of the histogram is the number of observations that falls into the corresponding range. Note that
if 1, represents the descriptor (red plot) and I represents the descriptor (blue plot), the similarity can be measured using equa-
tions (1) or (2). The LD descriptors are consistent with two proteins and are not sensitive to shape deformation and topolog-

ical changes. In contrast, the ED shape descriptor is strongly sensitive to those changes.

effective enough to be invariant to the complex shape
deformation even with topology changes. In contrast, the
ED shape descriptor method fails to represent the shape
deformation invariantly as shown in Figure 4(D) since
there is a large deviation between the two shape descrip-
tors.

Database Retrieval Performance

Benchmark Dataset

To further investigate the effectiveness, we test the LD
descriptor on a benchmark dataset of proteins extracted

diverse data pertaining to flexibility in proteins. Proteins
from the same group basically have similar elements of
secondary structures but there might be some conforma-
tional changes to make spatial orientation different. The
hinge bending movement is a major type of motion
which leads to the deformation in protein shape. We also
developed a search engine (see Figure 5) with which the
user can easily visualize the retrieval results and evaluate
the retrieval performance. The retrieval results are dis-
played using images in a dialog box with a group ID label
directly underneath every image (see Figure 5). The order

from MolMovDB, which consists of 2,695 proteins classi-
fied into 214 groups. The Database of Macromolecular

Movements http://www.MolMovDB.org is a collection of

of the results sequence is determined by the similarity
score between shape descriptors of the query and retrieval.

gE}-Lucal Diameter Descriptor{LDD) =] B3
File View Display LocalDiameter Retrieve Help
s o
. plae
Filename: 114365-24499-fi12.mrc _ Retiived Result
Volume size: 65 * 65 * 65 S
Threshold: 0.500000
Retrived Group: 1
. @
apflept ef
Is
T AN |__Group1 |
: )
J T
. Group1 | | Growp1 | | Groupl |
(1) [z 13
Previous Page I Next Page I Close Display Window I
Ready }I\BJ—M_fS_//_I
Figure 5

Protein Shape Search Engine. The left side shows the file information, such as filename, and group ID, of the query protein

and the right side shows the retrieval results. The group ID is indicated underneath the retrieval result. Note that we can see
that the first 15 retrieval results match the query protein correctly.
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Before searching, we pre-calculated all shape descriptors
of queries in the database and stored them as index files.
Therefore, every protein is transformed to a compact 1D
vector (e.g. 128 numbers). With the new form of represen-
tation, proteins can be retrieved extremely fast since only
the distance between 1D vectors needs to be compared. If
the query protein is already transformed into a shape sig-
nature, it only takes seconds to finish a query retrieval
process. Meanwhile, if the query protein is not pre-calcu-
lated, the search engine would first build the shape
descriptor and search against the database.

Specificity Sensitivity Analysis

Specificity and sensitivity are widely used standards to
assess the performance in retrieving similar protein struc-
tures [4]. The definitions are given as follows:

Sensitivity = P (3)
TP+FN

Specificity = P (4)
TP+FP

http://www.biomedcentral.com/1472-6807/9/29

where TP, the number of true positives, is the number of
proteins included in the group that are the same as the
query protein correctly retrieved in the search; FN, the
number of false negatives, is the number of proteins that
are included in the group the same as the query protein
but missed in the search; FP, the number of false positives,
is the number of proteins that are included in a different
group from the query protein but inaccurately retrieved in
the search. Thus, the denominator in Eq. 3 is the total
number of all members in a group, and the denominator
in Eq. 4 is the retrieval size.

In the experiment, we first score the similarity between
each protein and the whole set of proteins, and then rank
them according to the score. The sensitivity and the specif-
icity for every query protein is then recorded. We average
all of the records to give the final sensitivity and the spe-
cificity. Figure 6 shows the specificity and sensitivity curve
of the benchmark performance. The red plot with green
triangle marked is the sensitivity-specificity curve for the
LD descriptor, and the blue plot with solid dot marked is
the curve for the ED shape descriptor [20]. A perfect search
retrieves all relevant objects consistently at each sensitivity
level, generating a horizontal line at specificity = 1.0.
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Figure 6

The sensitivity and the specificity curve. The retrieval performance of the LD descriptor is evaluated and compared to
the ED descriptor. Note that the LD descriptor performs much better than the ED descriptor because its sensitivity and the
specificity curve is much closer to tend to the horizontal line at specificity = 1.0.
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However, practically, the specificity decreases with the
increasing sensitivity. The closer the curve tends to the
horizontal line at specificity = 1.0, the better the retrieval
method. Therefore, we can see from the plots that the LD
descriptor performs much better than the ED shape
descriptor since the specificity-sensitivity plot for the ED
method decreases too fast.

Discussion

Analysis of experimental results

We found there are a few cases where the local diameter
descriptor cannot express the shape deformations of the
shape protein appropriately. Here we list potential rea-
sons causing the inaccuracy. First, the volumetric data is a
low resolution record of protein shape. Some details of
protein surface are missed during the voxelization proc-
ess, which ultimately causes the improper representation.
Second, the sampling of boundary points would cause the
loss of some shape information. Third, the LD descriptor
deals well with the shape deformation caused by the
motion of the protein backbone. However, in some cases,
the hinge or loop is elongated to a large extent, which
harms the performance of the descriptor. Furthermore, we
found that a few proteins of highly similar shape are
assigned to different groups in the Molmovdb database.
Our method likely fails to distinguish the proteins from
those groups. For instance, there are two groups in the
Molmovdb database, which include proteins functioning
as ovotransferrin and lactoferrin, respectively. Our
method fails to differentiate between these two groups
due to the high similarity of the protein shape.

Potential Applications

As the size of molecular databases increase exponentially,
the development of the efficient screening methods has
been receiving a lot of attention. We are working on two
potential applications of the LD descriptor including the
molecular shape similarity search for drug discovery and
protein structure retrieval based on the shape surface sim-
ilarity. There are two aspects of advantages for the LD
descriptor in those applications. First, the LD descriptor
can handle the flexible molecular shape comparison. Sec-
ond, the LD descriptor is able to search against a large
database rapidly.

Molecular shape comparison based drug design

One of the foundations for the rational drug design is the
use of shape similarity identified compounds are expected
to be active against a given target [2,3,27]. The virtual
screening of compounds based shape matching has been
recently developed for the drug discovery process [3,18].
The underlying assumption is that the molecular shape
has been widely acknowledged as a critical factor for bio-
logical activity and geometrical resemblance of molecular
is closely associated with the functional similarity

http://www.biomedcentral.com/1472-6807/9/29

[2,3,27]. The recent two works are reviewed as follows.
The authors in [27] proposed their shape signature
method and applied it to the Tripos fragment database
and the NCI database (113,331 compounds) under two
different metrics. Ballester et al. [2,3] introduced a ultra-
fast shape recognition method to finish a inter-database
compounds search for similar molecular shapes. The data-
bases used in their experiments include the Vendor Data-
base (2,433,493 commercially available compounds) and
an independent benchmark from DrugBank.

The existing shape based techniques first pre-compute a
shape signature of the compounds in a large database, and
a list of similar shape molecules can be ranked based on
some distance metrics with a given lead molecule. In
future work we will apply the the LD descriptor to some
large and diverse molecular databases for the drug discov-
ery. The LD shape descriptor could provide the alternative
to existing molecular shape descriptor with a potentially
better performance in terms of searching by matching the
3D conformation of molecules.

Hybrid scheme for protein structure retrieval

Fast protein structural retrieval techniques are necessary to
deal with the increasing number of known protein struc-
tural data. Over the past years, many structural compari-
son methods have been proposed to solve the structure
retrieval problem [11-16]. The widely used structural
alignment methods, such as DALI [15] and CE [12], have
been proposed to identify the defined best alignment. The
structural alignment generally produces a superposition
of corresponding atom pairs and the RMSD distance is
calculated as the similarity metric. A structural alignment,
FATCAT [11], is recently proposed for the flexible struc-
ture alignment. In addition, Liu [45] presented a new
algorithm based on least median of squares to achieve a
flexible structure alignment. The reader can refer [46] for
comprehensive review of protein structure alignment
methods. Generally, before comparing a pair of structures,
an optimal sequence alignment, which has been shown to
be NP-hard problem [47], should be first conducted to
provide the corresponding residues. Therefore, the struc-
tural alignment methods generally have critical weak
points in terms of computational complexity although
they are able to provide good structure retrieval results.

The LD descriptor is capable of real time retrieving
because it is an alignment-free technique, and the descrip-
tor vector could be pre-computed and stored as an index
on a hard disk. In the future work we will develop a hybrid
scheme which includes both the structure alignment and
shape based methods. The LD descriptor could work as a
rapid primary filter to obtain the initial candidates and
followed with an option to combine structure alignment
based methods to refine the initial results. The structural
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comparison is only applied to the highly ranked protein
candidates to reduce the time of a whole retrieval process.
With this hybrid scheme, we can balance well between the
searching time and the accuracy of structure retrieval
results.

Limitations

We would like to discuss two major limitations of the LD
descriptor. First, the protein shape comparison sometimes
would lead to the incorrect biological analysis result
owing to the inherent properties of shape based
approaches. Figure 7 shows an example of two proteins
that have a closely similar shape surface but have com-
pletely different secondary structure elements. The shape
based method would fail to refer to the significant rela-
tionship between those two proteins. Second, the LD
descriptor is sensitive to large topology change. If the sur-
face regions heavily touch together due to protein defor-
mation, the LD descriptor will fail to give a consistent
measurement for that kind of deformation. Figure 8 indi-
cates an example of a case of failure. The long straight
chain in the protein (Figure 8(A)) twists together and a
large portion surface from different regions touch each
other during the deformation process as shown in Figure

http://www.biomedcentral.com/1472-6807/9/29

8(B). However, in a practical implementation, the LD
descriptor could work as a rapid primary filter to obtain
the initial results and followed with an option to combine
sequence or structure alignment based methods to refine
the initial results.

Conclusion

Capturing the molecule flexibility is important for under-
standing the properties of proteins. This paper shows how
to represent the protein molecular shape by a deforma-
tion invariant shape descriptor and demonstrate its effi-
ciency to search against a protein motion database. This
descriptor is robust in recognizing the protein conforma-
tions since it has a number of attractive properties,
namely, insensitivity to topology changes of protein
shape, articulated deformation, and skeleton based move-
ment. The experimental results show that the LD descrip-
tor achieved a good performance in the retrieval of a
protein motion database. The LD descriptor failed to rec-
ognize the large topological changes such as a large con-
tact of the flexible portion with the stable domain and the
deformation of the big elongation of the hinge region.
Our work contributes to providing an alternative way for
protein similarity measures. The proposed shape descrip-

Figure 7

Proteins with similar shape. The figure shows two proteins with similar shape but completely different secondary struc-
tures. The left protein (PDB: 1BARA) is a S class protein and the right protein (PDB: IRROA) is a « class one. The LD descrip-
tor will give them close measurements owing to similar shape of these two proteins.
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Figure 8

Proteins with large deformation. The figure shows two proteins with PDB, 1MI7(top) and 2WRP(bottom). The protein in
(A\) is transformed into the one in (B) by twisting the long chain (marked by the ellipse) together. The surface regions of the
protein in (B) (marked by the ellipse) touch each other, which makes the shape of the protein in (A) deviate a lot from the pro-
tein in (B). In this case, the LD descriptor is not able to make a consistent measurement of those two proteins.
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tor is a fast and efficient technique for comparing protein
shape, and will be useful for potential applications, such
as the drug discovery and structure retrieval.
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