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Background

Computational protein structure prediction has made
great progress in the last three decades [1,2]. Protein inter-
residue contact prediction is one of the problems being
actively studied in the structure prediction community.

Abstract

Background: Protein inter-residue contacts play a crucial role in the determination and
prediction of protein structures. Previous studies on contact prediction indicate that although
template-based consensus methods outperform sequence-based methods on targets with typical
templates, such consensus methods perform poorly on new fold targets. However, we find out that
even for new fold targets, the models generated by threading programs can contain many true
contacts. The challenge is how to identify them.

Results: In this paper, we develop an integer linear programming model for consensus contact
prediction. In contrast to the simple majority voting method assuming that all the individual servers
are equally important and independent, the newly developed method evaluates their correlation by
using maximum likelihood estimation and extracts independent latent servers from them by using
principal component analysis. An integer linear programming method is then applied to assign a
weight to each latent server to maximize the difference between true contacts and false ones. The
proposed method is tested on the CASP7 data set. If the top L/5 predicted contacts are evaluated
where L is the protein size, the average accuracy is 73%, which is much higher than that of any
previously reported study. Moreover, if only the |15 new fold CASP7 targets are considered, our
method achieves an average accuracy of 37%, which is much better than that of the majority voting
method, SVM-LOMETS, SVM-SEQ, and SAM-T06. These methods demonstrate an average
accuracy of 13.0%, 10.8%, 25.8% and 21.2%, respectively.

Conclusion: Reducing server correlation and optimally combining independent latent servers
show a significant improvement over the traditional consensus methods. This approach can
hopefully provide a powerful tool for protein structure refinement and prediction use.

Recent CASP (Critical Assessment of Techniques for Pro-
tein Structure Prediction) [3-7] events have demonstrated
that a few true contacts, extracted from template-based
models, can provide very important information for pro-
tein structure refinement, especially on targets without
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good templates in PDB [8]. For example, Misura et al. [9]
have revised the widely-used ab initio folding program,
Rosetta [10], by incorporating inter-residue contact infor-
mation as a component of Rosetta's energy function, and
shown that the revised Rosetta exhibits not only a better
computational efficiency, but also a better prediction
accuracy. For some test proteins, the models built by this
revised Rosetta are more accurate than their template-
based counterparts, which is rarely seen before [7]. Zhang-
server [11] and TASSER [12] perform very well in both
CASP7 and CASP8. One of the major advantages of these
two programs over the others is that both depend on con-
tacts and distance restraints, extracted from multiple tem-
plates, to refine the template-based models. It has been
shown by Zhang et al. that ab initio prediction methods
can benefit from contact predictions with an accuracy that
is higher than 22% [13].

Protein inter-residue contact was first studied by [14-17]
to calculate the mean force potential. Gobel et al. [18] for-
mally proposed the problem of contact prediction, and
showed that correlated mutation (CM) is useful informa-
tion to predict inter-residue contacts. The fundamental
assumption is that if two residues are in contact with each
other, during evolution, if one residue mutates, the other
one has a high chance to mutate as well. Thus, by analyz-
ing residue mutation information from multiple sequence
alignments, it can be predicted whether or not two resi-
dues are in contact. Since then, different correlated muta-
tion statistical methods have been carefully examined [19-
24].

According to whether structural templates information is
taken into consideration, contact prediction methods can
be classified into two categories: sequence-based methods
and template-based methods. Among all the sequence-
based methods, some rely solely on correlated mutation
information calculated by different statistical approaches
[18,22-24], while others encode the correlated mutation,
together with other features such as secondary structure
and solvent accessibility, into machine learning models
[25-32]. Although the correlated mutation performs well
on local contact prediction, which is usually defined to be
two residues within six amino acids from each other in the
protein sequence, it usually fails for non-local contacts.
Therefore, other information such as evolutionary infor-
mation and secondary structure information, has been
applied to improve the performance of contact prediction
methods [25-33]. In [25], Fariselli et al. encoded four
types of features into a neural network based server (COR-
NET): 1) correlated mutation, 2) evolutionary informa-
tion, 3) sequence conservation, and 4) predicted
secondary structure.
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They defined that two residues are in contact if the Eucli-
dean distance between the coordinates of theoir Cyatoms
(C, atom for Glycine) is smaller than 8A, and the
sequence separation between the two residues is at least
seven to eliminate the influence of local a-helical con-
tacts. CORNET achieves an average accuracy of 21%.
Other features have been investigated since then [27,29].
PROFcon [31], one of the best three contact prediction
servers in CASP6 [5], encodes more information into its
neural network model, including solvent accessibility and
secondary structure over the regions between the two res-
idues, as well as the properties of the entire protein. PROF-
con performs impressively on small proteins or alpha/
beta proteins with an accuracy of more than 30%.
Recently, Shackelford and Karplus [33] proposed a neural
network based method to calculate the correlated muta-
tion by using the statistical significance of the mutual
information between the columns of multiple sequence
alignment. Their SAM-T06 server outperforms all the
other contact prediction servers in CASP7, and achieves an
average accuracy of 45% for all CASP7 target proteins,
which is higher than that of any previously reported study.

In contrast to these sequence-based methods, which
encode correlated mutation information and other
sequence-derived information, there are some studies on
predicting inter-residue contacts from structural templates
[9,32,34-36]. The underlying assumption for such meth-
ods is that contacts are usually very conserved during evo-
lution. Consequently, templates, with structures similar
to that of the target protein, usually contain common con-
tacts, such that consensus methods work well. Bystroff et
al. [34,35] have considered folding pathways, and pre-
dicted contacts by employing HMMSTR [37], a hidden
Markov model for local sequence-structure correlation.
LOMETS [36], a majority voting based consensus method,
takes nine state-of-the-art threading programs as inputs.
LOMETS predicts contacts by attempting to select the best
input model.

Recently, two Support Vector Machines (SVMs) based
contact prediction methods, SVM-SEQ and SVM-LOM-
ETS, have been proposed by Wu et al. [32]. SVM-SEQ only
takes sequence-derived information into consideration,
whereas SVM-LOMETS, a consensus method, is based on
structural templates. SVM-LOMETS differs from its ances-
tor, LOMETS, in that it carefully trains contact frequency,
C, distances, and template quality by an SVM model. The
inputs for SVWM-LOMETS are nine state-of-the-art thread-
ing programs: FUGUE [38], HHSEARCH [39], PAINT,
PPA-1, PPA-I [36], PROSPECT? [40], SAM-T02 [41], SP3
and SPARKS?2 [42]. Both SVM-SEQ and SVM-LOMETS are
tested on a set of 554 proteins, on which each achieves an
average accuracy of 29% and 53%, respectively. Although
it is widely acknowledged that a method usually has dif-
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ferent performance on different data sets, one can still
expect that a consensus contact prediction method will
outperform the individual servers. Instead of testing on
the entire CASP7 data set, these two programs are further
tested on the 15 new fold (NF) targets of CASP7. The aver-
age accuracies are 26% and 11%, respectively. Through a
comprehensive comparison of sequence-based and struc-
ture-based methods, including SVM-SEQ, SVMCON [43],
SVM-LOMETS, LOMETS, and SAM-T06 server, Wu et al.
have concluded that template-based methods are better
than sequence-based methods on template-based mode-
ling (TBM) targets, but worse on new fold targets. How-
ever, even for new fold targets, where the threading
methods fail to identify good templates, the templates dis-
covered by threading usually contain many true contacts.
The major challenge is that some true contacts are not
contained in a majority of the top templates, resulting in
the failure of the traditional majority voting methods. In
this paper, we propose a novel consensus contact predic-
tion method to eliminate the effect of server correlation,
and to discover true contacts even when they are not com-
monly found in the top templates. All the contacts, deter-
mined by structure prediction servers, are considered to be
candidates. Our consensus method then assigns a confi-
dence score to each contact candidate, while also taking
correlated mutation information into consideration.

Results

Data Set

Server Selection

To evaluate the performance of the proposed consensus
method, six threading-based protein structure prediction
servers are used: FOLDpro [44], mGenThreader [45,46],
RAPTOR [47,48], FUGUE3 [38], SAM-T02 [41], and
SPARK3 [42]. Although there are some servers, such as
Rosetta and Zhang-server, with a better performance than
that of the six servers, they are not used because their
models are already refined by predicted contacts.

Training and Test Data

The biennial CASP competition provides us a comprehen-
sive and objective data set. The CASP7 targets and models
generated by the six servers are adopted as the training and
test data. For each server on a target, the five submitted
models are considered. All server models are downloaded
from the CASP7 website, except for mGenThreader, which
does not participate in CASP7. We submitted the CASP7
targets to the mGenThreader web server, and downloaded
models from there before August 2006. Therefore, all
these models are generated before the native structures of
the CASP7 targets are released. Eighty nine CASP7 target
proteins are used as valid targets for the CASP7 evalua-
tion, while 104 protein sequences are released as targets.
Redundancy is removed at the 40% sequence identity
level by using CD-HIT [49], which results in 88 target pro-
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teins. Only T0346 is removed, because it shares 71%
sequence identity with T0290. Furthermore, two targets
(T0334 and T0385) are removed from the data set due to
some errors in the models, generated by some of the six
individual servers on these two targets; for example, the
models generated by some servers only cover discontin-
ued regions of the target proteins. To conduct a cross-val-
idation, the 86 target proteins are randomly divided into
foursets of 22, 21, 21, and 22 proteins, respectively. If one
target belongs to a certain set, all of its models and con-
tacts are in the same set.

Data Set Statistics

The performance of the six individual servers are com-
pared in terms of prediction accuracy and coverage. In
evaluating the performance of a server, only the best mod-
els of each target are considered. If the number of contacts
in a model is less than L/5, where L is the target size, both
the accuracy and the coverage for this model are set to 0.
As shown in Table 1, the average accuracy of the six servers
ranges from 43% to 53%. The SAM-T02 server has the
highest accuracy but the lowest coverage. The artificial
server "Overall" in Table 1 means a server that generates
the union set of all contacts contained in the best models.
The accuracy of server "Overall" is very low (12%), com-
pared to that of any individual server. Note that the server
"Overall" consistently contains many more true contacts
than any individual server does. Therefore, the low accu-
racy of the server "Overall" implies that the false contacts,
generated by these individual servers, differ from each
other in most cases, whereas the individual servers tend to
generate common true contacts. This means the consen-
sus method can probably be employed to differentiate
true contacts from false ones.

As shown in Table 1, the average coverage of the six servers
ranges from 37% to 52%. However, when they are com-
bined, the coverage for server "Overall" is very high
(approximately 80%). This indicates that some true con-

Table I: Average and deviation of contact accuracy and coverage
of the six individual servers on the 86 CASP7 targets

Accuracy Coverage
Average Deviation Average Deviation
FOLDpro 45 82 48 9.3
mGenThreader 43 6.6 45 85
RAPTOR 48 6.6 52 7.0
FUGUE3 46 79 37 5.5
SAM-T02 53 6.5 37 5.5
SPARK3 48 7.3 51 7.6
Overall 12 72 80 2.3
All values are percentiles.
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tacts are predicted by only a small number of individual
servers, and the different servers can predict a common
subset of the true contacts. On the other hand, this
implies that most of the native contacts are contained in
the models, generated by threading programs. Thus, the
challenge is how to identify them.

Server Correlation and Latent Servers

This section studies the correlation of the six individual
servers and derives the latent servers. Table 2 lists the pair-
wise correlation of the six individual servers, which is cal-
culated according to Eq. (3). Note that the matrix is not
symmetric, because different servers predict different
numbers of contacts. As shown in Table 2, the correlation
between two different servers ranges from 0.25 to 0.59,
which implies that some servers are more closely corre-
lated than others in terms of contact prediction. There-
fore, the majority voting based consensus methods, which
simply apply majority voting and assume each server is
independent, will not always work because some of the
common components of these servers are over-expressed.

The relationship between the latent servers and the indi-
vidual ones is then derived according to Eq. (4). Note here
that the top five models for each target of each server are
considered. The confidence score of a server on a contact
candidate is estimated by the number of models in the top
five, containing this contact, divided by the total number
of models considered (five in this case). As shown in Table
3, different latent servers represent different individual
servers. For example, H, represents the common charac-
teristics shared by these individual servers, because the
weights of H;, on these individual servers, are about the
same; H, differentiates FUGUE3 from the other servers;
H, represents FOLDpro by a large positive weight, and
represents mGenThreader by a large negative weight.
Based on the eigenvalues, H; is eliminated, since the
eigenvalue for Hy is much smaller than that of the others.
Thus, Hyis considered as random noise.

The optimal weights for the latent servers are derived by
the cross-validation of the four sets. Correlated mutation
is considered to be another independent latent server,
because it provides a target sequence-related probability

Table 2: Pairwise correlation of the six individual servers

http://www.biomedcentral.com/1472-6807/9/28

for each contact candidate. Correlated mutation is calcu-
lated as previously described in [18,22]. Each time the ILP
model is trained on three of the four sets, and a set of
weights is optimized by the ILP model, based on which a

. . . . * * K
new prediction server is derived, named as S;,S;, S5, and

S, respectively. In this paper, S* refers to server S; on
testseti (i=1, 2,3, 4). Since the inputs are the six individ-
ual servers, after the optimal weights A* are calculated by
the ILP model, each hidden server in Eq. (1) are further
replaced by the linear combination of the original indi-
vidual servers as calculated in Eq. (5). Table 4 shows the
linear combination representation of S* on the individual
servers and correlated mutation. It is clear that the four
sets of weights are very similar. Note that mGenThreader
has negative weights. This implies that the contribution of
mGenThreader is accounted for by the other individual
servers.

CASP7 Evaluation

We first assess our consensus server S* by Receiver Oper-
ating Characteristic (ROC) plots. They provide an intui-
tive way to examine the trade-off between the ability of a
classifier to correctly identify positive cases and to incor-
rectly classify negative cases. Figure 1 depicts the perform-
ance of server S* and the six individual servers on the four
test sets.

As shown in Figure 1, server S* performs better than any
individual server on all the four test sets. For each server,
the performance of this server on test set 1 is slightly better
than that on the other three test sets, which means test set
1 is the easiest among those four. RAPTOR performs bet-
ter than other individual servers on the first three test sets,
and SPARK3 exhibits the best performance on test set 4.
There are distinct performance differences between server
S* and the best individual server on test set 1, 2, and 4,
when the false positive rate is below 0.3. However, the dif-
ference is not obvious on those three test sets, when the
false positive rate is higher than 0.3. For test set 3, the
most difficult test set, the performance of S* is much bet-
ter than that of any individual server all the time. It is also

Server FOLDpro mGenThreader RAPTOR FUGUE3 SAM-T02 SPARK3
FOLDpro | 0.34 0.43 0.25 0.30 0.41
mGenThreader 0.35 | 0.42 0.26 0.30 0.41
RAPTOR 0.43 0.41 | 0.30 0.35 0.51
FUGUE3 0.35 0.35 0.40 | 0.37 0.40
SAM-T02 0.50 0.50 0.59 0.47 | 0.59
SPARK3 0.40 0.41 0.50 0.29 0.34 |
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Table 3: Relationship among the six individual servers and the
independent latent servers

Server HI H2 H3 H4 H5 Hé

FOLDpro 037 -035 0.66 0.01 -0.08 -0.55
mGenThreader 037 -026 -0.75 -0.01 -002 -048
RAPTOR 042 -023 0.04 0.27 0.76 0.36
FUGUE3 037 0.82 0.04 0.37 0.01 -0.22
SAM-T02 049 0.20 003 -081 -0.04 023
SPARK3 041 -021 -002 036 -065 049

noticeable that the curve of S* is much smoother than
that of the individual servers.

Then, the accuracy of S* is evaluated. Table 5 summarizes
the average accuracy of S* and the majority voting
method on the four test sets, where different numbers of
top contacts are evaluated. Recall S* generates a confi-
dence score for each contact candidate. The top contacts
for each target are readily found by sorting the candidates
according to their confidence scores. The majority voting
method is implemented as follows: for each contact can-
didate, its confidence score by the majority voting method
is calculated as the sum of the confidence scores assigned
by the six servers. After the scores of all the contact candi-
dates are calculated and sorted, different numbers of the
top candidates are chosen.

As shown in Table 5, the average accuracy increases when
the number of the top contacts decreases, except for server
S* on test set 1, in which the accuracy for the top L/10
contacts is slightly lower than that for the top L/5 contacts.
This occurs because L/10 is usually a small number (20-
30 for most cases), and a few incorrectly predicted top
contacts will influence the total accuracy significantly. The
overall accuracy of S* on all the four test sets is at least
63%, and is consistently higher than the accuracy of the
majority voting method. For the top L/5 contacts, the
accuracy of S* is 73%, which is about 5% higher than that
of the majority voting method, and much higher than the
accuracy of any previously reported study. Figure 2 reflects
the prediction accuracy for the top L/5 contacts of S* on
each CASP7 target. It can be seen that the accuracy is
higher than 80% on most targets. In fact, of the total 86
targets, S* has an accuracy of 100% on 13 targets, higher
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than 90% on 39 targets, higher than 80% on 58 targets,
and below 40% on only 16 targets. Note that S* has an
accuracy of 0 on two targets: T0309 (free modeling target)
and T0335 (template based modeling target). We care-
fully look into these two cases. Both targets are very short.
The target sequences, published by CASP7 for T0309 and
T0335, have 76 and 85 residues, respectively. However,
the experimentally determined size used by CASP7 to
evaluate these two targets are only 62 and 36, respectively.
This conveys that some parts of the targets are not experi-
mentally determinable nor accurate enough. Thus, L/5 is
only 12 and 7 for the two targets. Additionally, all the six
individual servers perform poorly in terms of the contact
prediction, which means there are only a few correct can-
didates among a large number of incorrect ones. This can
explain the failure of $* on T0309 and T0335.

To evaluate more carefully how much our consensus
method can improve upon individual servers and the sim-
ple majority voting method, all the targets are divided into
three categories: easy (high accuracy), medium (template
based modeling), and hard (new fold), according to the
CASP7 assessment http://predictioncenter.org/casp7/.
Table 6 shows the average accuracy and deviation on the
top L/5 contacts of S*, the six individual servers, and the
majority voting method. As shown in Table 6, for easy,
medium, and hard targets, the accuracy of S* on the top
L/5 contacts is 94%, 76%, and 37%, respectively, and
much higher than the best individual server, where the
improvement is at least 17% for each case. On the other
hand, server S* always performs better than the majority
voting method, and the improvements are about 2%, 5%,
and 24%, respectively. This exactly verifies the server cor-
relation assumption because, for easy targets, individual
servers usually do well, which means for a contact candi-
date, the more servers that support it, the more likely it is
correct. However, the majority voting rule does not always
work on medium and hard targets, because it suffers from
the over-expressed common components of the input
servers due to the server correlation. Thus, our consensus
method does much better than the majority voting
method on harder targets.

Depending on the sequence separation, contacts can be
classified as short-range contacts (separation 6-11),

Table 4: Linear combination representation of new server $* on the six individual servers and correlated mutation

S FOLDpro mGenThreader RAPTOR FUGUE3 SAM-T02 SPARK3 CM
ST 0.29 -0.28 1.27 1.47 0.23 0.62 0.30
S5 0.301 -0.27 1.35 1.35 0.22 0.58 037
S3 0.38 -0.29 1.37 1.36 0.14 0.65 0.28
Sy 0.29 -0.44 1.29 1.39 0.12 0.56 0.23
CM: correlated mutation.
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ROC curves for our method and the six individual servers. Performance comparison using ROC plots for $* (thick
solid line), FOLDpro (thick dotted line), mGenThreader (thin dashdot line), RAPTOR (thin dotted line), FUGUES3 (thick dashed

line), SAM-TO2 (thin solid line), and SPARK3 (thin dashed line).

medium-range contacts (separation 12-24), and long-
range contacts (separation >24) [32,43]. The performance
of our method is further evaluated on different separation
ranges for target protein classes with different difficulty
levels. As shown in Table 7, the accuracy of a certain sep-
aration range decreases clearly when target proteins

Table 5: Average accuracy of the top contacts predicted by $* on
different test sets, and the accuracy of the majority voting
method

# Contacts  Accuy, AcClyy AcClUys ACCUgyy ACCUyeq  Accuy,
L 69 60 57 65 63 61
L2 75 67 63 72 69 66
L/5 80 73 67 74 73 68
L/10 79 74 69 76 75 71

The first column shows the number of top contacts being considered.
The second to fifth columns show the accuracy of our method on the
four test sets respectively. The sixth column shows the overall

accuracy of our method on all the four test sets. The last column

shows the overall accuracy of the majority voting method on all the
four test sets. All values are percentiles.

become harder. For easy targets, the accuracy of long-
range contacts is higher than that of short- and medium-
range contacts. This makes sense because for an easy tar-
get, it is very likely that all the individual servers predict
models that have very similar topology to the native struc-
ture. Thus, these models contain common long-range
contacts, which helps to determine the overall topology.
For medium targets, our method achieves similar per-
formance on different separation ranges. Not surprisingly,
when applied on hard targets, the accuracy of long-range
contacts is much worse than that of short- and medium-
range contacts. This coincides with the fact that the indi-
vidual servers are usually not able to generate models with
correct folds, which causes most long-range contact candi-
dates to be wrong ones. Among the three categories of the
test proteins, the new fold category is much more impor-
tant than the other two for fairly evaluating the perform-
ance of a contact predictor, especially for template-based
consensus methods. In fact, new fold targets are adopted
as the assessment data set for the contact predictors by
CASPs. Table 8 shows the average accuracy on the top L/5
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Prediction accuracy for the top L/5 contacts of $* on each CASP7 target.

contacts of the six individual servers, the majority voting
method, and our method on the 15 new fold targets of
CASP7. Note that the classification of the new fold targets
comes from the assessors of CASP7, according to the crite-
rion that no server could find the correct templates
although there might be homologs in the PDB. Our
method significantly outperforms the best individual
server on eight out of the 15 targets, and performs worse
than the best individual server on five targets. It is notice-
able that SAM-T02 outperforms our method on four of
these five targets. The reason is that SAM-T02 does not
generate complete models for these targets. Instead, it gen-
erates structures only for some very conserved regions of
the targets. The contacts predicted by SAM-T02 thus cover
only a small portion of the targets. It can also be seen from
Table 8 that our method performs much better than the
majority voting method on new fold targets. More specif-

ically, the accuracy of our method at least doubles that of
the majority voting method on 10 of the 15 targets. On
the other hand, only four of these 15 new fold targets
lacked any homologs during CASP7 season, i.e., T0287,
T0309, T0314, and T0353 [43]. This implies that although
other new fold targets have similar structures in the PDB,
almost all structure prediction servers fail to detect them.
Thus, by using our predicted contacts, one may be able to
identify the similar structures for these target proteins,
especially for the proteins on which our method achieves
a high accuracy, such as T0316_D2, T0319, T0347_D2,
T0350, T0356_D1, T0356_D3, and T0386.

We are not able to obtain top-notch contact predictors,
such as SVM-LOMETS, the best published consensus
method, SVM-SEQ, the best reported study on new fold
targets, and SAM-TOG server, the best evaluated contact

Table 6: Accuracy and deviation of top L/5 contacts of the six individual servers, the majority voting method, and our method on easy,

medium, and hard target sets

Server Name Easy Targets Medium Targets Hard Targets

Accu. Dev. Accu. Dev. Accu. Dev.
FOLDpro 77 I.1 44 53 10 58
mGenThreader 68 38 43 44 I 74
RAPTOR 75 1.3 50 39 13 7.1
FUGUE3 75 0.7 47 6.2 12 9.1
SAM-T02 75 1.3 54 52 17 14.7
SPARK3 76 1.4 48 4.7 I 74
Majority Voting 92 0.7 71 8.1 13 6.9
S* 94 0.4 76 8.5 37 282
Accu.: Accuracy. Dev.: Deviation. All values are percentiles.

Page 7 of 14

(page number not for citation purposes)



BMC Structural Biology 2009, 9:28

http://www.biomedcentral.com/1472-6807/9/28

Table 7: Performance of our method on different separation ranges of target protein classes with different difficulty levels

Target Classes Short-range Medium-range Long-range All-range
Easy Targets 91 90 93 94
Medium Targets 73 74 70 76
Hard Targets 41 35 26 37
All Targets 72 71 68 73

Top L/5 contacts are considered. All values are percentiles.

predictor on CASP7. Thus, the performance of these three
methods is retrieved from [32]. When SVM-LOMETS,
SVM-SEQ, and SAM-T06 server are applied to the 15 new
fold targets of CASP7, each achieves an accuracy of 10.8%,
25.8%, and 21.2% on the top L/5 contact predictions,
respectively. On the same data set, the accuracy of our
method for the top L/5 contacts is 37%, which indicates
that the improvements are significant. Recall that among
all three methods, SVM-LOMETS is the only template-
based consensus method. Although the input threading
programs of our method are not the same as SVM-LOM-
ETS, both methods contain some common input servers
such as FUGUE and SAM-T02. The different input servers
are within a similar range of accuracy in terms of structure
prediction according to the CASP7 evaluation; three
inputs for SVM-LOMETS, i.e. PAINT, PPA-I, and PPA-II,
are components of Zhang-server, which is ranked the best
among all the structure prediction servers on CASP7.
Thus, the huge improvement of our method over SVM-
LOMETS demonstrates that by revealing the server corre-

Table 8: Accuracy of top L/5 contacts of the six individual
servers, the majority voting method, and our method on the 15
new fold targets of CASP7

FDP MGTH RAP FUG SAM SP3 MV §*
T0287 8 6 9 5 12 6 9 33
T0296 2 25 7 3 29 7 8 17
T0300 16 4 6 10 3 6 8 I8
T0307 3 6 10 15 18 10 7 12
T0309 22 3 6 6 32 5 8 0
TO314 12 6 7 8 3 6 8 5
T0316_D2 15 18 14 24 31 l6 21 88
T0319 9 9 15 29 0 8 I 40
T0347_D2 13 3 14 5 46 28 26 48
T0350 I 8 27 9 35 26 21 80
T0353 17 23 24 29 26 18 12 22
T0356_Dl 4 18 6 3 0 5 8 36
T0356_D3 6 10 12 9 12 1011 79
TO361 4 4 19 4 9 10 6 21
T0386 12 15 23 18 5 I 25 56
Average 10 I 13 12 17 I 13 37

FDP: FOLDpro, MGTH: mGenThreader, RAP: RAPTOR, FUG:
FUGUE3, SAM: SAM-T02, SP3:

SPARK3, MV: majority voting, $*: our method. All values are
percentiles.

lation and optimizing the gap between the true and false
contacts, superior contacts can be predicted than those of
other consensus methods.

Case Study on Two CASP7 New Fold Targets

As shown in the previous section, our method signifi-
cantly outperforms the other methods, especially on new
fold targets. Two CASP7 new fold targets, T0319 and
T0350, are investigated in this section. T0319 (PDB id
2j6a) is a zinc finger protein from the ERF1 methyltrans-
ferase complex [50] with 135 residues. T0350 (PDB id
2hc5) is protein yvyC from Bacillus subtilis [51] with 117
residues. Table 9 lists the TM-score [52], contact accuracy,
and contact coverage of the best model among the five
models submitted by each threading server on T0319 and
T0350. All the six threading servers fail to detect correct
templates. Typically, a TM-score lower than 0.17 indicates
a random structure, and a TM-score higher than 0.4 indi-
cates a meaningful structure [52]. Consequently, all the
models predicted by these six servers are probably not
meaningful structures.

The hardness of these two targets causes all the six thread-
ing servers to fail. Thus, the templates selected by the
threading servers are almost random and significantly dif-
ferent from each other, which consequently leads to the
failure of the majority voting consensus method. As
shown in Figure 3, the majority voting method is even
worse than some individual servers on these two targets,
whereas our method performs significantly better than
any individual server. In fact, the top L/5 accuracy of our
method is 40.0% and 80.2% on these two targets, while
the majority voting method achieves an accuracy of only
10.8% and 21.0%, respectively. One may argue that some
of the true contacts picked up by our method are strongly
supported by correlated mutation. Even when we remove
correlated mutation from our method, its accuracy
decreases only slightly, to 39.3% on T0319 and 79.3% on
T0350. The minor difference shows that correlated muta-
tion information is not that important for these two tar-
gets. Therefore, the case study on these two new fold
targets demonstrates that by removing the server correla-
tion and optimizing the best combination of the individ-
ual servers, it is possible to select true contacts even if the
majority of the individual servers does not support them.
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Table 9: TM-score, contact accuracy, and contact coverage of the best models by the six individual servers for T0319 and T0350

FOLDpro mGenThreader RAPTOR FUGUE3 SAM-T02 SPARK3
TO319 T Mscorea 0.20 0.18 0.27 0.26 0.12 0.22
Accuracy® 9% 9% 15% 29% 0 8%
Coverage© 7% 6% 14% 13% 0 6%
T0350 T Mscorea 0.24 0.23 0.33 0.26 0.26 0.27
Accuracy® 11% 8% 27% 9% 35% 26%
Coveragec 15% 9% 29% 3% 12% 28%

9TM-score of the best model among the five submitted models for each server.
bContact accuracy of the best model for each server. All contacts contained in this model are evaluated.
cContact coverage of the best model for each server. All contacts contained in this model are evaluated.

Although the goal of this paper is to propose a novel con-
tact prediction method, and thus the modeling of the
entire proteins is beyond the scope of this paper, it is still
important to demonstrate the potential applications of
the proposed method in protein structure prediction
methods. One of the major bottlenecks for the state-of-
the-art protein structure prediction methods is model
ranking. The most widely used method for model ranking
is clustering. However, although clustering based meth-
ods work well on easy and medium targets because for
such targets, most of the models are high-quality ones and
very similar to each other, such clustering methods usu-
ally fail on hard targets since the models usually have
poor quality and are very different from each other. Thus,
we test how well the contacts predicted by our method can

0.9

rank the models on T0319 and T0350. We design a simple
contact ranking score. Given the top L/5 contacts pre-
dicted by our method, for each contact, a model scores 1
if this model indeed contains this contact, and scores 0
otherwise. Table 10 shows the ranking of the best model,
in terms of TM-score, of each individual server by their
default model ranking method (according to the order of
the models submitted to CASP7) and the ranking of the
best model by our contact score. It is clear that our contact
score has much better ranking of the best models for most
cases. Additionally, for both T0319 and T0350, the best
models generated by all these six individual servers, i.e.,
model 4 of RAPTOR for T0319 and model 4 of RAPTOR
for T0350, are ranked first among all the models by our
contact score. This demonstrates the potential applica-

0.8

0.7

06
0.5

OT0319
B T0350

0.4

0.3

0.2
0.1

Contact Accuracy

o Ll Tl
FDP MGTH
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¥
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Figure 3

Performance comparison on T0319 and T0350. Accuracy of top L/5 contacts of the six threading servers, the majority
voting method, and our method on T0319 and T0350. FDP: FOLDpro, MGTH: mGenThreader, RAP: RAPTOR, FUG:
FUGUE3, SAM: SAM-T02, SP3: SPARK3, MV: majority voting, $*: our method.
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Table 10: The ranking of the best model (in terms of TM-score) for each individual server by its default ranking method and by our

contact score for T0319 and T0350

FOLDpro mGenThreader RAPTOR FUGUE3 SAM-T02 SPARK3
TO319 Default ranking 4 3 4 4 4 3
Contact ranking 2 | I I 3 2
T0350 Default ranking | 3 4 4 | 4
Contact ranking 2 | | | 3 |

tions of our contact prediction method to select better
submitted models or to select good models at each itera-
tion of the refinement process, especially for hard targets.

Discussion

The experimental results demonstrate that by accounting
for the correlation among different threading programs,
our consensus method can successfully identify native
contacts, even when these contacts are not contained in
the majority of the models. It is worth noticing that the
proposed method is quite different from the more direct
linear combination or non-linear combination of the
original individual servers. The underlying reason is that
by detecting correlation among the individual servers and
removing the last latent server which corresponds to the
random noise, our ILP-based optimization process is able
to find an optimal solution without the bias caused by the
random noise. In this paper, our method is not directly
compared to other consensus contact predictors on
exactly the same input servers, since servers used in other
studies are not all available. Instead, six threading pro-
grams are chosen in our method. They have similar or
even lower accuracy levels than those used in other con-
sensus contact studies.

One drawback of our method is that it is a selection-only
consensus method. If all the individual servers generate
models with very few native contacts, our method will fail
simply because there is no correct contact to choose. To
avoid this drawback, a server independent feature, corre-
lated mutation, is used to introduce some contact candi-
dates which are not predicted by any individual server.
However, the signal contained in the correlated mutation
is not strong enough to find native contacts. As a result,
future work will be to combine more server-independent
features to introduce true contact candidates, even if all
the individual servers fail to do so. Another drawback is
that the small data set used in this paper makes the evalu-
ation of the method's performance less reliable compared
to more extensive tests. This is mainly due to the availabil-
ity of the individual servers used in our method. We did
not conduct the experiments on both CASP7 and CASP8

because some of these individual servers have been
improved significantly after CASP7 and some of these
servers were not available at CASP8. However, the cross-
validation measurement applied in this paper can hope-
fully reduce the unreliability to the lowest level.

A potential application of our contact prediction method
is to provide highly conserved constraints for ab initio
folding or protein structure refinement. Recent research
has shown that by incorporating contacts predicted from
template-based methods or sequence-based methods, a
structural model generated by comparative modeling can
be refined [11,12,53,54]. However, if all the individual
servers predict the structure for a target protein extremely
well or very poorly, our consensus method will probably
not help too much. In the former case, since almost all the
contact candidates provided by these individual servers
are correct ones, our method can only improve the accu-
racy slightly. In the latter case, since there are very few cor-
rect contact candidates for our method to choose from,
the refinement process can hardly benefit from our
results. However, in any other case, contacts provided by
our method should help with the folding simulation. The
reason is that our method can generate a small number of
highly conserved contacts. Considering only a small
number of contacts can reduce the conformational search
space, and thus increase the speed and reduce the chance
of generating wrong models. Moreover, experimental
results demonstrate that our method can generate con-
tacts with a higher accuracy than both sequence-based
and template-based methods. This can reduce the risk of
generating models with incorrect contacts, which can
reduce the risk of selecting incorrect models from the final
decoy set, and thus, greatly increase the overall ab initio
folding accuracy.

Conclusion

We have described a consensus contact prediction
method, that is able to reduce the server correlation.
Experiments on CASP7 data set show that our method sig-
nificantly outperforms any previously reported study,
especially on new fold targets. Therefore, the proposed
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method can hopefully provide a powerful tool for protein
structure refinement and prediction use. The program of
the proposed method is available upon request.

Methods

Recent CASP results have indicated that correlation exists
in different protein structure prediction servers, because of
the common information used by the servers such as PSI-
BLAST [55] sequence profile and PSIPRED-predicted sec-
ondary structure [56]. Thus, it is very likely that a true con-
tact is supported less than some false ones due to the
server correlation. Our consensus method is capable of
reducing the impact caused by the server correlation. The
outline of the newly developed consensus method is as
follows:

¢ A maximum likelihood (ML) method is applied to
measure the correlation coefficient between two serv-
ers.

e Principal component analysis (PCA) technique is
employed to extract a few independent latent servers
from a set of correlated servers.

¢ An integer linear programming (ILP) method is then
used to assign a weight to each latent server, by maxi-
mizing the difference between the true contacts and
the false ones. Also, correlated mutation is treated as a
latent server which assigns a probability value to each
contact candidate. This results in a consensus contact
predictor that can accurately assign confidence scores
to all the contact candidates.

Notations

In this paper, a model refers to a protein conformation,
generated by a protein structure prediction server. In con-
trast to human experts, a server refers to an automated sys-
tem which predicts a set of models for a given protein
(also called a target), whereas a contact predictor/server
refers to an automated system which predicts a set of con-
tacts. Following the contact definition used by CASPs, two
residues are in contact, if the distance between their Cj
atoms (C,atom for Glycine), is smaller than 8A, and they
are at least six residues apart in the sequence. We call a
contact native/true contact, if the two residues are indeed in
contact in the native structure of the target.

The prediction accuracy is the number of correctly pre-
dicted contacts divided by the total number of contacts
predicted by a predictor, while the coverage is defined as
the number of correctly predicted contacts divided by the
total number of native contacts. If a contact predictor is a
tertiary structure prediction server, all the contacts, con-
tained in the structural models of this server, are consid-
ered to be the contact prediction results of this server.

http://www.biomedcentral.com/1472-6807/9/28

Let € denote the number of target proteins, and u denote
the number of input contact prediction servers. Given a
target f; (1 <1< €), a server S; (1 <i < u) outputs a set of
models. The contacts, determined by these models, are
extracted and considered as contact candidates, denoted
as C; = {c; 1 411 <q <n;;}, where n; ;is the number of con-
tacts, predicted by server S; for target t;. The set of all con-
tact candidates for target ; is denoted as C; = U,C; |. A
consensus server aims to assign a confidence score to each
candidate in C,.

This paper is based on the following two assumptions:

e Server S; generates its predictions based on a confi-
dence measure; that is, for each contact ¢ € C,, S;has a
confidence, s; . ;, on how likely it is for ¢ to appear in
the native structure. Since the initial confidence score
is unavailable, it is approximated as follows: the
number of models containing this contact divided by
the total number of models generated by the server for
this target.

* There are v implicitly independent latent servers H;
(1 £j < v) dominating the explicit servers S;. Given a
target t, H; assigns a value h; . ; (c € C)) as the confi-
dence score on how likely ¢ is a native contact.

Identifying independent latent servers is essential to
reduce the negative effects of the server correlation and to
reduce the dimensionality of the search space, as the
number of latent servers is expected to be smaller than the
number of original servers. After deriving the latent serv-
ers, a new and more accurate prediction server S* can be
designed, by an optimal linear combination of the latent
servers, which for each target ¢, assigns a confidence score
to each contact candidate ¢ € C;as follows:

v
Se1 = fohj/c,l' (1)
=1

where 1; is the weight of latent server H;in S*.

Maximum Likelihood Estimation of Server Correlation

Let O; ; ;denote the overlap set of C; jand C; ; thatis, O, ;
1=C;,;nC;andleto; ; ;= |0, ;| For a given target, let p;
jbe the probability that a contact, returned by server §;, is
the same as that returned by §; Under a reasonable
assumption that targets t; (1 < I < €) are mutually inde-
pendent, the likelihood that server S; (1 <i < u) generates

contacts ¢; ; 4 (1 <q<mn; ) is
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Therefore, the maximum likelihood estimation of p; ; can
be calculated as follows:

_ Si %

p;, (3)
TR i

In the rest of this paper, P denotes the matrix [p; ;| . ,-

Uncovering Independent Latent Servers

Recall that on a target ¢, s; . ;and h; . ; are the confidence
scores assigned by server S; and H;, respectively. Since the
latent servers are mutually independent, it is reasonable to
assume thats; . ;is a linear combination of h; . /(1 <j <v)
such that

14 14
Su= Y Al Y k=1 1<i<u, 1<I<t,
i=1 i=1
(4)

where s, =<s;1,55 .. Syc >, 1 < i < u, and

hjy=<hjyphjsphjc >, 1 <j < v Here 4 ;is the

weight, and a larger 4; ; implies there is a higher chance
that server S; will adopt the contacts reported by H;.

From the correlation matrix of prediction servers S;, the

factor analysis technique is employed to derive 4; ; and

hj,; thatis, h;; can be represented as a linear combina-

tion of a as follows:

u
@:260]51,, 1<i<v, 1<I</, (5)
j=1

where <@, ;, @,,, U, @, > is an eigenvector of PTP.
ILP Model to Optimally Combine Latent Servers

After deriving the latent servers H(1 <j <v), a new server
S* can be constructed as an optimal linear combination of
the latent servers. For each target t;, S* assigns a score to
each contact candidate ¢ € C;as in Eq. (1).

To determine a reasonable setting of coefficient 1, , a

training process is conducted on a data set

http://www.biomedcentral.com/1472-6807/9/28

D={<t,C;,C; >1<1<D]|}, containing |D| training
proteins, where ¢, is a training protein, C;” < C, denotes

the set of native contacts, and C; < C;denotes the set of

false contacts. The learning process attempts to maximize
the number of contacts that can be correctly identified by
S*.

More specifically, for each target ¢;in the training data set,
a score is assigned to each contact candidate by S*. A good
contact predictor should assign native contacts with
higher scores than those with false ones. The larger the gap
between the scores of the native contacts and those of the
false ones, the more robust this new prediction server is.
In practice, a "soft margin" idea is adopted to take the out-
liers into account; that is, by allowing errors on some sam-
ples, we maximize the number of native contacts with a
score that is higher than that of all the false ones, by at
least a gap.

This optimization problem is formulated as an integer lin-
ear programming model. Let x, , be an integer variable
such that x, , = 1 if and only if the native contact p is
assigned a score higher than that of the false contact g by

at least £ by the new server; =0, otherwise. Here, ¢is a

X

P q
parameter used as the lower bound of the gap between the
score of a native contact and that of the false ones. Simi-

larly, y, ;=1 if and only if the native contact p has a score

higher than that of all the false contacts in C; ; y, ;= 0,

otherwise. The goal is to maximize the number of native
contacts that have higher score than that of all the false
contacts.

Consequently, the consensus contact prediction problem
is formulated by the following ILP model:

D]

maxz z Yolr (6)

I=1 peC/

v v
subj. to VpeCf,¥qeCi,1<1<|D]| Zl;hj,p,l_Z/I;hj,q,l_ezxp,q_1'

j=1 j=1

(7)
1
Vpe C/,1<1< D] —_pr,qZ)/p,l, (8)
14
2/1]. =1,2] 20, (9)
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(10)

Constraint (7) forces x,, , to be 0 if the gap between the
scores, assigned to the native contact p and the false con-
tact g , is smaller than ¢ If a native contact p has a score
not higher than all the false contacts, constraint (8) forces
¥,,1t0 be 0. Thus, there is no contribution to the objective
function. Constraint (9) normalizes the weights, and con-
straint (10) restricts x, , and y, ; to be either 0 or 1. The
objective function is the number of native contacts that
have higher scores than all the false contacts.

xp,€1{0,1} y,,€{0,1}.

New Prediction Server

After the independent latent servers are derived and the
optimal weights are trained, a new contact predictor is
formed. Given a query target t;, each server S; produces a
set of contact candidates, C, ;. The set of all the candidates
is denoted as C;= U; C; ;. For each contact candidate c € C,
the confidence assigned by the latent server H; is calcu-
lated by Eq. (5). Then, the new consensus server S* assigns
a confidence score to contact candidate ¢ according to Eq.
(1). S* assigns a confidence score to each contact candi-
date, and picks up the top scored ones as the final predic-
tions.
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