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Abstract
Background: The use of knowledge-based potential function is a powerful method for protein
structure evaluation. A variety of formulations that evaluate single or multiple structural features
of proteins have been developed and studied. The performance of functions is often evaluated by
discrimination ability using decoy structures of target proteins. A function that can evaluate coarse-
grained structures is advantageous from many aspects, such as relatively easy generation and
manipulation of model structures; however, the reduction of structural representation is often
accompanied by degradation of the structure discrimination performance.

Results: We developed a knowledge-based pseudo-energy calculating function for protein
structure discrimination. The function (Discriminating Function using Main-chain Atom
Coordinates, DFMAC) consists of six pseudo-energy calculation components that deal with
different structural features. Only the main-chain atom coordinates of N, Cα, and C atoms for the
respective amino acid residues are required as input data for structure evaluation. The 231 target
structures in 12 different types of decoy sets were separated into 154 and 77 targets, and function
training and the subsequent performance test were performed using the respective target sets.
Fifty-nine (76.6%) native and 68 (88.3%) near-native (< 2.0 Å Cα RMSD) targets in the test set were
successfully identified. The average Cα RMSD of the test set resulted in 1.174 with the tuned
parameters. The major part of the discrimination performance was supported by the orientation-
dependent component.

Conclusion: Despite the reduced representation of input structures, DFMAC showed
considerable structure discrimination ability. The function can be applied to the identification of
near-native structures in structure prediction experiments.

Background
Protein structure evaluation is a key process in protein
structure prediction, in association with comparative
modeling, fold recognition, structure refinement, and de
novo folding. Protein design technology also requires
structure evaluation methods with sufficient capacity.

Many different types of potential energy functions have
been developed and examined. The formulation of the
functions can be roughly grouped under physical-based
and knowledge-based approaches [1,2,4]. Physical-based
(or molecular mechanics) potential energy functions are
mainly used for the simulation of protein folding and
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dynamics [2], and are also effective for protein design [3].
The knowledge-based approach to developing such an
evaluation system is also effective and widely used, espe-
cially for protein structure prediction and protein design
studies [1]. The classical approach is the extraction of
"pseudo" mean potentials from the distribution of pair-
wise distances of known protein structures based on the
Boltzmann law [5]. A number of potential constructions
and their successful applications have been reported [5-
16]. Recently, improved accuracy has been facilitated,
accompanied with the accumulation of high-resolution
protein structure information [17].

The assessment of pairwise distances is implemented in
many knowledge-based functions. Several variations of
atom types are utilized, such as Cα and/or Cβ atoms [7],
the center of mass of the side chain [16], and heavy atom
representation for a variety of atom types [7]. The func-
tions of other structural features, including hydrogen
bonds [8], main-chain dihedral angles [14], and solvation
potentials [6], were also reported. A number of functions
have been formulated as a combination of the above func-
tional components. The introduction of orientation-
dependent components often improves the accuracy of
the function. The hydrogen bond is a typical example, and
the effectiveness of orientation-dependent potential was
reported [8]. Buchete et al. introduced another type of ori-
entation-dependent potential, using the pairwise interac-
tion of local reference states for respective amino acids
[9,10].

The structure discrimination capacity of the function is
frequently estimated on the basis of the ability to correctly
identify native or near-native structures from nonnative
but plausible "decoy" structures. The "Decoys 'R' Us" data-
base [18] is a collection of decoy sets, and is commonly
used to evaluate functions. The database consists of 10
decoy sets, generated by different methods. Many other
decoy sets, such as the "moulder" [15] or the "rosetta"
[19], are also utilized to assess functions. It is commonly
understood that the performance of structure evaluation
functions tends to depend strongly on the intrinsic prop-
erties of decoy generation methods and/or other qualities
of decoy sets [12]. Thus, many reports have assessed func-
tions using multiple decoy sets and/or effective statistical
techniques.

The compatibility of the structure-discriminating function
for reduced structural representations provides many ben-
eficial effects. For example, the generation and manipula-
tion of model structures can be performed without more
complexed structure construction; however, it is difficult
to reduce the required structural information without los-
ing the accuracy of the scoring function.

In this article, we report the development of a knowledge-
based protein structure-discrimination function. The
complexity of the required input structure data for evalu-
ation was limited to the main-chain trace with only three
atom coordinates (N, Cα, and C) per respective amino
acid residue. To overcome the possible loss of accuracy of
decoy discrimination, orientation-dependent potential
between two Cα-pseudo-Cβ vectors was introduced. The
parameter training and the subsequent performance test
were carried out using the decoy sets from the Decoys 'R'
Us database, in addition to the moulder and the rosetta
decoy sets. High accuracy in native or near native structure
recognition was observed in the test set. The level of dis-
crimination ability was nearly comparable to other
coarse-grained or all-atom-type functions. A detailed
description of the development of the function and eval-
uation of the discrimination ability are provided.

Results
Function Design
Before explaining the results of function development and
structure evaluation, the overall design of the function is
briefly described. The details of the function formulation
can be found in Methods. The structure-discriminating
function developed in this study consists of six pseudo-
energy calculation components. Each of the components
evaluates the distinctive structural feature of a target pro-
tein. The pseudo-energy is calculated based on the Boltz-
mann law [5], with knowledge-based procedures using a
precompiled database from a non-redundant set of
known structures. The six structural features focused on
are as follows: the Cα pairwise distance (the correspond-
ing functional component is referred to as DIST), the rel-
ative orientation between two vectors of Cα-pseudo-Cβ
(DABG component, Figure 1A), hydrogen bonding
between a main-chain amino hydrogen and a carbonyl
oxygen (HBND component, Figure 1B), the main-chain
dihedral angles of the combination between ψ at a residue
and φ at the next residue (PPDA component), the main-
chain ω dihedral angle (OMDA component), and the
number of surrounding Cα atoms around a Cα atom
(SURR component). Each atom coordinate is treated sep-
arately by twenty amino acid types. The overall function is
formulated with the weighted linear combination of the
above six pseudo-energy components. As the function was
designed to require three main chain atom coordinates
(amino nitrogen, Cα, and carbonyl carbon) per residue as
input data, we refer to the final form of the function as
DFMAC (Discriminating Function using Main-chain
Atom Coordinates).

Function training with decoy sets
The parameters associated with each component and the
weights of respective components are not inherently clar-
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Schematic representation of the pairwise residue parameters for pseudo-energy componentsFigure 1
Schematic representation of the pairwise residue parameters for pseudo-energy components. (A) DABG com-
ponent. Distance d (Å) is measured between two Cα atoms. The α angle (degree) is formed with the Cα-pseudo-Cβ vector of 
ith residue and the Cα-Cα vector. The β angle (degree) is formed similarly for jth residue. The γ is the dihedral angle (degree) 
formed with the four atom coordinates of the Cα and the pseudo-Cβ for the respective ith and jth residues. (B) HBND compo-
nent. Distance d (Å) is measured between pseudo-H atom of the ith residue and pseudo-O atoms of the jth residue. The η angle 
(degree) is formed with the pseudo-H-N vector of the ith residue and the pseudo-H-pseudo-O vector. The θ angle (degree) is 
formed with the pseudo-O-C vector of the jth residue and the pseudo-O-pseudo-H vector.
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ified. In order to search for and determine the parameter
values, we used decoy sets.

The parameter values and weights were determined on the
basis of the discrimination ability of the native structure
from its decoys. The outline of the tuning procedure is as
follows: (1) The probable set of values of the parameters
was scanned and determined using arbitrarily collected
decoy sets. (2) The parameters were further tuned using
the training decoy set by the cross-validation procedure.
(3) The weights of the respective function components
were finally determined using the entire training set. The
performance of the tuned function was evaluated using
the test decoy set, which was distinctive from the training
set. Details of the procedure are in Methods.

To determine the initial values of the parameters for the
following tuning, we used 7 decoy sets of 4state_reduced,
fisa, fisa_casp3, hg_structal, ig_structal, ig_structal_hires,
and lmds from the Decoys 'R' Us database http://
dd.compbio.washington.edu/[18]. (Note: Although some
targets used in the final performance test were included in
these decoy sets, some of the parameter values of the
respective components and weights were changed after
the subsequent parameter tuning procedure (Table 1).
Thus, bias in the final performance test is considered to be
limited.) Parameters which decreased the average square
values of Cα RMSD of the best pseudo-energy structures

for respective protein targets in the 7 decoy sets were suc-
cessively selected.

Using the probable parameters determined above as the
initial parameter set, further tuning was then carried out.
The 231 targets of the 10 decoy sets from the Decoys 'R' Us
database, the moulder decoy set ftp://salilab.org/decoys/
comp_models.tar.gz[15,20], and the all-atom decoy set
from Rosetta@home http://depts.washington.edu/bak
erpg/decoys/rosetta_decoys_62proteins.tgz, were sepa-
rated into 77 and 154 targets and used for testing and
training (or parameter tuning) the function, respectively.
(Note: Each set consisted of targets from a variety of decoy
sets.) Tuning was performed by 10-fold cross validation
using the training set. Briefly, nine of ten parts of targets
were used for parameter training, and then the function
was validated with the remaining part of the targets. Per-
formance with a distinct parameter set was evaluated by
the Cα RMSD average of the top structures from 10 evalu-
ations with different training and validation combina-
tions. After successive tuning of the parameters, the new
parameter set was obtained (Table 1, see Methods).
Finally, the weights of the respective function compo-
nents were determined on a whole training decoy set with
the new parameter set. Some of the parameters and
weights were changed from the initial values during the
above procedure.

Table 1: Parameters and their values for tuning the function.

scan component parameter initial value scanned values selected value

1 DIST b 12.0 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0 12.0
c 0.627 0.525, 0.550, 0.575, 0.603, 0.631, 0.661, 0.692 0.661

2 DIST sequence separation limit 5 2, 3, 4, 5, 6, 7, 8 5
3 DABG range of the bin averaging

distance 1 0, 1, 2 0
α angle 0 0, 1 1
β angle 0 0, 1 0
γ angle 2 0, 1, 2 1

4 DABG sequence separation limit 5 2, 3, 4, 5, 6, 7, 8 5
5 DIST, DABG sequence separation limit of evaluation 3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 3
6 DIST 0 count penalty 8.0 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0 8.0
7 DABG 0 count penalty 2.0 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 2.0
8 SURR radius range 15.0 9.0, 12.0, 15.0, 18.0 15.0
9 SURR 0 count penalty 0.0 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 0.0
10 HBND 0 count penalty 2.0 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 2.0
11 PPDA 0 count penalty 12.0 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0 12.0
12 OMDA 0 count penalty 6.0 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0 0.0

Short descriptions of scanned parameters of the components are shown in the order of scanning during the tuning process. The b and c of scan 1 
are the constants for calculating Nexp(d). Sequence separation limit of scan 2 and 4 are the lower limit of separation between ith and jth residues that 
was incorporated into the respective databases. The four parameters of scan 3 are the range for averaging among adjacent database bins. The 
sequence separation limit of evaluation of scan 5 is the lower limit of separation applied for evaluation, not for database construction. The 0 count 
penalties of scan 6, 7, 9, 10, 11 and 12 are the energy penalty value when no count was recorded in the bin of the compiled database. The radius 
range of scan 8 is the radius of the sphere for SURR component calculation. Details of the respective parameters are in Methods. The values 
determined by initial scanning before tuning, the list of scanned values during tuning, and the selected values with better Cα RMSD are shown. 
Multiple parameters in a single scan indicate the scanning of all combinations among the listed values.
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A summary of the performance of the tuned function on
the training set is shown in Table 2. Of 154 training tar-
gets, 115 (74.7%) native and 135 (87.7%) near-native
(i.e. < 2.0 Å Cα RMSD) structures were correctly identified
as the best energy structures. The averages of the Z-score,
correlation coefficient (C.C), and fraction enrichment
(F.E.) were sufficiently positive. The performance on
decoy structures, without native structures, is critical,
because no native or near-native structure is available
prior to structure prediction experiments. Thus, analyses
were also carried out on decoys without native structures.
Discrimination performance of decoy structures were also
positive as indicated by the average values of logPB1,
logPB10, and the correlation coefficient (C.C.decoy) and
fraction enrichment (F.E.decoy) among decoy structures.

Decoy discrimination performance test
The performance of the tuned function cannot be evalu-
ated on the training set itself, because versatility is not nec-
essarily assured because of the possibility of over-learning;
therefore, the structure discriminating ability of the tuned
DFMAC was tested on the above test set, containing differ-
ent targets from the training set. The results are summa-
rized in Table 2, and the details are shown in Table 3. A
large number of native structures of the respective protein
targets were correctly identified as the best-energy (i.e. the
lowest energy value) structures (Table 2). Correct identifi-
cation of the native structures was 59 out of 77 targets
(76.6% success), and the identification of near-native
structures (Cα RMSD < 2 Å) was 68 (88.3% success). The
possible interpretations of failed identification of the
remaining 9 targets are discussed below. The significantly
positive average values of Z-score, C.C., and F.E. indicate
considerable overall performance. The averages of the
respective decoy discrimination scores (logPB1, logPB10,
C.C.decoy, and F.E.decoy) were also significantly positive.
Although the average Cα RMSD of top-energy structures
was 1.174, which was a little larger than the average on the
training set, the percentage of correctly identified native or
near-native structures was similar to the training set. Addi-
tionally, other indexes were also similar between the
training and test sets. Thus, a certain degree of versatility
was confirmed.

As for the effectiveness for the individual decoy sets (Table
3), nonuniformity was observed, as mentioned in the

Background. The best average Z-score was obtained for
lattice_ssfit (10.499), and the worst for hg_structal
(1.762). The average Z-score values were positive in all
decoy sets. The best average C.C. and average F.E. were for
moulder (0.824 of C.C. and 62.9% of F.E.), and the worst
were for lattice_ssfit (0.045 of C.C. and 12.8% of F.E.). In
Figure 2, three examples of energy distribution against Cα
RMSD are shown. The average C.C.decoy of 4state_reduced
(0.767), hg_structal (0.800) and moulder (0.821) were
relatively high. The worst average C.C.decoy (0.000) was
obtained for lattice_ssfit. The average F.E.decoy of
4state_reduced (61.5%) and moulder (61.9%) were sig-
nificant, and the worst was for ig_structal_hires (0.0%).

Comparison with other statistical potentials
We compared the performance of the DFMAC with 6 dif-
ferent state-of-the-art statistical potentials of DOPE [15],
RAPDF [21], DFIRE [7], and PC2CA [16]. To exclude pos-
sible training biases, the target structures for comparison
were restricted to the entries listed in our test set. Compar-
ison of the rank of the native structures is shown in Table
4. DOPE, RAPDF, and DFIRE-A use residue-specific heavy
atom representations. DFIRE-B uses the main-chain and
Cβ atoms. PC2CA uses Cα atoms and the side-chain center
of mass. DFMAC uses main-chain atoms (N, Cα, and C)
per residue, while evaluation was carried out with gener-
ated pseudo atoms of Cβ, main-chain amino hydrogen
(H) and carbonyl oxygen (O). In regard to the total
number of correct identifications out of 11 total proteins,
DOPE and DFIRE-A identified 10 native structures, fol-
lowed by PC2CA (9 correct), DFMAC (8), RAPDF (7), and
DFIRE-B (6). From this viewpoint, the performance of
DFMAC was moderate. DOPE was also significant accord-
ing to the averaged rank (4.0), followed by DFMAC (8.1),
DFIRE-B (26.9) and DFIRE-A (40.0). RAPDF and PC2CA
were similar (~60). Although the number and the types of
targets applied here were limited and biased to a certain
degree, DFMAC provided at least one better performance
indexes against many other functions.

Among the functions dealing with coarse-grained struc-
ture representation (DFIRE-B, PC2CA, and DFMAC),
PC2CA had the largest number of correct identifications.
We thus carried out additional comparison of DFMAC
with PC2CA to identify the detailed relative performance
of DFMAC. The performance of DFMAC on the targets of

Table 2: Summary of performance of the DFMAC function on the training and test decoy sets.

target set Nall Nn Nnn Cα RMSD Z-score C.C. F.E.(%) RB1 logPB1 RB10 logPB10 C.C.decoy F.E.decoy(%)

training set 154 115 135 0.764 2.552 0.539 38.9 171.3 -0.78 36.1 -1.38 0.499 27.6
test set 77 59 68 1.174 2.630 0.559 38.7 164.0 -0.75 15.8 -1.41 0.518 25.1

Summarized values are shown by the respective decoy sets. The numbers of total target proteins evaluated (Nall), and correct identification of the 
native (Nn) or near-native (Cα RMSD < 2 Å) (Nnn) structures are shown. The Cα RMSD, Z-score, C.C., F.E., RB1, logPB1, RB10, logPB10, C.C.decoy, 
F.E.decoy are the average of the respective scores of the target proteins evaluated. The definition of each index is described in Methods.
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Table 3: Performance of the DFMAC function on the test decoy sets grouped by their generation methods.

protein N Rnat Cα RMSD Z-score C.C. F.E.(%) RB1 logPB1 RB10 logPB10 C.C.decoy F.E.decoy(%)

4state_reduced

1ctf 631 1 0.000 4.485 0.817 68.3 61 -1.01 3 -2.32 0.815 66.7
2cro 675 1 0.000 3.166 0.822 53.7 7 -1.98 2 -2.53 0.820 53.7
4rxn 678 1 0.000 2.895 0.670 65.7 71 -0.98 3 -2.35 0.665 64.2
Average 661.3 1.0 0.000 3.515 0.770 62.6 46.3 -1.33 2.7 -2.40 0.767 61.5

fisa

2cro 501 1 0.000 4.190 0.280 24.0 3 -2.22 2 -2.40 0.253 24.0
Average 501.0 1.0 0.000 4.190 0.280 24.0 3.0 -2.22 2.0 -2.40 0.253 24.0

fisa_casp3

1bl0 972 8 5.522 2.174 0.302 20.6 15 -1.81 15 -1.81 0.296 19.6
l30 1401 1 1.882 3.835 0.128 18.6 455 -0.49 3 -2.67 0.111 17.9
Average 1186.5 4.5 3.702 3.005 0.215 19.6 235.0 -1.15 9.0 -2.24 0.204 18.7

hg_structal

1bab-B 30 1 0.000 1.868 0.904 66.7 10 -0.46 2 -1.16 0.892 0.0
1ecd 30 1 0.000 1.364 0.896 100.0 2 -1.16 2 -1.16 0.898 50.0
1gdm 30 1 0.000 2.395 0.880 33.3 4 -0.86 2 -1.16 0.845 0.0
1hbh-B 30 1 0.000 1.205 0.893 33.3 6 -0.68 2 -1.16 0.888 0.0
1hlb 30 1 0.000 1.661 0.812 33.3 15 -0.29 2 -1.16 0.812 0.0
1ith-A 30 1 0.000 1.775 0.904 33.3 23 -0.10 2 -1.16 0.893 0.0
1mbs 30 18 1.823 -0.270 0.754 33.3 3 -0.99 2 -1.16 0.835 0.0
1myt 30 1 0.000 2.429 0.762 100.0 2 -1.16 2 -1.16 0.725 50.0
2lhb 30 1 0.000 1.976 0.563 33.3 12 -0.38 4 -0.86 0.460 0.0
4sdh-A 30 1 0.000 3.221 0.839 33.3 21 -0.14 2 -1.16 0.750 0.0
Average 30.0 2.7 0.182 1.762 0.821 50.0 9.8 -0.62 2.2 -1.13 0.800 10.0

ig_structal

1bbd 61 1 0.000 2.304 0.605 16.7 27 -0.35 10 -0.78 0.554 0.0
1dfb 61 7 1.854 0.864 0.530 16.7 12 -0.70 4 -1.18 0.528 16.7
1fai 61 4 1.736 1.172 0.481 16.7 13 -0.66 4 -1.18 0.462 0.0
1fig 61 59 1.702 -2.283 0.349 0.0 21 -0.46 6 -1.00 0.504 0.0
1fpt 61 2 1.333 1.358 0.583 33.3 8 -0.88 4 -1.18 0.565 16.7
1fvd 61 1 0.000 2.112 0.606 16.7 22 -0.44 2 -1.48 0.574 0.0
1gig 61 1 0.000 2.787 0.547 16.7 10 -0.78 10 -0.78 0.469 0.0
1iai 61 1 0.000 2.103 0.644 33.3 8 -0.88 2 -1.48 0.613 16.7
1igf 61 2 1.774 1.353 0.607 16.7 31 -0.29 8 -0.88 0.591 0.0
1ikf 61 1 0.000 2.561 0.592 33.3 8 -0.88 3 -1.30 0.540 16.7
1jhl 61 1 0.000 1.380 0.333 16.7 41 -0.17 5 -1.08 0.286 0.0
1mcp 61 1 0.000 2.143 0.623 66.7 3 -1.30 2 -1.48 0.585 50.0
1mrd 61 1 0.000 2.305 0.379 16.7 51 -0.07 7 -0.93 0.264 0.0
1ngq 61 1 0.000 2.716 0.543 33.3 2 -1.48 2 -1.48 0.456 16.7
1opg 61 1 0.000 2.175 0.575 33.3 44 -0.14 3 -1.30 0.529 33.3
1tet 61 1 0.000 2.323 0.567 33.3 4 -1.18 4 -1.18 0.523 16.7
1vge 61 1 0.000 2.766 0.208 16.7 45 -0.13 26 -0.36 -0.020 0.0
2fb4 61 1 0.000 2.277 0.486 16.7 32 -0.27 13 -0.66 0.422 0.0
3hfl 61 1 0.000 2.648 0.243 33.3 29 -0.32 4 -1.18 0.055 16.7
7fab 61 1 0.000 2.941 0.614 50.0 6 -1.00 3 -1.30 0.531 33.3
Average 61.0 4.5 0.420 1.900 0.506 25.8 20.9 -0.62 6.1 -1.11 0.452 11.7

ig_structal_hires

1fgv 20 1 0.000 2.310 0.724 50.0 6 -0.50 2 -0.98 0.633 0.0
1gaf 20 1 0.000 2.827 0.649 50.0 8 -0.38 2 -0.98 0.493 0.0
1kem 20 1 0.000 1.518 0.636 50.0 11 -0.24 3 -0.80 0.567 0.0
1nbv 20 10 1.719 0.169 0.399 0.0 7 -0.43 4 -0.68 0.452 0.0
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1vge 20 1 0.000 2.334 0.385 50.0 15 -0.10 2 -0.98 -0.116 0.0
2fbj 20 1 0.000 2.532 0.725 50.0 5 -0.58 2 -0.98 0.614 0.0
8fab 20 1 0.000 2.487 0.295 50.0 17 -0.05 8 -0.38 -0.228 0.0
Average 20.0 2.3 0.246 2.025 0.545 42.9 9.9 -0.33 3.3 -0.82 0.345 0.0

lattice_ssfit

1dkt-A 1995 1 0.000 7.349 -0.049 8.5 996 -0.30 242 -0.92 -0.087 8.0
1pgb 1997 1 0.000 13.649 0.138 17.1 1909 -0.02 60 -1.52 0.087 16.6
Average 1996.0 1.0 0.000 10.499 0.045 12.8 1452.5 -0.16 151.0 -1.22 0.000 12.3

lmds

1b0n-B 498 1 0.000 2.819 0.066 20.4 336 -0.17 10 -1.70 0.038 18.4
1dtk 216 70 7.224 0.375 0.044 4.8 42 -0.71 24 -0.95 0.038 4.8
1shf-A 437 1 0.000 4.275 0.064 11.6 378 -0.06 2 -2.34 -0.004 9.3
4pti 344 3 9.434 2.570 0.098 23.5 220 -0.19 4 -1.93 0.063 20.6
Average 373.8 18.8 4.165 2.510 0.068 15.1 244.0 -0.28 10.0 -1.73 0.034 13.3

semfold

1eh2 11442 61 12.125 2.342 0.070 13.6 6511 -0.25 434 -1.42 0.069 13.5
1pgb 11282 1 0.000 7.782 0.096 19.2 2 -3.75 2 -3.75 0.091 19.2
Average 11362.0 31.0 6.063 5.062 0.083 16.4 3256.5 -2.00 218.0 -2.59 0.080 16.3

moulder

1c2r 301 1 0.000 2.803 0.774 73.3 10 -1.48 2 -2.18 0.768 70.0
1cid 301 1 0.000 2.759 0.753 53.3 38 -0.90 2 -2.18 0.748 53.3
1gky 300 1 0.000 4.713 0.828 90.0 11 -1.43 3 -2.00 0.819 89.7
1mup 301 1 0.000 1.993 0.847 73.3 11 -1.44 3 -2.00 0.845 73.3
2cmd 301 1 0.000 2.506 0.911 36.7 15 -1.30 6 -1.70 0.911 33.3
2pna 301 85 3.523 0.723 0.816 66.7 30 -1.00 4 -1.88 0.817 66.7
8i1b 301 1 0.000 2.106 0.842 46.7 16 -1.27 4 -1.88 0.840 46.7
Average 300.9 13.0 0.503 2.515 0.824 62.9 18.7 -1.26 3.4 -1.97 0.821 61.9

rosetta

1a68 141 1 0.000 2.608 0.624 64.3 11 -1.11 3 -1.67 0.608 64.3
1aiu 141 15 1.385 0.805 0.777 7.1 40 -0.54 25 -0.75 0.776 7.1
1bk2 141 1 0.000 2.562 0.820 78.6 14 -1.00 3 -1.67 0.812 78.6
1bq9 141 2 9.242 1.895 0.544 50.0 131 -0.03 2 -1.85 0.532 50.0
1cc8 141 1 0.000 3.317 0.848 64.3 11 -1.11 2 -1.85 0.851 57.1
1ctf 141 1 0.000 4.288 0.783 28.6 30 -0.67 6 -1.37 0.780 28.6
1elw 141 22 3.619 1.082 -0.063 7.1 132 -0.03 12 -1.07 -0.070 7.1
1eyv 141 1 0.000 3.194 0.587 35.7 22 -0.80 2 -1.85 0.564 35.7
1gvp 141 1 0.000 3.018 0.540 21.4 61 -0.36 15 -0.97 0.514 21.4
1iib 141 1 0.000 6.093 0.595 71.4 9 -1.19 2 -1.85 0.629 71.4
1lou 141 1 0.000 2.664 0.741 71.4 8 -1.24 3 -1.67 0.731 64.3
1pgx 141 1 0.000 2.232 0.821 35.7 75 -0.27 5 -1.45 0.820 28.6
1rnb 141 8 13.461 1.445 0.440 21.4 89 -0.20 14 -1.00 0.427 21.4
1ten 141 1 0.000 4.986 0.866 92.9 5 -1.45 2 -1.85 0.876 85.7
1tul 141 5 0.842 2.002 0.763 64.3 16 -0.94 3 -1.67 0.755 57.1
1urn 141 1 0.000 2.452 0.694 64.3 9 -1.19 3 -1.67 0.680 57.1
1vie 141 1 0.000 3.470 0.791 71.4 2 -1.85 2 -1.85 0.781 71.4
256b 141 1 0.000 4.974 0.426 7.1 118 -0.07 42 -0.52 0.390 0.0
2ci2 141 80 10.219 0.075 -0.020 0.0 123 -0.06 71 -0.30 -0.022 0.0
Average 141.0 7.6 2.040 2.798 0.609 45.1 47.7 -0.74 11.4 -1.41 0.602 42.5

The performance scores for respective PDB IDs of the target proteins and their average are shown by individual generation methods. The number of decoy 
structures and single native structure (N), the rank of the native structure relative to decoy structures based on the calculated pseudo-energy (Rnat), and the rest 
of the scores, described in the Methods, are shown.

Table 3: Performance of the DFMAC function on the test decoy sets grouped by their generation methods. (Continued)
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Examples of the distribution of total pseudo-energy against Cα RMSDFigure 2
Examples of the distribution of total pseudo-energy against Cα RMSD. Examples of the distribution of total pseudo-
energy (Energy) against Cα RMSD are shown according to the correlation coefficient (C.C.) value from the test result. The 
native structures are at 0.0 of Cα RMSD. (A) 2cmd from the moulder decoy set (the best C.C. of 0.911). (B) 1fvd from the 
ig_structal decoy set (median C.C. of 0.606). (C) 1elw from the rosetta decoy set (the worst C.C. of -0.063).
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the test set, except for moulder and rosetta decoy sets, was
compared with PC2CA results reported in the literature
[16] (Table 5). Forty (78.4%) native structures were cor-
rectly identified by DFMAC from test targets, while
PC2CA identified fewer native structures of 16 (31.4%).
PC2CA and DFMAC had distinctive performances for the
respective decoy sets. For example, PC2CA showed better
performances with all of the averaged indexes (correct, Cα
RMSD, Z-score, C.C., and F.E.) for the lmds decoy set,
while DFMAC was better for 4state_reduced, ig_structal
and ig_structal_hires. All of the summarized indexes were
better with DFMAC. Although the number and kinds of
decoy sets used here were limited in number and compi-
lation of a variety of characteristics, the performance of

DFMAC could be at least roughly similar to one of the
state-of-the-art functions, PC2CA.

Contributions of the function components to performance
DFMAC consists of six pseudo-energy calculating compo-
nents. We evaluated the contribution of each component
to the structure discrimination ability. The original
DFMAC function was compared to functions without any
of the components on the test set (Table 6). A significant
increase in average Cα RMSD without the DABG compo-
nent, followed by the SURR component, was observed,
indicating the major contributions of the two compo-
nents. The deficiency of discrimination ability without
these two components was similarly observed for most of
the other indexes, supporting the significance of these

Table 4: Comparison of the function performances.

decoy set protein DFIRE-A DFIRE-B DOPE RAPDF PC2CA DFMAC

4state_reduced 1ctf 1 1 1 1 1 1
4state_reduced 2cro 1 2 1 1 1 1
4state_reduced 4rxn 1 19 1 1 667 1
fisa 2cro 1 1 1 14 1 1
fisa_casp3 1bl0 1 3 1 1 1 8
lattice_ssfit 1dkt-A 1 1 1 1 1 1
lattice_ssfit 1pgb 1 1 1 1 1 1
lmds 1b0n-B 430 261 34 359 1 1
lmds 1dtk 1 5 1 116 2 70
lmds 1shf-A 1 1 1 1 1 1
lmds 4pti 1 1 1 157 1 3

average 40.0 26.9 4.0 59.4 61.6 8.1
correct 10 6 10 7 9 8

The rank of the native structure identified by respective functions is shown for the targets listed. The results of DFIRE-A, DFIRE-B and RAPDF 
were from the literature [7]. The results of DOPE were from [15]. The results of PC2CA were from [16]. The average rank (average) and the 
number of correctly identified native structures (correct) in 11 targets are shown.

Table 5: Comparison of PC2CA and DFMAC functions on the test set.

PC2CA DFMAC

decoy set total correct Cα RMSD Z-score C.C. F.E.(%) correct Cα RMSD Z-score C.C. F.E.(%)

4state_reduced 3 2 0.7 1.4 0.59 53.4 3 0.0 3.5 0.77 62.6
fisa 1 1 0.0 7.3 0.17 22.0 1 0.0 4.2 0.28 24.0
fisa_casp3 2 2 0.0 4.4 -0.02 10.4 1 3.7 3.0 0.22 19.6
hg_structal 10 5 0.8 1.3 0.70 53.3 9 0.2 1.8 0.82 50.0
ig_structal 20 0 2.2 -0.8 0.31 18.3 15 0.4 1.9 0.51 25.8
ig_structual_hires 7 0 2.6 -0.2 0.32 0.0 6 0.2 2.0 0.54 42.9
lattice_ssfit 2 2 0.0 3.9 0.02 11.1 2 0.0 10.5 0.04 12.8
lmds 4 3 1.6 3.7 0.10 19.5 2 4.2 2.5 0.07 15.1
semfold 2 1 0.2 2.7 0.05 13.0 1 6.1 5.1 0.08 16.4

Summary 51 16 1.5 0.9 0.35 24.1 40 0.9 2.6 0.50 33.1

Only the results for targets listed in our test set are compiled and shown. The number of correctly identified native structures (correct) out of the 
total targets (total) is shown by individual generation methods. The averages of Cα RMSD, Z-score, C.C., and F.E. for the respective decoy sets are 
also shown. In the "Summary" column, the sum of total and correct counts, and the averages of Cα RMSD, Z-score, C.C., and F.E. over the 
respective protein targets, are shown. The results of PC2CA [16] were used and the respective score averages were calculated.
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components. The influence of any one of 4 other compo-
nents was smaller, and most indexes remained similar to
the original function; however, the averaged rank of the
native structures increased without OMDA, indicating a
certain degree of contribution. When cross validation with
tuned parameters was carried out on the training set with-
out any one of the six components, no improvement in
average Cα RMSD was observed (data not shown). This
result also suggests the requirement of all six components.
Additionally, the inclusion of HBND, PPDA, and OMDA
components is expected to have discriminative ability for
a possible chain modeling application.

Discussion
A knowledge-based decoy discriminatory function
(DFMAC) was successfully developed. The DFMAC func-
tion requires the input data of the coordinates of only
three main-chain atom types (N, Cα, and C) per each
amino-acid residue. The function is formalized as the
combination of six pseudo-energy calculating compo-
nents. Each component evaluates a different feature of a
protein. The native or near-native structures in various
types of decoy sets were recognized with high accuracy.
The discrimination ability was nearly comparable to other
state-of-the-art coarse-grained or all-atom-type scoring
functions.

One notable feature of the function is the simplicity of the
required representation of the model structures, consist-
ing of only three main-chain atom coordinates per resi-
due. Such input structural data is beneficial for structure
modeling. Because the side chain conformation need not
be scanned, the main chain conformation scan could be
facilitated. The scanning of different folds for evaluation
of sequence-fold compatibility could also be facilitated.
The construction of an all-atom model is possible by
assigning side-chain coordinates to a reasonable main-
chain model.

The considerable accuracy of the whole function was
derived mainly from the DABG component. This compo-
nent evaluates the relative orientation of the pseudo Cβ
atom against the associated Cα atom between two resi-

dues. The recognition of acceptable orientation conversely
restricts the degree of freedom of main-chain conforma-
tion and side-chain orientation. Thus, more accurate fold
recognition could be provided than a simple distant
dependent function among, for example, Cα atoms. The
all-atom distant-dependent-type functions would imple-
ment similar or more accurate fold recognition, by judg-
ing acceptable main-chain/side-chain orientation with
multiple distances per residue. Although our representa-
tion of the structure is far simpler, an alternative structure
recognition mechanism would be implemented, at least
partially. The effectiveness of orientation-dependent
potentials was also shown by Buchete et al. [9,10]; the
interaction centers were defined for respective side chains
and peptide bonds, and six parameters were used to
express a single pairwise interaction. In our case, evalua-
tion was performed with more limited conditions, using
only a single point per residue and as few as 4 parameters
per pairwise interaction between the points; however, the
DABG component of DFMAC was able to provide consid-
erable discrimination capacity.

Compared with the DABG and SURR function compo-
nents, the contributions of 4 other components were
smaller; however, the DABG component does not evalu-
ate local main-chain conformation within a 2-residue dis-
tance. The SURR component also does not evaluate local
main-chain conformation. Thus, HBND, PPDA, and
OMDA components were implemented to recognize the
allowed conformation for possible model building exper-
iments, although little pullback of discrimination was
observed. Additionally, since many decoy structures
already had reasonable local conformations, significant
contribution of these components might not be observed.
Improvement of these components to more harmless and
versatile ones could help refine the overall function.

Nine of the 77 test targets failed in native or near-native
structure identification. The IDs were 1bl0, 1dtk, 4pti,
1eh2, 2pna, 1bq9, 1elw, 1rnb, and 2ci2. Many plausible
reasons for the failure of (near-) native structure recogni-
tion can be found [15,16]. The distorted geometries of
1dtk could harm the scoring of the native structure [16].

Table 6: Effects of the omission of each energy calculation component from the DFMAC function.

omitted component Rnat Cα RMSD Z-score C.C. F.E.(%) logPB1 logPB10 C.C.decoy F.E.decoy(%)

none 6.8 1.174 2.630 0.559 38.7 -0.75 -1.41 0.518 25.1
DIST 6.9 1.087 2.687 0.547 38.1 -0.76 -1.40 0.508 25.4
DABG 16.2 2.444 2.062 0.554 36.9 -0.69 -1.40 0.507 25.8
HBND 6.0 1.301 2.523 0.558 39.3 -0.76 -1.44 0.520 26.5
PPDA 6.7 1.197 2.617 0.558 39.1 -0.75 -1.44 0.518 25.0
OMDA 12.0 1.036 2.582 0.555 39.5 -0.76 -1.42 0.517 25.4
SURR 11.6 1.519 2.737 0.487 35.2 -0.68 -1.37 0.442 22.0

The measures are as described in Table 3. The average scores over the test set are shown by the omitted component.
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The presence of other chains in the crystal structure is also
a possible reason for the failure [16]. The difficulty of
1bl0, which was bound to DNA, might also have failed
because of the complex structure. The 1rnb is also a com-
plex of protein and small molecules. Interaction with the
metal ion might also make discrimination harder. The
crystal structure of 1bq9 contains Fe(III) ion. NMR struc-
tures are often suggested to be difficult to identify [16].
The 1dtk, 1eh2, and 2pna are NMR structures, and a diffi-
culty might arise for that reason. The difficulty with
smaller proteins is also frequently discussed. We tested the
correlation of protein size and accuracy, and we also
found a difficult tendency for smaller polypeptides (data
not shown). The failure of 1dtk (57 residues), 4pti (58 res-
idues), 1bq9 (51 residues), and 2ci2 (62 residues) might
have resulted. The possible origin of failure of the remain-
ing 1elw top structure was not apparent.

The capacity of DFMAC to recognize a correct fold among
different folds, which are separated in the structure space,
is not apparent. In the rosetta decoy set [12], each target
consists of 20 refined native structures and the 100 lowest
scoring models out of ~10,000 de novo predicted models
among a variety of conformations. Evaluation of the test
set with DFMAC resulted in correct identification of
68.4% (13/19) native and 78.9% (15/19) near-native
structures; therefore, the capacity for fold recognition
which could support de novo structure prediction might be
expected.

The high Cα RMSD of the top structures was frequently
observed for some decoy sets, such as lmds or rosetta. One
of our next challenges is to improve our function to cover
these "difficult" decoy sets. The introduction of a high-res-
olution structure dataset for database construction [17]
and the development of an additional all-atom-type eval-
uation system are possible solutions. Additionally, since
the function was mainly implemented with pairwise inter-
actions, a frustrated structure, which consists of locally
allowed pairwise interactions, might be positively evalu-
ated. Based on these considerations, further improvement
of the function in decoy or fold discrimination ability is
now in progress.

Conclusion
A novel knowledge-based decoy discrimination function,
DFMAC, was successfully constructed. Despite the simple
representation of protein structure models of input data,
the discrimination ability was nearly comparable to other
coarse-grained and all-atom-type functions. The orienta-
tion-dependent pseudo-energy calculating component
(DABG), in addition to the component for the number of
surrounding atoms (SURR), was found to be significantly
effective for performance of the function. A variety of

applications of the function to support activities such as
structure prediction is expected.

Methods
Overview of the function formulation
The function for total energy calculation is formulated as
the sum of six weighted pseudo-energy terms:

where Etotal is the total pseudo-energy, the "w" and "E"
with subscripts on the right side of the equation are the
weights and pseudo-energy calculation components,
respectively. The subscripts of the terms on the right side
correspond to the six respective types of pseudo-energy
components, dealing with the distances between two Cα
atoms (referred to as DIST), the relative orientation of the
vector of Cα to pseudo-Cβ atom coordinates between two
residues (DABG) (Figure 1A), hydrogen bonds between
the main-chain amino hydrogen and the main-chain car-
bonyl oxygen atoms (HBND) (Figure 1B), the ψ-φ dihe-
dral angles (PPDA), the ω dihedral angle (OMDA), and
the number of the surrounding Cα atoms (SURR). Each
pseudo-energy component was calculated referring to a
specifically precompiled database derived from the
known protein structures. The formulation details are
described below.

Preparation of database from native protein structures
Databases for pseudo-energy calculation components,
which evaluate individual structural features, were derived
from 3,313 nonhomologous (less than 25% homology)
protein structures with a resolution of better than 2.0 Å
and R-factors of better than 0.25. The list of the proteins
(compiled on June 23, 2007) was provided by PISCES
server http://dunbrack.fccc.edu/PISCES.php[22]. Struc-
tural data with atomic coordinates were from the protein
data bank (PDB) http://www.rcsb.org[23]. The coordi-
nates of the three main-chain atom types of amino nitro-
gen (N), alpha carbon (Cα), and carbonyl carbon (C) of
all 3,313 structures were used for database construction.
The database was compiled for each of the pseudo-energy
calculating components. All databases, except for SURR,
were built considering the combination of the subject and
object amino acid types. Thus, 400 sub-databases were
generated for each component. The SURR database con-
sists of 20 sub-databases for respective amino acid types of
subject residues. The domains of parameter(s) were
divided into uniform-sized bins. All measurements,
which met the specific criteria below, were classified and
counted in corresponding bins. For the DIST database, Cα
pairwise distances were compiled with 64 bins in the
range from 0.0 Å to 21.0 Å. Residue pairs within a certain
distance in the amino acid sequence were not included.

E W E W E W E

W E W
total DIST DIST DABG DABG HBND HBND

PPDA PPDA OM

= + +
+ +

* * *

* DDA OMDA SURR SURRE W E* *+
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This pair inclusion range in the sequence was tuned by the
procedures described below. The DABG database was
derived using Cα atom coordinates and pseudo-Cβ atom
coordinates, which were generated based on the coordi-
nates of N, Cα, and C atoms of the respective residues.
Four parameters of the distance between the two Cα
atoms, and the α, β, and γ angles were applied to represent
unique relative orientation between two Cα-pseudo-Cβ
atom vectors of the residues (Figure 1A). The criteria for
residue inclusion and distance parameter range were the
same as DIST. The pair inclusion range in the sequence
were also tuned as described below. The α and β angles
(0° to 180°) were divided into 16 bins, and the γ angle (-
180° to 180°) was divided into 32 bins. Data were com-
piled into four-dimensional sub-databases. The HBND
database was derived using the coordinates of pseudo
amino hydrogen atoms (H) and pseudo carbonyl oxygen
atoms (O), which were generated using N, Cα, and C
main-chain atom coordinates. (Note: The N-terminal
pseudo-H and C-terminal pseudo-O of each fragment
could not be generated and compiled because of the
absence of their preceding and following residues, respec-
tively.) The three parameters of the distance between
pseudo-H and pseudo-O atoms, and the η and θ angles
were calculated (Figure 1B). The distance, ranging from
1.7 Å to 2.9 Å, was divided into 4 bins. Either of the η and
θ angles, ranging from 0° to 180°, was divided into 16
bins. Data were compiled into three-dimensional sub-
databases. The PPDA database was derived using the ψ
and φ main-chain dihedral angles of the peptide bond. We
constructed a database dealing with the ψ angle of one res-
idue and the φ angle of the next residue, which is different
from the standard Ramachandran-type representation
(i.e. φ and ψ angles for a single residue). Thus, 400 varia-
tions of sub-databases were generated for respective per-
mutations of amino acid types of two adjacent residues.
Either of the angles, ranging from -180° to 180°, was
divided in 64 bins. Data were compiled into two-dimen-
sional sub-databases. The OMDA database was derived
using the ω dihedral angles of peptide bonds. Thus, the
variation of sub-databases was 400, corresponding to the
respective amino acid permutations. The ω angle, ranging
from -180° to 180°, was divided in 128 bins. The SURR
database is related to the degree of embedding of the res-
idue in a molecule. The number of Cα atoms in the sphere
with a certain radius from the central Cα atom coordinate
of the focusing residue was counted as the surroundings.
The radius was also tuned as described below. The count
was classified into the respective bins of corresponding
counts. Data were compiled into 20 sub-databases, asso-
ciated with the respective amino acid types.

Pseudo potential energy calculation
Each of the above six pseudo-energy calculation compo-
nents was derived based on the Boltzmann law [5]. The

pseudo-energy (Es) for a state "s" was calculated with the
following equation:

where Nobs(s) and Nexp(s) represent the number of
observed and expected counts for the state (s), respec-
tively. Since the energy values were utilized as relative
scores throughout the analyses, the factor of kT was not
included in the formula with the assumption of constant
temperature. Unless otherwise stated, counts in the corre-
sponding bin of the database were used as Nobs(s). The
expected count is also referred to as the reference, which
was from the distribution without the interaction focused
on for the component. The total pseudo-energy for each
component (ECOMP) was calculated as:

The criteria for inclusion in the energy summation were
defined by individual components. The parameter set, bin
size, and bin distribution were the same as the database
construction conditions described above. The specific
energy calculation conditions for each component were as
described below. In the case of DIST component calcula-
tion, the measured distances between two Cα atoms of the
respective residue pairs were used as specific states. In con-
sideration of the finite size of proteins, the corresponding
Nexp(s) was calculated as [16]:

Nexp(d) = a*d2 *exp(-(d/b)c)* Δd

where d is the central value of the corresponding distance
bin, Δd is the bin size, and a, b, and c are constants. Con-
stant a was adjusted as follows: the sum of the counts
(Asum) in the database was calculated for bins ranging
from 56th to 64th (i.e. the distance ranging from 18.05 Å to
21 Å). On the other hand, the integral of Nexp(d) (Ainteg) for
the same distance range was calculated assuming that a is
1. The value of (Asum/Ainteg) was then re-assigned to the a
constant. The b and c constants were scanned and tuned
with the procedure described below. The pairs, which
have distances ranging from 0 Å to 15.75 Å, and a certain
degree of sequence separation of |i-j| between ith and jth

residues in the amino acid sequence, were subjected to
energy calculation. The minimum limit of sequence sepa-
ration was subjected to tuning. When the count of the bin
in the database was 0, a penalty energy value was alterna-
tively assigned. This was also tuned. For DABG energy cal-
culation, the parameters of the distance, and α, β, and γ
angles were calculated with pseudo-Cβ, as described above
in the database preparation (Figure 1A). Nobs was the aver-
age count of the bins in the database with the center at the

E s
Nobs s
N s

( ) ln(
( )

exp( )
)= −

E E sCOMP
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all

= ∑ ( )
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position corresponding to the measured parameters of the
distance, and α, β, and γ angles. Averaging with bins
extending to certain position ranges for both sides was
applied for each parameter. These ranges were also tuned.
Nexp was calculated as follows: assuming that the Cα-
pseudo-Cβ vector orientation is random, the probability
density function (P) for α or β parameters is:

The P(γ) is supposed to distribute uniformly along the γ
angle; thus, Nexp(d, α, β, γ) is formulated as:

where α and β are the center of the corresponding bin, Δγ
is the bin size of γ. Nobs(d) of the DIST component was
used as a substitute for Nexp(d). Residues with the same
sequence separation as DIST were evaluated. The penalty
value for the 0 of the average count was subjected to tun-
ing. The method of HBND energy calculation was the sim-
pler version employed by Kortemme et al. [8]. The
function evaluated only the main-chain hydrogen bond
between pseudo-H and pseudo-O atoms using three
parameters (Figure 1B). As described for the DABG com-
ponent, the probability density function under the ran-
dom orientation of N-H or C-O vectors is represented as:

The expected distance distribution probability Pexp(d) is
assumed to have a similar form to the finite ideal gas ref-
erence state [7] as:

P(d) = c*d1.6

where d is the center of each distance bin. Constant c was
adjusted to make the sum of the probability for 4 total
bins of possible conditions to 1. Nexp(d, η θ) for HBND
component was thus expressed as:

where Ntotal is the total observed count compiled in the
corresponding pairwise sub-database. The penalty value
was tuned. In the case of PPDA energy calculation, equal
distribution on the ψ-φ plane was assumed for the

expected probability. Thus, Nexp(ψ,φ) for PPDA compo-
nent is:

Nexp (ψ, ϕ) = Ntotal* Δψ/360* Δϕ/360

where Ntotal was the total observed count compiled in the
corresponding pairwise sub-database, and Δψ and Δφ
were the bin sizes of the respective angles. The penalty
value was tuned. OMDA energy was calculated similarly
with equal distribution along the ω axis assumed for the
expected probability. Thus, Nexp(ω) was:

Nexp(ω) = Ntotal* Δω/360

where Ntotal was the total observed count, and Δω was the
bin size of the ω angle. The penalty value was tuned. The
concept of SURR energy was similar to the solvation
potential by Jones [6]. The distribution of the observed
count of surrounding Cα atoms was compiled in a proce-
dure similar to the database construction for each amino
acid type. The resultant database was standardized by each
of the sub-databases, and then used as the expected count
of Nexp(n) as:

where n is the number of surrounding Cα atoms in a
sphere, Naa is the sum of the counts for a specific amino
acid type over the surrounding numbers, Ntot is the sum of
the counts of all residues of all structures over the sur-
rounding numbers, and N(n) is the count of the specific
number of surroundings (n) for all residues of all struc-
tures. The radius of the sphere and the penalty value were
tuned.

Decoy sets
The Decoys 'R' Us decoy database http://dd.comp
bio.washington.edu/download.shtml, which was com-
piled by Samudrala and Levitt [18], was used for parame-
ter tuning and function evaluation. For the l30 target in
the fisa_casp3 decoy set, 1ck2 from PDB was used as the
native structure [16]. Cα RMSD of the l30 native structure
in the original list (1.882 Å) was used as the native Cα
RMSD. The moulder decoy set ftp://salilab.org/decoys/
comp_models.tar.gz[15,20] and the all atom decoy set
from Rosetta@home http://depts.washing ton.edu/bak-
erpg/decoys/rosetta_decoys_62proteins.tgz (or "rosetta"),
which were from the homepages of the Sali lab. and Baker
lab., respectively, were also used. The rosetta set contains
well-scoring Rosetta protein models and their native crys-
tal structures for 59 proteins, without 3 NMR structures.
We repacked 141 structures of one native PDB structure,
the 20 refined native structures, the 100 lowest scoring
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models out of ~10,000 total models, and 20 random
models, per protein into a single target entry for use.

Determination of initial parameter values
The 7 decoy sets of 4state_reduced, fisa, fisa_casp3,
hg_structal, ig_structal, ig_structal_hires, and lmds from
the Decoys 'R' Us database [18] were used to search the
initial parameter values. Several parameters were scanned
at a time, and the best values of the parameters were deter-
mined successively. The procedure was repeated until all
the parameters were scanned. Following are the function
components and their associated parameters determined by
the above procedure: the DIST component, the distance
range for database construction and scoring, the sequence
separation for database construction and scoring, the
upper distance limit for scoring, the function form of Nexp,
the values of b and c, the lower distance limit for determi-
nation of the a value, and the penalty value; the DABG
component, the distance range for database construction
and scoring, the sequence separation for database con-
struction and scoring, the upper distance limit for scoring,
the range of neighboring bins for averaging the counts,
and the penalty value; the HBND component, the distance
range for database construction and scoring, and the pen-
alty value; the PPDA and OMDA components, the penalty
values; the SURR component, the radius of the sphere for
database construction and scoring. Bin sizes for all of the
components were determined appropriately. Each time a
new parameter value was applied, the weight parameters
w for the respective energy components were scanned, and
the performance was evaluated with the temporary opti-
mized weight values. Because the total pseudo-energy was
used as a relative index value (not as an absolute energy),
wDIST was fixed as 1 and the remaining 5 weights were
scanned. The searching procedure for the weights was as
follows: firstly, all of the combinations of discrete weight
values, evenly spaced in a logarithmic scale (0.01 to 31.6,
15 steps), were evaluated, and the weight set with the best
discrimination performance was selected. Then, another
more precise cycle was carried out around the set of
weight values determined by the previous scan (0.56- to
1.78-fold the previous weight value, 11 steps). The opti-
mized weights for the function were 1, 0.316, 0.141,
0.200, 0.00562, and 0.178 for the components of DIST,
DABG, HBND, PPDA, OMDA, and SURR, respectively.

Function tuning by cross validation
The temporary optimized function by the previous proce-
dure was further tuned through the cross-validation pro-
cedure. The 231 targets from the Decoys 'R' Us database,
and the decoy sets of moulder and rosetta, were split into
154 (2/3 of total) for the training set and 77 (1/3 of total)
for the test set according to their temporarily-assigned
serial numbers. The targets were listed in the sequence of
the decoy sets, and serial numbers of multiples of 3 were

selected as the test set, and the rest of the targets were the
training set. Thus, each decoy set was included in both
training and test sets with a roughly equal ratio, without
any intentional bias. The parameters were tuned by 10-
fold cross validation. The above training set was divided
into 10 segments, with new identification numbers in
cyclic order. The function with temporally optimized
weights was evaluated on one remaining target segment.
The average Cα RMSD of top structures from 10 evalua-
tions of all combinations of training and evaluation was
set as the performance index. The weights of the function
components, with a set of updated parameter values, were
optimized for 9 target segments to the minimum Cα
RMSD average. Weights were optimized by the following
iterative cycles of scanning: the combination of discrete
values, equally spaced in the logarithmic scale for each of
the six weights, was scanned in a cycle. The 1st cycle was 5
steps of 0.01 to 100. The following 4 cycles were repeated
for the 8 best weight sets found by the 1st cycle, which
were separated by at least a 6-step distance. Each of the 2nd

to 5th cycles evaluated the 3 steps of the parameters, i.e. w-

r, w, and wr, where w was the weight value selected by the
previous cycle, and r was the factor of the scanning range.
If any one of the selected parameter values was not the
previous one (i.e. the optimum was not at the center of
scanning), the same cycle was repeated again with the
selected parameter values. The r values of 2nd, 3rd, 4th, and
5th cycles were 3.16, 1.78, 1.33, and 1.15, respectively. The
final weight values tuned by the procedure were 1.00,
0.662, 0.765, 0.0372, 1.02, and 43.0 for the components
of DIST, DABG, HBND, PPDA, OMDA, and SURR, respec-
tively. The tuned parameters, the order of the parameters
successively scanned, and the initial, scanned, and final
values are listed in Table 1.

Performance measures
The performance measures and their definitions are as fol-
lows: Cα RMSD, the root mean square deviation of the Cα-
Cα pairs between the native structure and the model with
the best energy; Z-score, the score of the native structure,
which was calculated under the standard definition [11]
(Note: the positive value corresponds to the lower (better)
energy than average.); C.C., Pearson's correlation coeffi-
cient among the structures including the native and the
decoys; F.E., the fraction of the top 10% lowest Cα RMSD
structures in the top 10% best-energy structures among
the structures, including the native and the decoys; RB1,
the Cα RMSD rank of the best-energy structure among the
decoy structures; logPB1, the common logarithm of the
probability of selecting the best decoy structure, where PB1
= RB1/(number of decoy structures); RB10, the lowest Cα
RMSD rank in the 10 best-energy decoy structures among
the decoys; logPB10, the common logarithm of the proba-
bility of selecting the best decoy structure in the 10 best-
energy decoy structures, where PB10 = RB10/(number of
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