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Abstract

Background: Automatic protein modelling pipelines are becoming ever more accurate; this has
come hand in hand with an increasingly complicated interplay between all components involved.
Nevertheless, there are still potential improvements to be made in template selection, refinement
and protein model selection.

Results: In the context of an automatic modelling pipeline, we analysed each step separately,
revealing several non-intuitive trends and explored a new strategy for protein conformation
sampling using Genetic Algorithms (GA). We apply the concept of alternating evolutionary
pressure (AEP), i.e. intermediate rounds within the GA runs where unrestrained, linear growth of
the model populations is allowed.

Conclusion: This approach improves the overall performance of the GA by allowing models to
overcome local energy barriers. AEP enabled the selection of the best models in 40% of all targets;

compared to 25% for a normal GA.

Background

Impressive progress in protein structure modelling has
been achieved over the last decade; however, improve-
ment between subsequent rounds of the Critical Assess-
ment of Techniques for Protein Structure Prediction
(CASP) is often considered to be modest [1,2]. Given the
current accuracy, protein models are useful for qualitative
analysis and decision-making in support of a wide range
of experimental work. High accuracy modelling is essen-
tial for important applications such as, molecular replace-
ment experiments [3-5], function predictions [6] and
virtual drug screening [7]. Modelling techniques, how-
ever, are still not accurate enough to close the gap between
known protein sequences (approximately 5 million non

redundant) and solved protein structures (approximately
50,000).

Regardless of the current limitations of modelling, two
very encouraging observations have been made from the
CASP?7 results [1,8,9]. First, the gap between the quality of
fully automated and manual modelling techniques has
narrowed and second, improvement beyond the best tem-
plate is achieved more frequently.

Modern template-based modelling pipelines can be
divided into a number of common steps. A typical pipe-
line starts with template identification and alignment
construction. In the next step, models are built using sin-
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gle templates, multiple templates or template fragments.
The resulting models are then often refined, and finally
the models are ranked and the "best" model selected.

Template search and alignment algorithms are showing
significant improvements in accuracy and are becoming
increasingly efficient. Well established sequence align-
ment algorithms such as FASTA [10], BLAST [11] and PSI-
BLAST [12] are often replaced, or enhanced by more sen-
sitive algorithms. These sensitive algorithms are based on
multiple sequence alignments, sequence profiles or Hid-
den Markov models and take other information such as
secondary structure prediction into account [13-17]. The
impact of better alignments on the final model's quality is
substantial, as errors made at this stage are not likely to be
recovered during the subsequent modelling process.

Once a single template or several templates have been
selected and the alignments constructed, models can be
built. It is common practice to search the conformational
space in order to further refine the structures [1,18,19].
Several different approaches have been developed for this
task, using conserved constraints [20], genetic algorithms
[21-25], Monte Carlo sampling [26], Molecular Dynamics
[27], principle components analysis [28] or a combina-
tion of techniques [29-33]. Previous studies have shown
that techniques combining several approaches perform
best, when the different steps are carefully balanced [9].

For quality control and to reduce computational costs,
protein model ranking and filtering can be applied at
almost any stage of a modelling pipeline. Energy func-
tions or statistical potentials are used to select a final
model and usually form an integral part of the refinement
method itself. Given their importance, the ability to select
the best model based on energy alone is still relatively
poor [34]. Moreover, most energy scoring methods are
optimised in the context of specific modelling
approaches, and applying them in a different environ-
ment may produce less reliable results.

Model selection has become an important field of protein
modelling, and a separate category has been introduced in
the 4t Critical Assessment of Fully Automated Structure
Prediction (CAFASP4) named Model Quality Assessment
Programs (MQAP). The importance of this field was fur-
ther underlined by a category called quality assessment
(QA) introduced in CASP7 [35].

Several independent methods have been established and
widely used to differentiate between models of high and
poor quality [36-42]. Two different approaches can be dis-
tinguished; MQAPs scoring models in the context of
model ensembles and MQAPs scoring single models inde-
pendently. However, most of the top ranking MQAPs are
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dependent on the information of model ensembles
[35,38].

Despite all of the above efforts and improvement in pro-
tein model construction, ranking and selection, it is still
not possible to consistently produce models of high qual-
ity. To further progress template-based modelling, it is
necessary to carefully evaluate each step and minimise the
accumulated errors. Here, we describe a hierarchical mod-
elling approach (template-based modelling), where each
step has been carefully evaluated, giving new insights into
generating and selecting better models. A known limita-
tion of Genetic Algorithm (GA) approaches in protein
modelling is that models tend to end up in local minima,
not exploring the conformational landscape enough to be
able to find the global energy minima. As a way to allevi-
ate this situation we have implemented the novel concept
of Alternating Evolutionary Pressure (AEP) into our
Genetic Algorithm (GA) search engine. In AEP intermedi-
ate rounds of unrestricted linear growth are introduced,
enabling the models to overcome small energy barriers.
The AEP approach is shown to promote greater sampling
of the conformational landscape thereby enabling better
structures to emerge, thus facilitating final model selec-
tion.

Methods

In the following, the dataset, the algorithms applied and
the pipeline of the modelling approach are described. The
core of the method is an optimization protocol based on
a Genetic Algorithm (GA). This approach mimics the
principles of evolution, combining and mutating protein
model ensembles. Details of the GA approach used to
model and refine protein structures can be found in a pre-
vious publication [22]. To assure maximum yield, each
step in the modelling pipeline has been evaluated sepa-
rately. For an overview of the pipeline see Figure 1.

Dataset

As the main objective of this work is to highlight prob-
lems in protein modelling and to extract potential solu-
tions, the performance of the approach was benchmarked
against well established modelling methods. We consid-
ered all sequences from the seventh round of CASP [43]
which were downloaded from the Protein Structure Pre-
diction  Center webpage (http://www.prediction
center.org/[44]). The 104 protein sequences comprise 77
single and 27 multi-domain proteins. The final dataset
consists of the 75 targets out of the 104 targets, for which
reasonable templates could be identified.

Template identification, sequence alignments and initial
model building

Templates were identified and sequence alignments con-
structed using the Hidden Markov model based algorithm
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Flow chart of modelling pipeline. A sequence profile is
created by performing eight rounds of PSI-BLAST. This pro-
file is fed into the program HHpred to create a list of tem-
plates and alignments. All models are built by changing the
amino acid sequence according to the alignment. The model
ensemble is ranked using the FSF (see text for definition).
The top 50 models are repaired, using the closing algorithm
described in the text. These models are recombined in five
parallel runs of our GA recombination with AEP (see text for
definition). The created output models are ranked using
DFIRE. The top five ranked models are returned.
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HHpred [15] in conjunction with PSI-BLAST [12] results
and the pdb70 database, downloaded from the HHsearch
webpage ftp://ftp.tuebingen.mpg.de/pub/protevo
HHsearch. Standard values were used for HHsearch, as
provided by the software distribution. In order to allow a
fair and unbiased comparison with all template-based
CASP7 servers, the data set was restricted to the informa-
tion available at the time of CASP7. Therefore, the PSI-
BLAST results, PSIPRED [45] secondary structure predic-
tions and selected templates were created using time-
stamped data.

For the initial model building, all side chains were
stripped off the templates, and the query sequence
assigned to the backbone, according to the HHpred align-
ment. At this stage, neither insertions nor deletions were
modelled or side chains added.

For several targets, we were not able to identify the sub-
stantially better templates used by the HHpred servers.
This might be due to the fact that only the pdb70 database
is available for download; the HHpred server uses a com-
bination of the pdb70 and pdb90 database. It seems rea-
sonable that better templates can only be found once both
databases are used in conjunction, especially in cases
where single, isolated, templates of higher quality are
available.

Repair algorithm

Due to deletions and insertions in the alignment, initial
models are likely to be fractured. Missing residues within
B-strands are especially hard to insert since it is very likely
that any closing process will disrupt the precise hydrogen-
bond network. On the other hand, substantial progress
can be made focusing on coil and helical regions. We have
developed a novel protein model repair protocol, which
enables the modelling of incomplete coil and helical sec-
ondary structure elements with the correct length, thereby
helping to further break away from the initial templates.

The new loop conformations are restricted to highly pop-
ulated ®/¥ angles of the Ramachandran Plot [46] and
backbone clashes are not allowed. The GA conforma-
tional search engine is applied to all initial models after
backbone completion; it is, therefore, not necessary to
extensively sample conformational space at this stage.

During processing, backbone bonds with non-standard
length are first identified and fixed. For models with miss-
ing backbone elements, fragments are then created
according to the PSIPRED secondary structure prediction,
using internal coordinates with standard bond and angle
values (IUPAC). These fragments are spliced into the
backbone of the incomplete model and subsequently
adjusted using a mechanism for closure, based on the
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cyclic coordinate descent algorithm [47]. The procedure is
fully automated and only requires a protein model and
the PSIPRED prediction. All parameters used in the clos-
ing algorithm's procedure were derived from our GA algo-
rithm, which was trained on the CASP6 and CAFASP4
datasets. For algorithmic details [see Additional file 1].

Model ranking

Several energy functions are used throughout the model-
ling pipeline. Preliminary investigations indicated that
poor quality input models are not selected in the GA opti-
mization process. Using model pre-ranking to remove
these models at an early stage, allows more computational
time to be spent on the better models. In the present
approach, the best models are selected after optimization
based on their energy scores. To quantify the ranking abil-
ity of our energy-scoring scheme for models, we calculate
the Pearson correlation-coefficient between the energy
and SC scores, defined below.

Structure Comparison (SC) score

In order to assess the quality of the models generated, a
measure describing the conformational similarity
between models and the known native structure (target)
was required. We used a structural comparison scoring
scheme, defined as the mean of the scaled TM [48], GDT
[49] and maxsub [50] scores. Since all three scores are
scaled to the range [0, 1], the final SC score also ranges
from 0 to 1.

SC=%(TM+GDT+maxsub)

Energy scoring schemes
For each target all models were ranked using several differ-
ent scoring schemes. A novel Fast Scoring Function (FSF)
was used in the pre-ranking step. The FSF scoring scheme
is composed of the following terms:

SFSF = wlspp + w2Scl + w3855
Where S, the residue-residue pair potentials, is a score of the
internal packing according to an empirically derived
mixed backbone atom-centroid potential, as described
previously [21,22]. S, the clash penalty, clashes are
counted between two residues if any two backbone-atoms
from any pair of non-consecutive residues are closer than
2 A. S, the secondary structure score, is a sum of PSIPRED
confidence scores for matches between predicted [45] and
assigned secondary structure. The weights for the FSF were
selected using the simplex algorithm [51] on the CASP6
and CAFASP4 datasets and are given by: w; = 1.0, w, = 2.4
and w, = -2.4.
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For scoring of the model populations during the GA opti-
mization, the coarse energy score is used to preselect the
models and reduce the population size to 100 models.
Subsequently the fine energy score is used to further
reduce the population to 50 models that are used for the
next round.

The coarse scoring scheme includes the following terms:

Scoarse = wlspp + WS+ W3S + WySpy, + w3AScomp
Where S, S;and S are defined as for the FSF. S, the
number of hydrogen bonds calculated using the software
STRIDE [52]. AS,,,, is the compactness reference score
[22]. The weights for the coarse scoring scheme are: w, =
1.0, w,=2.07, wy=-4.20, w, = -0.46 and w; = 1.37.

The fine scoring scheme includes the following terms:
Sﬁne = wlseef+ w2sse + w3ASwmp

Where S, is calculated in the following way. SCWRL 3.0
is used to replace all the side chains [53] for the energy cal-
culation (standard parameters given by the program are
used). All scored models are minimised and then scored
using the effective energy function [54] (EEF) in
CHARMM. S, the solvent accessibility is calculated using
the software POPS_A [55] and the solvation free energy
[36]. AS, as previously defined [22]. The weights for
the fine scoring scheme are: w1l = 1.0, w, = 0.20 and w5 =
0.20.

After optimization with the GA protocol, the final models
are ranked with a combination of the fine and coarse
energy scores, and an all atom pair-potential score, DFIRE
[56]. In the combined energy function the coarse and fine
energy components are weighted according to the best
template's sequence identity. Sequence identities were
binned into three ranges: 0 - 0.3, 0.3 - 0.5, 0.5 - 1.0. For
each of these ranges, the weights were optimised using the
simplex algorithm on the CASP6 dataset, see Table 1.

The most representative structure of the final ensemble,
which is taken from the middle of the largest cluster, was

Table I: Weights for combined energy score

Sequence identity Weight coarse Weight fine
0-03 | I
03-05 0.75 |
05-1 0.375 I

Weights for the final combined energy score assigned using the
simplex algorithm, calculated from the CASP6é and CAFASP4 datasets.
The higher the sequence identity, the less the coarse score is
weighted.
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used as a control. This was done to investigate how con-
sistently the top ranked solutions are selected, compared
to the most representative conformation of the final
ensemble.

Energy minimization

To investigate whether full Cartesian space minimization
facilitates protein model selection, all models, repaired
and un-repaired, were minimised. The steepest descent
and adopted basis Newton-Raphson methods were
applied, as implemented in CHARMM [57] until the value
of the gradient dropped below 1.0 kcal mol-1 A -2,

GA recombination

We previously described an efficient move-set used to
search conformational space of protein models [22]. This
move-set includes three global operators: the single and
double crossover and the protein mutation operator; and
two local operators: the helix and the coil mutation oper-
ators. A quick protein health check is performed during
and after the application of the operators: @/ angles
must lie within the highly populated areas of the Ramach-
andran Plot and the change in energy-score is subject to a
pseudo Metropolis criterion. The protocol was optimised
using the CASP6 and CAFASP4 datasets.

The following modifications have been made to the pro-
tocol. Firstly, the input models are clustered using the
nearest neighbour method. The metric for this clustering
approach is based upon overall protein model similarity
weighted with the secondary structure scores. Only the
largest two clusters are used for further optimization,
thereby removing a few, poor outliers. Secondly, the range
of movement for mutations has been changed, to allow
finer movements. This was achieved by allowing all values
within the highly populated areas of the Ramachandran
plot.

After applying the closing algorithm to all selected mod-
els, the models were submitted to five parallel runs of the
GA protocol. The optimization is run for at least five, and
a maximum of 10 rounds, dependant on the population
convergence. Running the GA for longer was found to
increase the probability of ending in incorrect local
minima conformations (data not shown).

Alternating evolutionary pressure

In a GA where Alternating Evolutionary Pressure (AEP) is
applied, a number of non-scored rounds are allowed
between each scored sampling round. In these non-scored
rounds, the population grows linearly and the structures
in the ensemble are allowed to sample energetically unfa-
vourable states. Although energy evaluation is not
applied, to ensure reasonable sampling, basic protein
health checks associated with the operators are still in
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place. Four different setups were applied: a normal GA
and a GA with one to three non-scored intermediate
rounds. In each setup, 10 fully ranked rounds were per-
formed where the population was reduced to the top 50
models.

Accessibility

The complete modelling procedure can be accessed via a
web server interface at: http://bmm.cancerresearchuk.org/
~populus[58]. The average running time for a protein
model of 150 residues is 6-7 hours for the standard GA
and 15-25 hours if two intermediate non-scored rounds
are used (AEP2). For details of this server [see Additional
file 1].

Results and discussion

For this study we modelled 75 diverse protein sequences
from the CASP7 dataset of the category template-based
modelling. First, a novel backbone repair algorithm is
introduced and compared to the performance of MODEL-
LER. In the next step an optimal setup for pre-ranking is
investigated. The resulting models are recombined using a
GA and the improvement in model selection due to the
introduction of AEP is shown. Finally, a summary is given
showing the performance of several possible modelling
pipelines.

Structural comparison of models before and after repair
We have developed a novel algorithm for completing and
closing protein backbones. Coil and helical regions are
completed and the length of incomplete helical secondary
structure elements is adjusted to agree with the predicted
secondary structure. In contrast to other loop modelling
methods, only a single conformation is created for each
added structural element. These conformations are further
sampled once the model undergoes recombination using
the GA.

The distribution of improvement in SC score due to this
repair process is shown in Figure 2. In 72% of all cases,
completed structures show improvement in comparison
to their initial score. The models improved by the repair
algorithm show an average improvement of 0.015 SC
score and the best 25% of the population (31 quantile)
shows an improvement greater than 0.02 SC score.

Analysing the SC score in terms of the assigned secondary
structure, we found that approximately 80% of the
improvement made for all models lies within helical sec-
ondary structure elements (see Figure 2 inset). In contrast
to this, only approximately 20% improvement is gained
completing coil regions. Approximately 60% of the
improvement is situated in the core region, defined here
as the region between the N and C terminal secondary
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Distribution of the ASC score after model repair. The frequency of ASC scores for repaired models is shown. Models
with negative values have a decreased SC score after backbone repair. Improved models have a positive value. The distribution
is shifted towards model improvement. In the insets, it can be seen that more than 80% of improvement lies within helical
regions. Most of the improvement is situated in the protein core, the region between the two terminal elements.

structure elements. The rest of the improvement is located
within the termini.

Comparing the models derived from the top ten align-
ments of each target, with the equivalent models con-
structed with the automodel function in MODELLER [59],
the repairing algorithm scores on average 0.428 SC score
compared to 0.427 SC score for MODELLER. Although
the score for the closing algorithm is not significantly bet-
ter, this method allows repair of models without the need
for the alignment and/or template.

Initial ranking
For modelling pipelines with extensive conformational
search algorithms it is not obvious when to rank models.

Ranking can be applied at several stages, such as before
insertions and deletions are dealt with, after backbone
completion, after minimization or after refinement. Intu-
itively, one might think that backbone completion is a
minimum criterion to be fulfilled before further consider-
ation on model quality can be made. To address this ques-
tion, we analysed the effectiveness of the FSF and DFIRE
scoring schemes before and after repair.

Figure 3 presents the Pearson correlation coefficient, i.e.
the correlation between SC score and energy score, for dif-
ferent setups, and scoring schemes (the Spearman correla-
tion-coefficient shows similar results). Surprisingly, the
ranking of repaired models produces a lower correlation-
coefficient than the ranking of un-repaired models. The
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FSF

Correlation-coefficient for FSF score and DFIRE. The Pearson correlation coefficient is shown for different model data-
sets and scoring functions. Weighted SID, DFIRE and the FSF are used for the ranking. Repaired (R), non-repaired (crossed R),
minimised (M) and non-minimised (crossed M) models are ranked and compared. Repairing models decreases the correlation

coefficients for DFIRE and FSF. Minimisation further improves the ranking ability of the FSF. The best correlation-coefficient

can be observed for minimised, non-repaired models.

same trend is seen whether the FSF or the DFIRE energy
function is applied, showing this effect to be independent
of the actual energy-based/statistical scoring function
used. This observation can be explained by the following.
Models derived from alignments with fewer insertions
and deletions tend to be closer to the template and are
generally of better quality. Due to the use of pair potential
energy functions, models with more residues tend to have
better energies. Hence before repair, the better models
with fewer insertions/deletions have lower energy scores.
Once repaired, this effect disappears and the advantage
gained from the better initial template quality is not
picked up by the energy functions anymore.

On the other hand, ranking according to the alignments
scores given by the alignments algorithms is normally not
sufficient for model selection either. Ranking purely based
on the coverage dependant sequence identities of the
alignments, produced a correlation score of 0.772, 12%
smaller than the best FSF ranking.

In Figure 3 it can be seen that the best ranking is obtained
using the FSF on unrepaired, minimised structures,
improving the correlation by 6% compared to the best
DFIRE configuration and by 13% compared to ranking
using the weighted SID. Non-repaired models are gener-

ally easier to rank, this is valid both for DFIRE and the FSF.
Ranking unrepaired models results in an improved corre-
lation coefficient of 6.2% for DFIRE, 4.7% for the FSF.
Minimization further facilitates ranking ability for unre-
paired models by a further 1% using the FSF.

Recombination

To further sample the conformational space and select a
good final model, all repaired models were recombined
and optimised using the GA. Figure 4 shows the median,
first and third quantile of the different modelling popula-
tions pre/post GA. All GA runs only have ten fine energy
scored rounds. Applying more than ten fine energy
rounds increases the probability of convergence of the
model ensemble into a local minimum [see Additional
file 1, Figure S3].

Running the GA optimization using the SC score to the
native protein structure as the fitness function shows how
much improvement can potentially be [see Additional file
1, Figure S2]. After the application of the GA using the
native structure as guidance, the model ensemble is very
narrow and on average the final population is improved
by 51% to an SC score of 0.643 for non-repaired and
0.658 for repaired models. Interestingly even in this ideal
scenario the move set is unable to produce better structure
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Population distribution pre- and post-GA. The median, first and third quantile are shown for three different setups. In
each setup the average of all model distributions are given for repaired (R) and non-repaired (NR) models. The population for
the initial, pre-GA models is broad and lies well below the distribution for the post-GA populations. Repaired models show
only small improvement for the pre-GA and post-GA energy based model ensembles. However, a clear advantage can be seen
once the GA which is directly driven towards the native structure is applied. The populations for the energy driven GA runs
can be seen in more detailed in the graph inset. Here, it is also shown how well good models can be selected using different
energy functions. These scores are for the averages of the SC scores for the lowest-energy model of each target. The energy
functions used are the combined (red dot), the coarse (green diamond), the fine (purple filled square) and DFIRE (blue empty
square) for the standard GA and AEPI-3. As the combined energy and DFIRE score has been found to produce the best
results, the other scores are not shown for the AEP. The best model selection is seen for AEP2 which has a narrower popula-

tion distribution with some good individual outliers. The distribution for AEP3 shows a drop in good models; furthermore, a
decreased ability to select good models is shown.

due to a lack of good quality templates, absence of sec-  purpose of comparison we limited the sampling to 10
ondary structure elements in the model population or  rounds.

insufficient sampling. It can also be seen that repaired

models clearly improve the overall population, due to the  In practice we do not have access to the reference structure
models not missing secondary structure elements. Longer  and have to rely on energy scores to drive the GA. Figure 4
sampling further increases the improvement, but for the  also shows the results using different energy scores for
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Energy landscape. Due to energy barriers, some models need to be nudged in order to fall into their optimal energy basins.
A relatively small change in structural conformation can have a marked effect on a model's energy; SC scores are given along

the energy landscape (top and bottom). A curved representation is chosen to highlight the three-dimensional nature of energy
landscapes. Dark circles are conformations that are scored; light grey circles are non-scored, intermediate, conformations. In
case (a) one non-scored intermediate conformation is needed to climb a small energy barrier. A more difficult case is shown in
(b), where a maximum of two consecutive intermediate conformations are required, before energy evaluation. Case (c) shows

a scenario where no intermediate conformation is required.

final model selection. It can be seen that repairing struc-
tures does improve the top model, for all energy functions
used. The best results can be obtained using the DFIRE
energy function producing a 2.4% improvement com-
pared to the fine score, a 1.4% improvement compared to
the FSF score and a 0.5% improvement compared to the
combined energy function.

The difference between the average SC score for the best
models created using the energy and SC score to drive the
GA is only 7%. However, a further 4% improvement is
lost when selecting the model with the lowest energy out
of the final energy driven ensemble.

Alternating evolutionary pressure (AEP)

GAs and other similar conformational search algorithms
suffer from the problem that they tend to stay within local
minima instead of exploring further afield and potentially
finding a deeper minimum. We investigated whether

alternating evolutionary pressure (AEP) could facilitate
energy based model selection, by gently pushing models
over small energy barriers. This idea is illustrated in Figure
5, showing that small changes in protein structure,
although insignificant in terms of the SC score, produce
significantly better energies, hence facilitating protein
model selection.

Two main elements dictate the success of GA approaches.
One is the set of operators (move-set) and the other is the
fitness function (energy scoring scheme). Classically, GAs
operate for several generations, iteratively applying the
conformational search engine and the fitness function
[60] until convergence is obtained. However, interesting
results can be observed, once a series of conformational
changes are applied, without intermediate population
scoring and reduction. Within these non-scored interme-
diate rounds the population grows linearly. The finer
energy evaluation and the reduction of the model ensem-
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ble to the best members are not applied; however, during
these rounds the basic protein health checks of the opera-
tors are still applied (see Methods).

A similar approach to AEP was introduced by Qian et al.,
where the refinement of protein structures was achieved
using an iterative alternation of diversification and inten-
sification steps [61]. This approach combines ideas from
tabu search and conformational space annealing, how-
ever, it is only applied if the lowest energy refined struc-
tures have not converged and show several variable and
less reliable regions. In general, this methodology is dif-
ferent from classical GAs where the optimization process
is more variable, less directed and, therefore, convergence
is only achieved after intensive sampling. For these classi-
cal GAs, the principle of AEP has only been used before to
provide theoretical predictions of algorithm performance
[62]. Here, we take this idea one step further by removing
the ranking step for a number of intermediate rounds. We
used four different setups: the standard GA and the GA
with one, two and three non-scored intermediate rounds.
The results presented in Figure 4 show that our ability to
identify the better conformations varies strongly depend-
ing on the number of AEP rounds used. For each GA
setup, we calculated the percentage of targets for which
the best model based on SC score also had the lowest
energy score. Using the standard GA protocol, the best
model was identified in 25% of all targets using the DFIRE
energy scores. Similar results are produced with a single
(AEP1) intermediate round (31%). For the runs with two
intermediate rounds (AEP2) the best model was identified
in 40% of all targets. However, for three intermediate
rounds (AEP3) the selectivity dropped to 30%.

Allowing two intermediate, un-scored GA rounds yield
the best results for model selection in this analysis. In this
setup, small energy barriers can be overcome, producing
some very good individual models with low energies.
However, once the evolutionary pressure is too low, as
seen for the AEP with three intermediate rounds, the
whole population drifts away and the quality of the low-
est energy model decreases.

In Figure 6 we present the coarse energy distributions for
two representative remote homology targets, T0300 and
T0353, and fine energy distribution for two high homol-
ogy targets, T0313 and T0329. Energies for the normal GA
and AEP1-3 are shown for each distribution. Generally it
can be seen that the energy funnel is less well defined for
lower homology modelling, T0300 and T0353, a known
observation for energy-based model ranking. The advan-
tage of the optimization process with AEP2 (green) is
illustrated in T0300. In this energy plot it can be seen that
more sampling of higher quality models is found for
AEP2 (green). Indeed, for 80% of all cases, including

http://www.biomedcentral.com/1472-6807/8/34

T0300, T0329 and T0353, AEP2 produced the best results
in the final selection. T0313 and T0329 are examples
where sampling with the standard GA is sufficient. In the
cases of T0300, T0329 and T0353 the problem of local
minima for AEP3 (blue) can be seen, where some individ-
ual models of poorer quality have very low energies com-
pared to all other sampled models. Sampling of the
normal GA is often not as thorough as for AEP, which can
be seen in T0300 and especially well in T0353, two harder
modelling targets. AEP1 is sampling more space than the
standard GA, but still less than AEP2 and produces infe-
rior results.

In order to further understand the effects of AEP we
applied several "normal GA" runs with adapted parame-
ters. First standard GAs were run with the same number of
rounds as given for AEP1-3; these runs produced signifi-
cantly inferior results compared to the standard GA. This
effect can be explained by the oversampling of local
minima, which could not be prevented even using statis-
tically derived constraints (constraining the less variable
structural regions). Additionally, we increased the popula-
tion size for normal GAs to 500, 1000 and 1500 models
per round, which increased the computational costs but
did not show any improvement in model quality for the
lowest energy ranked models. In general, it seems that the
AEP2 protocol gives the better balance between sampling
the variable regions without drifting too far away in
regions that are more structurally conserved; models that
undergo consecutive multiple mutations in the structur-
ally conserved regions are less likely to survive.

Below, we present two cases; the first where there is no
improvement using AEP; the second where significant
improvement could be achieved having two intermediate,
un-scored, sampling rounds.

Case |: T0380

For T0380 a B-strand mainly protein with 145 residues
had to be modelled. With the template search 17 different
templates were identified and, after backbone comple-
tion, the SC scores ranged from 0.292 - 0.761. Only one
high quality template was identified for the starting pop-
ulation. The best member in all final ensembles had a SC
score of approximately 0.77. For none of the four recom-
bination-setups were we able to select a model close to the
best input. The worst results were created using the AEP3.
All selected models ranged between a SC score of 0.609 to
0.632. Interestingly, recombination of non-repaired mod-
els enabled the selection of a final model with a score
close to 0.772. After backbone completion, the energy
function was not able to distinguish between a good
model derived from the best template, and an inferior
model, produced by the closing algorithm.
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Sampling with the normal GA and AEP. The coarse and fine energy (y-axis) versus the SC score (x-axis) is plotted for 10
equally scored rounds, of four representative targets: T0300 (coarse), T0313 (fine), T0329 (fine) and TO353 (coarse). This is
done to show the distribution of the models' coarse and fine energy scores; however, for all four cases both energy scores are
used for ranking, as described in the methods. For the two coarse energy plots the corresponding energy funnel for the fine
scoring scheme is also not particularly well defined, however, certain trends are easier to observe by plotting the coarse scor-
ing scheme for these cases (see text). AEPO (standard GA) is coloured black, AEP| red, AEP2 green and AEP3 blue. For all four
cases the energy of the native structure is shown as a red dash on the right y-axis of each graph. In the case of T0300 the
energy of the native structure is much higher than a large proportion of the models. This can explained due to a particularly
poor agreement between predicted and native secondary structure.

Case lI: TO31 1

In this case an all-helical protein with the length of 88 res-
idues has been modelled. The sequence search produced
a list of 165 potential templates. The top ranking align-
ment produced a model with a SC score of 0.600. The
best, repaired, input model for the recombination had a
SC score of 0.617. Applying the standard GA selected a
model of relatively poor quality with a SC score of 0.575.
However, allowing two non-scored intermediate rounds
improved the model beyond all initial input models and
aided selecting the best member of the final ensemble,

based on energy. For this final model, which has a SC
score of 0.637, two helical secondary structure elements
show improved positioning relative to the native struc-
ture. The native structure and the best models for the
standard GA and the two intermediate rounds GA are
shown superimposed in Figure 7. Clearly, the overall
topology of the non-standard GA (backbone RMSD 3.13
A) is improved relative to the standard GA model (back-
bone RMSD 7.81 A), having several helical elements in
the correct orientation.
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Figure 7

Superimposition of models and target for T031I. The lowest energy model for the standard GA run (purple) and the
lowest energy model for the GA with alternating evolutionary pressure (green) are superimposed onto the native structure
(light blue). It can be clearly seen that the majority of helical elements superimpose better on the model produced with alter-
nating pressure, resulting in a backbone RMSD of 3.13 A. The model produced with the standard GA has a backbone RMSD of

7.81 A to the native structure.

General improvement along the modelling pipeline

The results for the different pre- and post-GA conditions
are compared in Figure 8. Here we compare several possi-
ble modelling pipelines. The first pipeline considered,
consisted of model selection without application of the
GA. In this context the best final models were obtained
using the FSF on minimised and repaired models. This
result seems to contradict our observations on ranking
correlation; however, here the emphasis is on final model
selection without further refinement of the population.
For this setup, an improvement of 4.1% can be seen com-
pared to the models derived by the initial alignment.

For all pipelines using the GA with or without AEP, the
unrepaired models were pre-ranked and the resulting
model population was repaired before optimization.
Since it was shown that un-repaired models are easier to

rank, one might think that backbone completion should
be the final step after recombination. To test this we com-
pared both possibilities and it can be seen that performing
backbone completion before the GA rather than after pro-
vides an improvement of 1.4% SC score; this can be
explained by the additional sampling of the added sec-
ondary structure elements in the GA optimization.

The performances of the fine, the FSF, the combined and
DFIRE energy score are compared for final structure selec-
tion. The best results for the energy-driven GA were
obtained using DFIRE which improves the average SC
score by 2.4% compared to the fine, 1.4% compared to
the FSF and 0.5% compared to the combined energy
score. Using DFIRE for the final model selection improved
the average SC score for the normal GA from 0.590 to
0.593.
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Summary of average top ranks. Final results produced by different pipeline setups are shown. The flow of each setup is
defined by symbols, ordered from bottom to top. The following symbols are given: R — repair, M — minimise, FSF — selection
with FSF, FINE — selection with the fine energy function, COM — model selection with the combined energy score, DFIRE —
selection using the DFIRE energy function, AVG — selecting the centre of the clustered population, BEST — selecting the best
model, GA — application of the GA, GA AEP — application of the GA using alternating evolutionary pressure and GA OLD —
application of the previously described GA protocol. The best pipeline uses the AEP2 GA for sampling and the final models are

selected using DFIRE.

Use of AEP2 during recombination further improved the
final models' quality from 0.593 to 0.598 in SC score
using DFIRE for final selection. DFIRE also performs bet-
ter than the combined energy score for the final selection
in AEP2. This shows the importance of using a final model
selection scoring function that is not used for the optimi-
zation procedure.

Overall, an improvement of 6.8% is achieved for the opti-
mum modelling pipeline (AEP2 + DFIRE) compared to
the models derived from the first alignments. Comparing
these results to the SC scores of all models produced by
automatic servers during CASP7 for our 75 targets, the
normal GA would rank 12th and the AEP2 5th.

Consistent selection of the best SC score model would
enable a further improvement of up to 4%. Clustering, as
described above, was used as an alternative selection pro-

tocol to identify the most representative models, but pro-
duced inferior results; on average 4.3% lower than our
optimal setup. Visual inspection of the final model
ensembles indicated that the better structures are often
isolated from the largest clusters.

Overall, in 77.3% of all targets, the best model of the final
ensemble had a greater or equal SC score compared to the
best model of the initial input population. A similar trend
was observed for the lowest energy models, where 69.3%
of the lowest energy model of the final population had
greater or equal SC score compared to the lowest energy
model of the initial population. For 18.7% of all cases the
final lowest energy model was improved in SC score than
the best model of the initial input population, thereby
selecting or improving the best model.
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Finally, possible structural errors in the selected models
were investigated, using the ProSA web server [63] which
compares them to X-ray crystal and NMR structures. As
can be seen in Figure 9, all 75 models produced energy-
related z-scores comparable to the scores of X-ray crystal
structures. Furthermore, it has been shown for our high
accuracy CASP7 submissions that we ranked 8t of all sub-
mitting groups for the accurate prediction of the y1/y2
angles [19]. The move set of the GA has not been changed
for this work, and therefore these findings remain valid,
indicating that the conformational sampling performed
in internal coordinate space does not adversely affect the
side chain quality. However, as a further check of model
quality, a subset of randomly selected models plus the
final models selected with the best overall pipeline were
also tested for stereo-chemical properties using the PRO-
CHECK [64] software package. These models showed a

http://www.biomedcentral.com/1472-6807/8/34

quality comparable to the other top-ranking models sub-
mitted to CASP7.

Conclusion

In the present work we have performed a detailed analysis
of the different steps that form the pipeline of our tem-
plate based GA protein modelling approach. The results
shown here, clearly demonstrate that pre-ranking should
be applied to unrepaired models before backbone com-
pletion. Ranking of these incomplete models using the
novel FSF scoring scheme combined with minimization
was shown to provide the best ranking (13% improve-
ment compared to weighted sequence identity). This
method could be used to pre-select a final model in pro-
tocols where rapid modelling from single templates is
necessary.

T T T T T | T
XRAY N
® NMR
* MODEL
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g -
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* : |
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15+ |
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Figure 9

ProSA scoring of top models. All top models, selected with DFIRE, were checked using the ProSA web server. Here, the
z-scores are plotted against the protein size. Models are shown as black stars. As a control, the distribution of X-ray (light) and
NMR (dark) structures from the RCSB Protein Data Bank are shown. This plot has been adapted from the results of the ProSA

web server [63].
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DFIRE was found to be the most efficient way to select the
top model (0.593 SC score). The selectivity of DFIRE can
be further improved by introducing Alternative Evolu-
tionary Pressure (AEP) to the GA protocol (0.598 SC
score). Creating subtle movements in the protein models
using AEP, helps to select the better models by nudging
them to lower energy states.

When using GAs for protein modelling two different
effects can be achieved. First, GAs can be applied to
improve models beyond the best input structure. Second,
GAs can be used to ease the selection of the better protein
models by lowering their energies. However, lowering the
model's energy does not necessarily improve the struc-
tural score. In the approach used here, the GA was used to
improve selection of good models. Improvement beyond
or maintaining the best input model was seen for 77.3%
of all targets. However, these models could only be iden-
tified in 25% for the normal GA, 31%, 40%, 30% for AEP
with 1-3 intermediate rounds respectively.

The application of all the above strategies improves the
final average structural score by 7.4% compared to the
purely alignment-based pipeline. This was achieved by a
carefully balance between the number of sampled inter-
mediate structures (AEP2), the scoring functions used in
the GA and the final selection of models with DFIRE.
Overall, this pipeline would rank 5t, comparing these
results to the scores of all models produced by automatic
servers during CASP7 for our 75 targets

Further investigations and development need to be under-
taken in order to make full use of the GA/AEP conforma-
tional search engine. Other techniques will undoubtedly
be required to further assist conformational search
engines, such as GAs, to recover from local minima. In
general more work is required to refine scoring schemes so
that the best models can be consistently selected from the
ensembles of structures.
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