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Abstract
Background: Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) (EC 2.4.2.8) is a central
enzyme in the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida cannot
synthesize purines de novo and use the salvage pathway to synthesize purine bases, making this an
attractive target for antiparasitic drug design.

Results: The glycosomal HGPRT from Leishmania tarentolae in a catalytically active form purified
and co-crystallized with a guanosine monophosphate (GMP) in the active site. The dimeric
structure of HGPRT has been solved by molecular replacement and refined against data extending
to 2.1 Å resolution. The structure reveals the contacts of the active site residues with GMP.

Conclusion: Comparative analysis of the active sites of Leishmania and human HGPRT revealed
subtle differences in the position of the ligand and its interaction with the active site residues, which
could be responsible for the different reactivities of the enzymes to allopurinol reported in the
literature. The solution and analysis of the structure of Leishmania HGPRT may contribute to
further investigations leading to a full understanding of this important enzyme family in protozoan
parasites.

Background
Most known organisms synthesize purine bases by two
pathways. The de novo biosynthesis pathway builds the
purine nucleotide on 5-phosphoribosyl-alpha-1-pyro-
phosphate (PRPP). The salvage pathway recovers purines
(adenine and guanine) from the degradation products of
nucleotide metabolism and from hypoxanthine and xan-
thine. In contrast, parasitic protozoa such as the members
of the Kinetoplastida order are auxotrophs for purine bases
because the de novo biosynthetic pathway is completely

absent [1]. They are therefore dependent on recycling pre-
formed purine nucleotides and acquiring purines from
the host. Central to the salvage pathway are the phos-
phoribosyltransferases (PRTases). In Kinetoplastids in
general and Leishmania in particular, three PRTases are
involved in the recycling of purine bases by the salvage
pathway: hypoxanthine-guanine PRTase (HGPRT) (EC
2.4.2.8), adenine PRTase (APRT) (EC 2.4.2.7) and xan-
thine PRTase (XPRT) (EC 2.4.2.22) [2]. Several PRTases
have been characterized from different organisms, but
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crystallization and structure determination have been
accomplished for only two HGPRTs from Kinetoplastids,
the parasite Trypanosoma cruzi [3] and L. tarentolae
(present work).

PRTases are classified as Type I and Type II depending on
their structural and catalytic features. The best-studied
PRTases belong to the 'Type I' group, sharing a common
α/β-fold at the PRPP binding motif and a flexible loop,
besides a core region of at least five parallel β-strands sur-
rounded by three or more helices [4,5]. The 'Type II'
PRTases are composed of a mixed α/β N-terminal domain
and an α/β barrel-like C-terminal domain. Currently,
Mycobacterium tuberculosis and Salmonella typhimurium qui-
nolinate PRTases are the only known structures in this
group [6,7].

Considerable interest in the salvage pathway as a potential
target for chemotherapy has been stimulated by the differ-
ences in purine base metabolism between mammalian
hosts and protozoan parasites [2,8]. The creation of inde-
pendent Δhgprt, Δaprt and Δxprt null mutants by targeted
gene replacement in L. donovani cells revealed that all
three of the knockout strains generated are viable in the
mouse macrophage model [9]. However, the Δhgprt/Δxprt
double mutant L. donovani strain has less than 5% of the
wild-type capacity to infect macrophages, establishing
HGPRT and XPRT as essential for purine acquisition, par-
asite viability and infectivity in the mouse model [10].

L. tarentolae has been exploited as a model Leishmania for
a variety of molecular, biochemical and evolutionary
studies because of the ease of cell culture and genetic anal-
ysis of this species. In this paper we describe the three-
dimensional structure of a L. tarentolae HGPRT protein
and compare it with other HGPRT structures deposited in
the Protein Data Bank. In view of the close phylogenetic
relationship, the results will be of general significance as a
model for other species of pathogenic Leishmania.

Results and discussion
General description
The refined crystallographic model of the dimeric HGPRT
from L. tarentolae (PDB code – 1PZM) includes two pro-
tein monomers (chains A and B) in the asymmetric unit,
with one molecule of GMP bound to the active site of each
monomer. As summarized in Table 1, the overall quality
of the model is good. The N-terminal regions (residues 1–
19), the active site flexible loops (residues 95–107 from
chain A and 94–105 from chain B), and the C-terminal
regions (residues 202–210) containing a glycosome target
sequence, are absent from the model, since they could not
be located by inspection of the experimental electron den-
sity maps.

The monomer structure
Leishmania HGPRT is an α/β protein with the known
PRTase type I fold. It is composed of two domains: a core
domain containing the PRPP binding site [11-13], and a
hood domain that binds the purine base substrate (Figure
1).

The core domain consists of a central five-stranded paral-
lel β-sheet (strands β3, β2, β4, β5 and β6), with one α-
helix packed on each side of the sheet (helices α2 and α3).
A small 310 – helix (η2) is present in the core domain. The
central β-sheet is formed by two β/α/β motifs joined side-
by-side through the first strand of each motif (β2 and β4).
One further strand (β6) completes the central β-sheet. A
phosphate binding site is present in the loops between the
first β-strand and the α-helix of the β/α/β motif (called
loops I and III respectively). Loops I and III are involved
in binding the two terminal phosphates of PRPP [11-13].
L. tarentolae HGPRT Loop III residues Asp129, Ser130,
Ala131 and Thr133 interact with the GMP phosphate
group.

A flexible loop (loop II, residues 92–118), the function of
which may be related to the formation of the transition
state [11,14,15], comprises a region (residues 106–114)
with good stereochemical and statistical values, which
adopts different conformations in the two chains. In
chain B, the polypeptide partially forms an α-helix (αL)
similar to that in human HGPRT [4], while in chain A this
helix is not observed and the polypeptide conformation
resembles that found in T. cruzi HGPRT [3], Tritrichomonas
foetus HGXPRT [16] and E. coli HPRT [17]. The different
conformations adopted by these residues in the two mon-
omers are consistent with the flexibility generally
observed in the equivalent region (92–118) of other
HGPRTases.

The hood domain contains both the N- and C-termini
and is constituted by a small anti-parallel β-sheet with
three strands (β1, β7 and β8). A loop (loop IV, residues
175–195) connects the β-strand β6 in the core domain to
β8 in the hood-domain. This loop (IV) contains some of
the residues that bind the base of GMP by hydrogen bond-
ing with Val179 and Asp185 and by hydrophobic interac-
tion with Phe178. The other connection between the core
and the hood domain is made by a long α-helix (α1),
which ends with a small 310 – helix (η1). This helix
appears to be important for the structural stability of
HGPRT, since it interacts with all strands of the central β-
sheet and with helix α2 of the core domain and is also
involved in dimerization contacts.

The dimeric interface
The dimerization interface of Leishmania HGPRT, shown
in figure 2, is stabilized by a complex network of 45 non-
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bonded contacts and 12 hydrogen bonds involving 26 res-
idues from dimer A and 25 from dimer B. Most of these
residues are located in helix α2 and Loop IV. The 12
hydrogen bonds are formed between Lys66 (loop I) and
Val88 (strand β3), Glu192 (loop IV) and Val86 (strand
β3) and between residues Asp74 and Arg77 (helix α2),
Asp81 (helix α2), Arg194 (loop IV), Asp74 and Glu30
(helix α1). Asp74 and Glu30 form intra-subunit H-bonds
with Tyr182 and Arg194 (loop IV), respectively (Figure 2).
We observed a similar network of interactions in the T.
cruzi [3], T. foetus [16] and E. coli [17] homologues.

Residues of the dimerization region are also involved in
stabilizing the active site, particularly Arg191 (loop IV)
and Lys66 (loop I) (Figure 3), suggesting a structural
explanation for the fact that Leishmania HGPRT has been
found exclusively as a dimer in both the presence and the
absence of GMP [18]. The dimerization of HGPRT is an
important step in the organization of loops I and IV. This
is supported by mutants of the interface region in Plasmo-
dium falciparum [19] and T. cruzi [20], which show drasti-
cally reduced catalytic activity.

Table 1: Crystallographic data summary

Crystal parameters

Space group P212121
unit cell (Å) a = 58.1, b = 85.4, c = 87.6
Matthews' volume (Å3/Da) 2.3
solvent content (%) 46.6

Data reduction statistics(a)

high resolution limit (Å) 2.1
completeness (%) 94.9 (96.8)
Rsym 0.093 (0.414)
<I/σ(I)> 15.6 (3.8)
observed unique reflections 24801 (1930)
redundancy 5.7 (5.5)

Model refinement statistics
high resolution limit (Å) 2.1
Rwork 0.17
Rfree 0.21
number of protein atoms (2 monomers) (b) 2715 (19)
number of solvent molecules 243
number of GMP atoms (2 molecules) (b) 61 (13)
average isotropic B-factor (protein – Å2) 33.1
RMS deviations

bond lengths (Å) 0.02
bond angles (°) 2.0
torsion angles (°) 16.8
improper angles (°) 0.1

Ramachandran plot (%)
most favored 90.0
additionally allowed 8.7
generally allowed 1.3
disallowed 0

�real-space CC� (c) 0.94
σreal-space CC 0.07
No. Of residues with real-space CC < (�CC� – σCC) 37 (10.9%)
Directional atomic contact analysis (d)

all contacts Z-score 0.72
backbone-backbone contacts Z-score -0.24
backbone-side chain contacts Z-score 0.02
side chain-backbone contacts Z-score 0.15
side chain-side chain contacts Z-score 2.03

(a) Values between parentheses refer to the highest resolution shell (2.16--2.10 Å).
(b) Values between parentheses refer to atoms with multiple occupancy counted once.
(c) Correlation between (2D|Fo|-m|Fc|) and Fc Fourier maps around protein residues only.
(d) WHATIF second generation quality score.
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Structural water molecules in each monomer (H2O1 and
H2O18) stabilize the polar side chains of Thr37 and
Tyr182 by hydrogen bonds that are found in a hydropho-
bic region formed by the Trp34, Val33, Phe71 and Phe78
side chains. Moreover, Thr37 and Tyr182 in both Leishma-
nia and Human HGPRT form hydrogen bonds to neigh-
boring Val33 and Asp74, respectively. This water molecule
stabilization is exclusively observed in the Leishmania
structure; in homologous structures, Thr37 is substituted
by a hydrophobic residue.

Comparison of HGPRT structures
The known HGPRT structures of E. coli, S. typhimurium,
Thermoanaerobacter tengcongensis, T. foetus, T. cruzi, P. falci-
parum, Toxoplasma gondii and the human enzyme were
compared with L. tarentolae HGPRT. The sequences were
aligned (not shown) and the structures superposed.

A non-proline cis peptide bond between Leu65 and Lys66
from loop I is conserved in type I PRTases
[3,5,11,16,17,21], where the amide nitrogen of Lys66 is
exposed to the active site so that the peptide bond contrib-
utes two adjacent hydrogen bonds to the PRPP-metal
complex [11]. However, our structural comparison of
HGPRTs (Figure 3) suggests that the Lys66 cis conforma-
tion acts in the communication between monomers and
drives the Arg191 side chain toward the active site into the
correct position to bind PPi (Figure 3). Structures with a
cis conformation in complex with PRPP as well as with PPi
give strong evidence for this [11-14,22,23].

Loop IV is conserved among the HGPRTs and interacts
with the reaction product GMP through hydrogen bonds
(Val179 and Asp185) as well as aromatic π-π stacking
interactions (Phe178). An important contribution to the

Cartoon representation of L. tarentolae HGPRT tertiary structureFigure 1
Cartoon representation of L. tarentolae HGPRT tertiary structure. The two monomers present in the crystal asym-
metric unit are represented separately in the same orientation. Loops from the active site are labeled for monomer A and sec-
ondary structure elements are labeled for monomer B. Figures 1-6 were produced using PyMol [42].
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stabilization of GMP comes from Lys157 in strand β5,
which makes two hydrogen bonds with the nitrogen base
(atoms O6 and N7) (Figure 4). The two additional hydro-
gen bonds from Lys157 can be important in stabilizing
the GMP in the active site if only three hydrogen bonds are
formed between the nitrogen base and Loop IV. Moreo-
ver, Lys157 forms hydrogen bonds with Ala177 (Loop IV)
allowing Loop IV to be properly positioned to interact
with the base of GMP. Three other residues are conserved
in the HGPRT structures: Gly181 and Asp185 are involved
in Mg2+ binding and Arg191 is involved in PRPP or PPi
binding [11-14,22,23].

Three distinct HGPRT structural groups can be identified,
mainly on the basis of the different sizes of helix α2 in the
core domain and the C and N-terminus sequences of the
hood domain (Figure 5): (I) the group comprising S. typh-
imurium, E. coli, T. tengcongensis and T. foetus, which have
the shortest helices; (II) the trypanosomatids group
(Leishmania and T. cruzi); and (III) the P. falciparum, T.
gondii and human group, which have the longest helices.

The main differences between the Leishmania and human
enzymes are found in the interactions between the GMP
base and ribose and residues in the active site. Regarding
the GMP base, we observe that in human HGPRT the N2
atom contacts both the oxygen and the carbonyl groups of
Val187 and Asp193 (Loop IV), and the O6 atom forms a

hydrogen bond with the NZ atom of Lys157. In contrast,
the N2 atom of the GMP base in Leishmania HGPRT inter-
acts preferentially with Asp193, and the Lys157 NZ atom
interacts with both O6 and N7 of the base. The interaction
distances are shown in Table 2. The Cα superposed in 11
residues interacting with GMP in the active site of Leishma-
nia and human HGPRT result in an rmsd of 0.66Å. This
analysis shows that residues from Loop IV have the largest
rmsd and the guanine base shows a subtle orientation
shift in this region between the two HGPRTs (Figure 4),
particularly residues Asp129 and Asp185. The ribose of
GMP in both the human and Leishmania enzymes is in the
C3'-endo conformation used in the analysis of the bound
GMP. In human HGPRT, the O3 atom of the ribose forms
a hydrogen bond with OE2 of Glu133, while this hydro-
gen bond in Leishmania is formed with OD1 of Asp126.
These differences are the result of the C5* atom arrange-
ments (Figure 4), modifying the ribose position in the
active site. According to our comparisons, the Leishmania
HGPRT ribose is better stabilized by those interactions
than the human ribose (Figure 4 and Table 2).

Leishmania HGPRT inhibition tests
Purine and pyrimidine analogs obtained from commer-
cial sources were used to test the Leishmania HGPRT for
possible inhibitors. All compounds tested resulted in high
IC50 values, 8-aminoguanosine showing the best result
(Table 3). One compound in particular, the antibiotic

Cartoon representation of the dimeric structure of L. tarentolae HGPRTFigure 2
Cartoon representation of the dimeric structure of L. tarentolae HGPRT. (A) The GMP molecules in the active sites 
are also shown in dimeric structure. (B) Detailed representation (boxed region in A) of the saline bridges at the dimeric inter-
face. The hydrogen bonds between Tyr182 and Asp74 and between Gln30 and Arg194 are also shown. Figure B is rotated rel-
ative to A for better visualization.
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cefatoxime, has an IC50 value similar to allopurinol (Table
3).

HGPRT is a known activator of purine base analogs such
as 6-mercaptopurine and allopurinol, and has been pro-
posed as a target for antiparasitic chemotherapy [2,8].
Allopurinol is metabolized by HGPRT and incorporated
into RNA during transcription, resulting in its degradation
and inhibition of protein synthesis [24]. Allopurinol is
metabolized more efficiently by the parasite HGPRT than
the human homologue [25-27], prompting its evaluation
in the treatment of leishmaniasis [28] and Chagas disease
[25,29] with promising results.

The purine and pyrimidine analogs tested against Leishma-
nia HGPRT present values in the high micromolar range
(94–838 μM, Table 3). Allopurinol in particular has an
IC50 of approximately 0.2 mM and is a more potent inhib-
itor of Leishmania than of T. cruzi HGPRT [11,13]. In the
analysis of T. cruzi and human HGPRT with HPP (7-
hydroxy-pyrazolo [4,3-D]pyrimidine, a compound simi-
lar to allopurinol) bound to the active site [11,13], subtle
differences were observed in the binding that may be sig-
nificant for novel compound design [13]. The superposi-
tion of HPP-bound active sites of T. cruzi and human

HGPRT with GMP-bound Leishmania HGPRT showed that
the guanine in the Leishmania structure is located in the
same position as HPP in the homologous structures, with
subtle differences that are more pronounced when the
human and Leishmania homologues are compared (Figure
6). The differences between human and Leishmania
HGPRT, like those in the GMP binding residues, as well as
the GMP orientation and H-bond patterns in the active
site, suggest that potential inhibitors may affect the proto-
zoan enzyme differently from human HGPRT. This obser-
vation is supported by the high efficiency of incorporation
of allopurinol by the Leishmania and Trypanosoma
enzymes compared to human HGPRT.

Conclusion
The X-ray structure of L. tarentolae HGPRT with GMP
bound at the active site provides the template for compar-
ison with the human enzyme. The subtle differences
observed between the parasite and the human enzyme in
the contacts with ligand can be explored for the design of
potential parasite-specific inhibitors. The dimeric struc-
ture of L. tarentolae HGPRT shows an intricate hydrogen
bond network important for enzyme stability and
required for its activity. This analysis, together with the
inhibition experiments using purine and pyrimidine ana-

Comparison of different HGPRT structures in the region surrounding the cis peptide bondFigure 3
Comparison of different HGPRT structures in the region surrounding the cis peptide bond. (A) Superposed struc-
tures of HGPRT from L. tarentolae in gray (PDB 1PZM), T. gondii in purple (PDB 1QK5), human in magenta (PDB 1BZY), T. cruzi 
in green (DB 1TC2), E. coli in blue light (PDB), P. falciparum in blue dark (PDB 1CJB), S. typhimurium in orange (PDB 1J7J) and T. 
tengcongensis in yellow (PDB 1YFZ). The network of saline bridges is shown. (B) Comparison of different human HGPRT struc-
tures: the ImmGP-PPi-Mg complex in magenta (PDB 1BZY), which has a cis conformation, is superposed to the apoenzyme in 
blue (PDB 1Z7G) and the GMP complex in salmon (PDB 1HMP), which have a trans conformation.
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logs, has revealed differences in the binding efficiency of
the enzyme active site that could be explored in the devel-
opment of further inhibitors.

Methods
Protein expression, purification and crystallization
The recombinant HGPRT of L. tarentolae was over-
expressed in E. coli BL21(DE3), and purified and co-crys-
tallized with GMP in 19% PEG 4000, 20.6% isopropanol,
5% glycerol, 95 mM tri-sodium citrate, pH 5.6, as
described previously [18]. Crystals grown under those
conditions belonged to the primitive orthorhombic space
group P212121 (a = 58.1Å, b = 85.4Å, c = 87.6Å, α = β = γ
= 90°). Crystals of the free enzyme, which were also
obtained at 18°C in 15% PEG 6000, 100 mM citrate, pH
5.1, diffracted poorly, and the use of additives led to crys-
tals that diffracted only up to 3.0Å. Co-crystallization with
GMP led to better-diffracting crystals up to a resolution of
2.1Å and these were used to solve the atomic structure of
Leishmania HGPRT.

Data collection and processing
L. tarentolae HGPRT crystals were transferred to a cryopro-
tectant solution without GMP, obtained by diluting the
crystallization reservoir solution with 15% ethylene glycol

(final concentration), mounted on nylon loops, and
flash-cooled to 100 K. Diffraction data were collected at
the Brazilian Synchrotron Light Laboratory with mono-
chromatic X-rays (λ = 1.537Å) and a MAR345 image plate
as detector [18]. Two sets of consecutive diffraction
images (75 and 62 images respectively, with 1° rotation
per image) from the same single crystal were collected and
processed. The diffraction images were indexed and inte-
grated using DENZO [30]. SCALEPACK [30] was used to
scale and merge the data up to 2.1Å resolution. The data
reduction statistics are summarized in Table 1.

Structure solution and refinement
The crystal structure was solved by molecular replacement
using the deposited structure of the dimeric HPRT of T.
cruzi [3] as search probe (PDB entry 1TC1; 55% sequence
identity). X-ray data in the 20–2.3Å resolution range were
used and one dimeric probe was positioned in the asym-
metric unit during the molecular replacement procedure
(program AMoRe) [31]. The molecular replacement solu-
tion had a correlation coefficient of 57% and an R-factor
of 43.5%. The molecular replacement model was refined
iteratively in reciprocal and in real space using automated
procedures and visual manipulation. Reciprocal space
refinement was initially performed using the torsional

L. tarentolae HGPRT with bound GMP superposed on the human homologueFigure 4
L. tarentolae HGPRT with bound GMP superposed on the human homologue. H-bonds are shown as dotted lines. 
(A) Active site interactions of human (green) and Leishmania (blue) HGPRT with guanine. A purine base displacement is visible. 
(B) Interactions of phosphate group and ribose in the C3'-endo conformation. The arrows show differences in the arrange-
ment of ribose carbon C5*.
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Table 2: Interaction distances between active site residues and GMP

GMP Atom Protein Atom Residue
hHGPRTb

Distance (Å) Protein Atom Residue 
LHGPRTc

Distance (Å)

Phosphate
O1A(O3P)a OG1 Thr138B 2.7 OG Ser130B 2.6

N Thr138B 3.1 N Ser130B 2.9
O2A(O1P)a N Gly139B 2.7 N Ala131B 2.9

N Asp137B 3.0 N Asp129B 2.9
O3A(O2P)a N Thr141B 3.3 N Thr133B 3.0

OG1 Thr141B 2.9 OG1 Thr133B 2.6
N Lys140B 3.8 N Ile132B 3.5

Ribose
O3* OE1 Glu133B 2.9 OE1 Glu125B 3.7

OD1 Asp134B 4.7 OD1 Asp126B 2.8
Purine
O6 NZ Lys165B 2.3 NZ Lys157B 2.9

N Val187B 3.1 N Val179B 2.8
N1 O Val187B 2.8 O Val179B 2.8
N2 O Val187B 3.3 O Val179B 3.4

O Asp193B 3.2 O Asp185B 2.8
OD1 Asp193B 5.8 OD1 Asp185B 3.4

N7 OD2 Asp137B 3.6 OD2 Asp129B 4.4
NZ Lys165B 3.4 NZ Lys157B 2.9

a corresponding atoms in Leishmania HGPRT
b Human HGPRT
c Leishmania tarentolae HGPRT

Representation of three groups of superposed HGPRT structures in the same orientationFigure 5
Representation of three groups of superposed HGPRT structures in the same orientation. Each group is charac-
terized by a different size of the helix α2. (A) Group A includes structures of S. typhimurium (gray), E. coli (green), T. tengcongen-
sis (orange) and T. foetus (magenta). This last organism presents an intermediate size of the α-helix between group A 
(prokaryotes) and group B (trypanosomatids). (B) Group B includes structures of L. tarentolae (pink) and T. cruzi (blue) present-
ing an α-helix intermediate in size between prokaryotes and human. (C) Group C includes structures of P. falciparum (yellow), 
T. gondii (green) and human (blue), showing the larger α-helix. The PDB used are the same as in Figure 3, with the exception of 
T. foetus (1HGX) and the human (1HMP) structures.



BMC Structural Biology 2007, 7:59 http://www.biomedcentral.com/1472-6807/7/59
Table 3: IC50 values of purine and pyrimidine analogs for 
Leishmania HGPRT

Inhibitor IC50 (μM)

8-aminoguanosine 94
cefotaxime 180
allopurinol 194
azaadenine 210
formicin B 260
caffeine 336
5-bromodeoxiuridine 350
5-metilcitosine 412
Orotic acid 432
tubercidine 533
6-cloroguanine 838

simulated annealing procedure implemented in the CNS
program [32] and continued using REFMAC5 [33] from
the CCP4 suite (Collaborative Computational Project,
Number 4, 1994), using a maximum-likelihood target
with stereochemical restraints, two TLS [34] sets of param-
eters (one for each protein monomer in the asymmetric
unit), and individually restrained isotropic B-factors. A set
of structure factors representing 5% of the total experi-
mental data was excluded from the reciprocal-space
refinement target for purposes of cross-validation. Two-

fold non-crystallographic symmetry restraints were used
initially and gradually removed during the refinement.
The program O [35] was used to inspect the (D|Fo|-m|Fc|)
and (2D|Fo|-m|Fc|) difference Fourier maps and to manip-
ulate the model. Water molecules were added automati-
cally to the model on the basis of the difference Fourier
maps and distance criteria using the program ARP/wARP
version 5.0 [36] from the CCP4 suite.

The stereochemical quality of the crystallographic model
was constantly monitored during refinement using the
PROCHECK [37], WHAT IF [38] and O [35] programs.
The model/experimental map correlation was calculated
using the MAPMAN© program [39]. The refined TLS
parameters and the residual isotropic atomic B-values
were converted to atomic anisotropic displacement
parameters using the program TLSANL [40] from the
CCP4 suite.

Inhibition tests
The HGPRT enzyme inhibition assay was performed for 1
min in a 1 ml reaction volume containing 100 mM Tris-
HCl, 5 mM MgSO4, 1 mM PRPP, 0.04 mM guanine at pH
7.4 [41]. An extinction coefficient of 4.2 was used. Purine
and pyrimidine analogues were tested using six inhibitor
concentrations, in triplicate, to obtain the inhibition
curve and calculate the IC50 values shown in Table 3.

Active site superpositionFigure 6
Active site superposition. (A) Active site superposition of HPP-bound T. cruzi (1TC2) (yellow) with GMP-bound Leishmania 
HGPRTs. Only the guanine from GMP is shown. (B) Active site superposition of HPP-bound human (1D6N) (green) with Leish-
mania (blue) HGPRT as in A.
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