BIVIC Structural Biology st

Research article

Scoring predictive models using a reduced representation of
proteins: model and energy definition

Federico Fogolari*!, Lidia Pieril-2, Agostino Dovier3, Luca Bortolussi3,
Gilberto Giugliarelli4, Alessandra Corazza!, Gennaro Esposito! and
Paolo Viglino!

Address: 'Dipartimento di Scienze e Tecnologie Biomediche, Universita di Udine, P.le Kolbe 4, 33100 Udine, Italy, 2INAF - Astronomical
Observatory of Padova Vicolo dell'Osservatorio 5, [-35122 Padova, Italy, 3Dipartimento di Matematica e Informatica, Universita di Udine, Via
delle Scienze 206, 33100 Udine, Italy and “Dipartimento di Fisica, Universita di Udine, Via delle Scienze 206, 33100 Udine, Italy

Email: Federico Fogolari* - ffogolari@mail.dstb.uniud.it; Lidia Pieri - lidia.pieri@oapd.inaf.it; Agostino Dovier - dovier@dimi.uniud.it;
Luca Bortolussi - bortolussi@dimi.uniud.it; Gilberto Giugliarelli - giugliarelli@fisica.uniud.it;

Alessandra Corazza - acorazza@mail.dstb.uniud.it; Gennaro Esposito - gesposito@mail.dstb.uniud.it;

Paolo Viglino - pviglino@mail.dstb.uniud.it

* Corresponding author

Published: 23 March 2007 Received: 28 September 2006
BMC Structural Biology 2007, 7:15  doi:10.1186/1472-6807-7-15 Accepted: 23 March 2007
This article is available from: http://www.biomedcentral.com/1472-6807/7/15

© 2007 Fogolari et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Reduced representations of proteins have been playing a keyrole in the study of
protein folding. Many such models are available, with different representation detail. Although the
usefulness of many such models for structural bioinformatics applications has been demonstrated
in recent years, there are few intermediate resolution models endowed with an energy model
capable, for instance, of detecting native or native-like structures among decoy sets. The aim of the
present work is to provide a discrete empirical potential for a reduced protein model termed here
PC2CA, because it employs a PseudoCovalent structure with only 2 Centers of interactions per
Amino acid, suitable for protein model quality assessment.

Results: All protein structures in the set top500H have been converted in reduced form. The
distribution of pseudobonds, pseudoangle, pseudodihedrals and distances between centers of
interactions have been converted into potentials of mean force. A suitable reference distribution
has been defined for non-bonded interactions which takes into account excluded volume effects
and protein finite size. The correlation between adjacent main chain pseudodihedrals has been
converted in an additional energetic term which is able to account for cooperative effects in
secondary structure elements. Local energy surface exploration is performed in order to increase
the robustness of the energy function.

Conclusion: The model and the energy definition proposed have been tested on all the multiple
decoys' sets in the Decoys'R'us database. The energetic model is able to recognize, for almost all
sets, native-like structures (RMSD less than 2.0 A). These results and those obtained in the blind
CASP7 quality assessment experiment suggest that the model compares well with scoring
potentials with finer granularity and could be useful for fast exploration of conformational space.
Parameters are available at the url: http://www.dstb.uniud.it/~ffogolari/download/.

Page 1 of 17

(page number not for citation purposes)


http://www.biomedcentral.com/1472-6807/7/15
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17378941
http://www.dstb.uniud.it/~ffogolari/download/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Structural Biology 2007, 7:15

Background

Knowledge-based potential energy functions are extracted
from protein structures. Most often a statistical analysis of
database protein structures is performed. The potential
involving a variable (e.g. a distance or an angle) is esti-
mated from the distribution of that variable in the data-
base, compared with that in a reference state or a null
model [1-11]. Such potentials are often referred to as sta-
tistical effective energy functions (SEEFs).

Another class of knowledge-based potentials is based on
optimization, that is the set of parameters for the poten-
tial functions are optimized, for instance, by maximizing
the energy gap between the known native conformation
and a set of alternative (or decoy) conformations [12-22].
This approach is strongly dependent on the methods used
for building up decoys, and do not rely on an exact esti-
mation of the energy gap existing between native and
decoy structures.

The successful application of SEEFs to protein structure
prediction tasks has been repeatedly demonstrated (see
e.g. refs. [23,24]).

The statistical approach to the derivation of energy func-
tions will be followed here. The structural representation
of a protein s can be reduced to the coordinates of C,, C,
or side-chain centers which can be used to represent the
location of a residue [25]. Once its amino acid sequence a
is given, a function f mapping from the (s, a) space to the
d-dimensional space of descriptors is needed in order to
allow a proper reduced protein description. A descriptor
can be, e. g. the contact map between non-bonded resi-
dues, the solvent accessible surface area, a backbone or
sidechain dihedral angle, the packing density and/or any
other feature of protein structure. In practice the values
that a variable (e.g. a residue-residue distance or an angle)
can assume are discretized. The descriptors associated
with that variable describe the possible discretized values
of that variable and assume value 1 if the current value is
within the bin associated to the descriptor and 0 other-
wise. The potential function becomes therefore a map of
the d-dimensional descriptors ¢ to a real energy value. The
energy is commonly computed as a linearly weighted sum
of descriptors (for the notation we refer to ref. [26]):

H(f(s,a))=H(c)=w-c= Zwici,

where denotes inner product of vectors and ¢; is the
number of occurrence of the i-th type of descriptor. For
statistical knowledge-based potential functions, the
weight vector w for linear potential is derived by charac-
terization of the frequency distributions of structural
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descriptors in a database of experimentally determined
protein structures.

Statistical Effective Energy Functions

The Boltzmann's principle is usually invoked in order to
obtain empirical free energies out of the observed statisti-
cal frequencies of various protein structural features,
assumed to correspond to low energy states [1-3]. These
energy functions can include pairwise contact terms [1]
but also solvent terms [2], short-range and long-range
pairwise interactions [3-5,27], dihedral angles [28,29],
solvent accessibility, hydrogen-bonding [28] up to higher-
order interactions [30,31] and three-body nonadditive
interactions [32-34].

According to the Boltzmann principle, the distribution of
protein molecules among the microscopic states at the
equilibrium connects the potential function H(y) for a
microstate y to its probability of occupancy #(y). This
probability 7() can be written as:

(7) = exp[-H(»)/kT]/Z,

where k and T are the Boltzmann constant and the abso-
lute temperature measured in Kelvin, respectively, and Z
is the partition function. Following from Eq. (2) the
knowledge-based potential function H(y) corresponding
to the Boltzmann distribution 7(y) is:

H(y) = -kT In 2(3) - kT In Z.

In order to obtain a knowledge-based potential function,
the background energetic interactions H'() in the refer-
ence state must be defined. The effective potential energy
is then:

AH(y) = H(y) - H'(y) = —len[%y))] - kﬂn[él,

where 7'(y) is the probability of the descriptor yin the ref-
erence state. Z and Z' are both constants. Following Sip-
ple, it is usually assumed that Z ~ Z', so that Eq. (4)
becomes [3]:

n(y) ]
r

7 (y)
Due to the high dimensionality of the space of descriptors
a reasonable factorization of the probability ratio is
sought. Different variables are typically treated independ-
ently of each other, resulting thus in an energy function
that is the sum of many independent contributions. For
each descriptor ¢; the contribution to the energy is given
by w; = -kT In[ z(c;)/ 7'(¢;)]. Whether they are formalized in
a discretized or analytical way, contibutions to the energy

AH(y) = —kTIn|
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functions derived in this way are technically potentials of
mean force [35]. The effectiveness and the drawbacks of
the approach have been repeatedly pointed out [32]. First,
it is straightfoward that the choice of the reference state is
critical for developing knowledge-based statistical poten-
tial function. The reference state problem has been clearly
stated by Jernigan and Bahar [10] and discussed by Skoln-
ick and coworkers [36,37] who derived a potential for a
compact reference state with a bias for buried hydropho-
bic residues and compared it with previous contact poten-
tials.

Second the choice of descriptor must catch most aspects of
protein energetics, i.e. only native-like models should be
assigned low energy by the potential.

Third, the assumption of independence of different
potentials of mean force is clearly unrealistic. Notwith-
standing all limitations, statistical effective energy func-
tions are currently the most successful potential available
for describing protein conformations (see e.g. refs.
[23,24]).

Many Statistical Effective Energy Functions have been
derived according to different level of representation of
the protein, the features selected for defining the poten-
tial, the reference state and the actual way of derivation of
the potential. Since excellent reviews on this subject are
available in the literature we will not attempt an extensive
coverage of all the works published so far, but rather we
aim at discussing general aspects on this issue with respect
to the work presented here [8,38-40].

Earlier works focused on the preference of contacts
between specific residues in the database of available
experimental structures [1,2,41-43]. These and other
works pointed out that preferential interactions are one of
the most relevant features that must be taken into account
for describing protein energetics [38].

The demonstrated unlearnability of optimal potential on
simplified models of proteins points out that most likely
[17]:

i) the chosen protein representation requires a higher
level of detail;

ii) the actual residue-residue contact definition is crucial
for the accuracy of the potential [44]

iii) other features, like local conformational preferences,
must be taken into account for discriminating native
structure among decoys;
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Another important result, which is worth mentioning
here, obtained by Park and Levitt is that smoothing the
contact energy function improves the performance of the
potential in native structure discrimination among decoys
[45].

The derivation of statistical potentials requires the defini-
tion of a reference state. The finite size of database pro-
teins and the diversity of sidechains makes this task not
straightforward. This problem has been repeatedly
pointed out and recently novel approaches have been pro-
posed [10,27].

Concerning other features, like local conformational pref-
erences, it is well known that such preferences exist and
actually they form the basis of the success of secondary
structure prediction algorithms [46] and current single
sequence algorithm are able to predict secondary structure
with a 3-state accuracy of 70.3% [47].

Recently convincing evidence has been provided that, for
high resolution structures, the distribution of backbone
and sidechain dihedral angles may be used for assessing
the quality of predictive models [48-50] and may be suc-
cessfully used for supplementing contact potentials (see e.
g. ref. [51]). Moreover it has been pointed out that dihe-
dral angles are strongly correlated with the identity of
adjacent residues [52].

The development of the potential presented here was
motivated by lack of a reliable potential employing a
coarse grained representation of protein structures with
the following features:

- only two (or one for glycine) centers of interaction per
residues;

- smooth interactions e.g. by binning a range interval;

- off-lattice representation with a continuum range for all
conformational variables;

- inclusion of residue-dependent local conformational
potential term favoring observed preferences;

- inclusion of (at least) nearest neighbor correlation which
could reproduce local conformation correlation.

This term is fundamental for obtaining the proper average
length of helices, similar to nearest-neighbor coupling in
one-dimensional Ising models and it is not usually con-
sidered in available potentials.

Although most of the above listed elements are found in

available empirical potentials, an empirical potential that
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includes all these features at the same time is missing in
the literature. There are a number of empirical potentials
available, which are similar in spirit. For instance a similar
model, but including up to three centers of interactions
per sidechain, has been used successfully by Betancourt
[53]. The distance-based potential developed by Zhou
and coworkers achieves good performance with an even
coarser grained representation [54].

Other potentials include structural features of interaction
centers like orientational parameters for interactions (see
e.g. the UNRES potential [55-57] and the review by [40]).
Other potentials, used for simplified model simulations
in physics, include all backbone atoms as reviewed by
[38]. The statistical potential of Dehouck et al. includes all
backbone torsion angles (broadly classified into seven
classes) and a center of interaction for each sidechain [31].

Usage of the correlation between local amino acid confor-
mations has been shown to improve the native structure
recognition capability of scoring functions by [48].
Recently correlation between different sequence and
structure descriptors (associated with potentials of mean
force) has been built in a general framework by Dehouck
and coworkers. The best SEEF developed according to this
framework, entailing 30 energy terms, compares well or
better with most popular SEEFs [31].

The reduced representation proposed here consists of two
centers of interaction per residue, one for the backbone,
centered on C,atom and one for the sidechain (except for
glycine which entails only one center of interaction for the
backbone) centered on the center of mass of the sidechain
atoms.

The potential function entails energy terms for the pseudo
bonds between two consecutive C,'s and between a C,
and the center of mass of the relative sidechain, angular
energy terms for all three pseudo-bonded centers of inter-
action, torsional energy terms for all four pseudo-bonded
centers of interaction, a pseudo-torsional energy terms to
mantain proper chirality of sidechain orientation with
respect to the main chain, an energy term dependent on
the torsional angles of adjacent quartets of consecutive
C,'s and energy terms for all pairwise non-bonded inter-
actions. The pairwise interactions between centers of
interaction is derived here from database analysis and it
employs a reference state which takes into account the
finite size of proteins. The model and energy definition
are detailed in the Materials and methods section.

We termed this reduced representation of proteins
PC2CA, an acronym for PseudoCovalent structure with 2
Centers of interaction per Amino acid.

http://www.biomedcentral.com/1472-6807/7/15

The performance of this potential on all multiple decoy
sets in the Decoys'R'us database [58] is tested and the
results obtained in the Critical Assessment of Structural
Predictions (CASP7) model Quality Assessment (QA) cat-
egory are summarized.

Results

Analysis of the different energy terms

The average and standard deviation values of the different
energy terms have been evaluated on the top500H data-
base structures. For what concerns the covalent energy
terms (terms i to vi in Eq. (6)), only few structures, nota-
bly with short sequences, had significant deviations in the
energy terms connected with the positioning of the
sidechain center of mass (terms ii to iv in equation 6).

Particular attention has been paid to the torsional term
dependent on the local chain conformation and the term
describing the correlation between adjacent local confor-
mations. In order to make sure that these two terms could
describe reasonably well the known preferences for sec-
ondary structure elements, a Monte Carlo simulation was
run on the sequences of all the structures in the top500H
datasets. The energy was just the sum of the torsional
(term vii in equation 7) and correlation energy (term viii
in equation 8) and the temperature factor kT was set to 1.0
in order to match the derivation of the potential.

The range 30 to 70 degrees was assigned to helical confor-
mation, the range 170 to 240 was assigned to extended
conformation and all other conformations were assigned
to coil conformations. Every residue was assigned to the
most populated conformational range (actually averaged
on the preceding and the following bond, because all tor-
sional angles refer to bonds involving two adjacent resi-
dues). The experimental secondary structure was obtained
using the program DSSP [59] and converting the result
into three states (extended, helix, coil): the 'E' state was
left as the extended conformation; the 'H', 'G' and 'I' states
were converted into helix, and all other states into coil. No
post-processing of the results was performed.

Although this test is run on the same structures used for
deriving the potential, making it invalid for any quantita-
tive assessment, the three-state accuracy of this simple pre-
diction procedure is 0.57 which is more or less what
expected for a single sequence method using only nearest
neighbor information.

It is interesting to assess the relative contribution of the
correlation term to this accuracy. The same test has been
repeated setting the correlation term to zero. The accuracy
dropped to 0.51. This was a confirmation that the correla-
tion term is indeed important for properly reproducing
local conformational propensities.
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Test on the multiple decoy datasets

The decoy sets available in the Decoys'R'us database
under the category 'multiple’ are sets where many alterna-
tive conformations are given for a single native structure.
The models are obtained with widely different methods
and offer therefore a significant challenge for free energy
estimators. The sets have different features which make
different measures of performance appropriate. The ten
sets which are currently available are shortly described
hereafter.

The set 4state_reduced contains alternative models for 7
different proteins. For each protein native-like conforma-
tions are present in the set and therefore some correlation
between rmsd and energy should witness the accuracy of
the energy function [45].

The two sets fisa and fisa_casp3 have been assembled by
the group of Baker using fragments via a simulated
annealing protocol [60]. For the protein 130 the structure
with pdb code 1ck2 has been used as the native structure.

The sets ig_structal, hg_structal and ig_structal_hires are
sets containing few models for many immunoglobulins
(ig) or globins (hg) built by homology modeling. Most of
the models have very low RMSD from native.

The set lattice_ssfit has been generated selecting and refin-
ing with an all-atom energy function coarse lattice models
[61]. The RMSD from native in the set is larger than 4 A
for all the eight proteins modeled.

The Imds set was built including information on second-
ary structure and models have been refined using a soft
core all atom model [62]. The set includes models with
RMSD from native lower than 5.0 A for 10 proteins.

The semfold test has been produced apparently by a frag-
ment insertion method [63]. This includes a very large
number (average of 12900) of decoys for each of the 6
proteins. Some models have RMSDs from native in the
range 3 to 5 A.

http://www.biomedcentral.com/1472-6807/7/15

The vhp_mcmd decoy set has been obtained by taking
snapshots of long molecular dynamics simulations start-
ing from the native structure and from four coarse grained
models obtained by Monte Carlo simulations. All confor-
mations have been energy minimized using the molecular
mechanics/generalized Born model [51].

The results obtained on the decoy sets are summarized in
tables 1 to 10. Since many of the target structures have
homologues in the top500H database, those which do
not have a significant similarity with the top500H set are
indicated by boldface characters (we used as a criterion an
E-value greater than 0.01 for the best alignment with
BLAST). No significant difference is apparent based on the
presence or absence of homologues in the top500H data-
set.

An energy versus RMSD plot for the 4state decoy sets is
reported in Figure 1.

There are a number of plausible reasons for failure in
native structure recognition, even for the best quality scor-
ing functions, as discussed by Shen and Sali [64]. In the
present case, in the few cases where the native structure is
not recognized the covalent energy of the pseudocovalent
structure is large showing that most likely the experimen-
tal model is not optimally refined. For instance in the
native structure of protein with PDB code 4rxn there the
distance between the C,of Glu 16 and the C,of Asp 17 is
3.19 A, much shorter than the average distance causing
the highest energy in the set for the corresponding energy
term. Similarly there are distorted geometries in the pro-
teins with PDB code 1ctf, 1bba and 1dtk.

Another likely reason for failure of native structure recog-
nition is the presence in the crystal structure of other
chains. This is the case for the short fragment of protein A
(chain C of PDB structure with code 1fc2) which is bound
in the crystal to an immunoglobulin domain.

In general NMR structures are more difficult to be recog-
nized. Refinement of NMR structures is strongly depend-
ent on the forcefield and protocol used, and this may
result in minor structural features which are not typical of

Table I: Performance evaluation of the energy function on 4state_reduced decoy set

Decoy set PDB id. rank native RMSD Z-score cc F.E.
4state_reduced | ctf 1/631 0.0 -34 0.59 58.7
4state_reduced 1r69 11676 0.0 -4.0 0.62 47.8
4state_reduced Isn3 1/660 0.0 -3.6 0.36 348
4state_reduced 2cro 1/674 0.0 -3.2 0.69 55.2
4state_reduced 3icb 1/654 0.0 -2.9 0.76 70.8
4state_reduced 4pti 1/687 0.0 -3.1 0.40 338
4state_reduced 4rxn 667/677 2.1 2.5 0.48 46.3
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Table 2: Performance evaluation of the energy function on fisa decoy set

Decoy set PDB id rank native RMSD Z-score cc F.E.
fisa 1fc2-C 1/501 0.0 -6.6 0.11 12.0
fisa Ihdd-C 1/501 0.0 -84 0.24 16.0
fisa 2cro 1/501 0.0 -7.3 0.17 220
fisa 4icb 1/500 0.0 -9.3 0.23 220

protein structures and give rise, in turn, to large energies
in the statistical effective energy function.

The most challenging decoy set appears to be the semfold
set which includes six targets and more than 10000 decoys
for each target. For five of the decoys native or low RMSD
decoys could be recognized, but the Z-score is rather low.
For the structure with PDB code 1khm the lowest energy
structure has a high RMSD from native, although there are
decoys with RMSD from native as low as 3.0 or 4.0 A. It is
remarkable that the term for CA CM interactions attains
the third lowest energy for the native structure but the
overall energy is only the tenth lowest energy beyond
structures with RMSD from native larger than 10 A. The
number of native-like structures (say with RMSD from
native less than 4.0 A) in the set is however limited, so it
is difficult to assess whether the failure can be ascribed to
the quality of the native structure, of the decoys or of the
energy function itself. For this reason we considered other
structures deposited in the PDB with the same sequence.
For the structure with PDB code 1zzj the energy (com-
puted on the same fragment modeled in the decoy set) is
lower than the energy of all decoys. This result witnesses
the quality of the energy function although the low energy
assigned to very different conformations poses an issue on
the robustness of the methodology. It is worth mention-
ing that the protein is associated with single stranded RNA
in the crystallographic structure, and this feature is not
modelled by the statistical effective potential.

The energy function performs also well on decoys which
are mostly native-like as in the decoy sets hg structal,
ig_structal, ig_structal_hires where the native conforma-
tion is recognized 13 times on 110 cases.

Moreover very low RMSD decoys are mostly selected as
the lowest energy conformations. For this sets it is interest-
ing that the correlation coefficient between energy and
RMSD is on average high (0.44) and for the hg_structal set
it is on average equal to 0.71.

The correlation between energy and RMSD is typically
found only at low RMSDs, in other words the energy for
grossly misfolded structures is not correlated with the
RMSD from the native structure, but should be correlated
with the RMSD from the local minimum energy confor-
mation. For sets where the whole range of RMSDs is rep-
resented the correlation coefficient should be positive and
significantly different from 0.0 and similarly the fraction
enrichment should be significantly larger than 10 percent.
Indeed this is the case for all 4state_reduced decoy sets
and for the vhp_mcmd sets, and on average for the
hg_structal, ig_structal, ig_structal_hires.

The overall ability of recognizing the native structure
among decoys including native-like structures is outstand-
ing for a model entailing only two centers of interaction
per amino acid, and compares well or is superior to more
complex models as judged by the results obtained with
many model quality assessment programs and reported
by Tosatto (see Table 3 in [50]). We report in table 11 a
summary of the data reported in the cited study by Tosatto
including the best performing potentials together with
our results, for the sake of comparison. The best Model
Quality Assessment Programs (MQAPs) considered here
are ProQ [65], Prosa II [66], Verify3d [67,68], AKBP [5],
DFIRE [27], RAPDF [4] and FRST [50].

Test on conformations generated by Rosetta
A test was performed by generating 100 conformations for
the small thermostable domain of the chicken villin head-

Table 3: Performance evaluation of the energy function on fisa_casp3 decoy set

Decoy set PDB id. rank native RMSD Z-score cc F.E.
fisa_casp3 Ibg8-A 171201 0.0 -4.5 0.26 283
fisa_casp3 1bl0 1/972 0.0 -3.1 -0.09 72
fisa_casp3 leh2 112414 0.0 -3.0 0.13 18.3
fisa_casp3 ljwe 1/1408 0.0 -5.6 0.10 15.0
fisa_casp3 130 171401 0.0 -5.6 0.06 13.6
fisa_casp3 smd3 171201 0.0 -44 0.06 14.2
Page 6 of 17
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Table 4: Performance evaluation of the energy function on hg_structal decoy set

Decoy set PDB id. rank native RMSD Z-score cc F.E.

hg_structal lash 1/30 0.0 -2.0 0.62 66.7
hg_structal I bab-B 3/30 0.8 -1.4 0.83 66.7
hg_structal lcol-A 1/30 0.0 -4.8 0.73 333
hg_structal lcpc-A 1730 0.0 -34 0.6l 333
hg_structal lecd 28/30 1.5 1.8 0.57 333
hg_structal lemy 3/30 0.8 -1.9 0.81 100.0
hg_structal Iflp 3/30 1.9 -1.5 0.44 333
hg_structal lgdm 1730 0.0 -3.0 0.82 100.0
hg_structal Ihbg 1/30 0.0 22 0.54 333
hg_structal Ihbh-A 2/30 1.1 -1.6 0.87 333
hg_structal Ihbh-B 5/30 1.0 -1.1 0.80 333
hg_structal lhda-A 2/30 0.5 -1.5 0.92 66.7
hg_structal Ihda-B 1130 0.0 -1.4 0.84 100.0
hg_structal I hlb 9/30 29 -0.4 0.55 333
hg_structal Ihlm 30/30 4.0 23 0.21 333
hg_structal I hsy 5/30 0.9 -1.3 0.82 66.7
hg_structal lith-A 1/30 0.0 2.6 0.78 66.7
hg_structal Ilht 30/30 0.8 3.0 0.41 66.7
hg_structal Imba 1/30 0.0 -1.7 0.72 333
hg_structal Imbs 30/30 1.8 22 0.52 66.7
hg_structal Imyg-A 1730 0.0 -2.0 0.82 66.7
hg_structal I myj-A 2/30 0.6 -1.8 0.86 66.7
hg_structal Imyt 1730 0.0 -2.3 0.72 66.7
hg_structal 2dhb-A 8/30 0.8 -0.8 0.85 66.7
hg_structal 2dhb-B 8/30 1.0 -0.7 0.83 66.7
hg_structal 2lhb 1/30 0.0 -2.6 0.71 333
hg_structal 2pgh-A 5/30 1.0 -1.2 0.91 333
hg_structal 2pgh-B 7/30 0.8 -0.8 0.85 333
hg_structal 4sdh-A 1/30 0.0 -3.6 0.70 333

piece using the software Rosetta which is one of the best
tools for ab-initio protein structure prediction. 100 struc-
tures have been generated and refined using the same soft-
ware. The average RMSD of the conformations with
respect to native is 3.6 A with a standard deviation of 1.1
A. The best model selected by the energy model proposed
here has 3.0 A RMSD from native. Perhaps more signifi-
cant is the correlation between the rank according to the
energy and the rank according to the RMSD which is 0.48.

PC2CA in CASP7

At the time this paper is being written the CASP7 experi-
ment has just closed (for a description of the CASP exper-
iment see ref. [69]). For 99 out of the 100 targets
experimental structures have been released. The quality
assessement category has been recently introduced in the
CASP experiment in order to evaluate by scoring functions
the quality of the predictive models obtained by servers.
The discussion reported hereafter is connected with the
methods adopted for assessment in this community-wide
experiment (see ref. [70] and forthcoming articles in Pro-
teins: Structure, Function, Bioinformatics).

Unfortunately models submitted by servers and evaluated
by quality assessement programs differ in the number of
residues modeled and in the level of detail, ranging from
only C_'s to all atoms for each amino acid. For this reason
a choice must be adopted for ranking the models which
takes into account these aspects.

Evaluation of predictions may be conducted using differ-
ent legitimate criteria. We discuss in the following the
ability of PC2CA to select native-like structures among
decoys.

In order to assess the performance of PC2CA we evaluate
the quality of best ranking models using the widely
accepted Global Distance Test Total Score (GDT_TS) crite-
rion [71]. In particular the "loss in GDT_TS" of the best
ranked model (i.e. lowest energy model) compared to the
best available model (according to GDT_TS) (see A. Tra-
montano's presentation at CASP7 available at [70]) gives
a good idea of the performance of an energy or scoring
model.

We wish to remark that no selection has been applied nor

on targets nor on models: all models were scored for all
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Table 5: Performance evaluation of the energy function on ig_structal decoy set

Decoy set PDB id. rank native RMSD Z-score cc F.E.
ig_structal Ibbd 57/61 2.1 |.4 0.11 0.0
ig_structal | bbj 61/61 1.2 3.6 0.28 0.0
ig_structal Idbb 57/61 1.4 I.1 0.43 0.0
ig_structal | dfb 47/61 2.0 0.4 0.48 0.0
ig_structal I dvf 28/61 0.7 -0.3 0.43 16.7
ig_structal leap 33/61 2.1 -0.1 0.39 16.7
ig_structal Ifai 4/61 22 -1.3 0.62 333
ig_structal I fbi 6l/61 1.8 6.0 -0.01 16.7
ig_structal Ifgv 50/61 1.4 0.8 0.48 0.0
ig_structal Ifig 6l/61 2.0 6.1 -0.03 16.7
ig_structal Iflr 6/61 1.9 -1 0.49 16.7
ig_structal Ifor 59/61 2.1 22 0.36 0.0
ig_structal Ifpt 29/61 1.7 -0.2 0.51 0.0
ig_structal Ifrg 5/61 2.1 -1.5 0.37 333
ig_structal Ifvc 54/61 4.1 0.9 0.07 16.7
ig_structal Ifvd 13/61 1.8 -0.7 0.42 0.0
ig_structal | gaf 35/61 1.7 0.1 0.43 333
ig_structal | ggi 58/61 1.7 1.2 0.39 16.7
ig_structal I gig 5/61 1.7 -1.4 0.43 66.7
ig_structal Ihil 5/61 0.9 -1.1 0.53 333
ig_structal Ihkl 25/61 1.6 -0.3 0.49 16.7
ig_structal liai 51/61 1.2 .1 0.44 333
ig_structal libg 40/61 4.1 0.3 0.14 0.0
ig-structal lige 17161 1.0 -0.6 0.49 16.7
ig_structal ligf 45/61 1.8 0.4 0.50 16.7
ig_structal ligi 23/61 33 -0.4 0.34 0.0
ig_structal ligm 14/61 1.5 -0.8 0.52 333
ig_structal likf 10/61 25 -0.9 0.50 16.7
ig_structal lind 2/61 1.2 -1.9 0.57 50.0
ig_structal ljel 59/61 1.3 2.2 0.36 333
ig_structal ljhl 46/61 29 0.5 0.32 333
ig_structal I kem 16/61 2.0 -0.6 0.52 16.7
ig_structal Imam 39/61 2.0 0.2 0.26 16.7
ig_structal Imcp 27/61 2.1 -0.3 0.27 0.0
ig_structal Imfa 60/61 34 1.4 -0.02 0.0
ig_structal Imlb 55/61 1.3 0.9 0.36 16.7
ig_structal Imrd 61/61 2.9 5.3 -0.21 0.0
ig_structal Inbv 34/61 2.0 0.1 0.39 333
ig_structal Incb 55/61 1.3 1.0 0.45 333
ig_structal Ingq 59/61 1.5 1.8 0.27 16.7
ig_structal Inmb 34/61 4.4 -0.1 0.15 0.0
ig_structal Insn 61/61 2.0 32 0.20 16.7
ig_structal lopg 49/61 1.7 0.6 0.46 333
ig_structal Iplg 32/61 1.5 -0.2 0.57 0.0
ig_structal I rmf 57161 1.7 1.7 0.35 16.7
ig_structal I tet 51/61 1.5 0.7 0.44 0.0
ig_structal lucb 18/61 1.6 -0.6 0.54 333
ig_structal Ivfa 2/61 2.7 -1.6 0.33 16.7
ig_structal lvge 31/61 39 -0.0 0.10 16.7
ig_structal lyuh 61/61 1.9 24 0.06 333
ig_structal 2cgr 49/60 1.4 0.5 0.45 16.7
ig_structal 2fb4 4/61 1.7 -1.5 0.43 50.0
ig_structal 2fbj 20/61 1.4 -0.4 0.48 0.0
ig_structal 2gfb 4/61 2.0 -1.5 0.40 50.0
ig_structal 3hfl 59/61 42 2.7 -0.29 0.0
ig_structal 3hfm 59/61 1.6 1.9 0.38 0.0
ig_structal 6fab 29/61 1.4 -0.1 0.48 0.0
ig_structal 7fab 57161 2.0 1.2 0.36 333
ig_structal 8fab 44/61 53 0.4 -0.01 0.0
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Table 6: Performance evaluation of the energy function on ig_structal_hires decoy set

Decoy set PDB id. rank native RMSD Z-score cc F.E.
ig_structual_hires Idvf 11720 0.7 -0.2 0.50 50
ig_structual_hires Ifgv 18/20 1.4 1.0 0.39 0
ig_structual_hires Iflr 2/20 2.0 -0.9 0.71 50
ig_structual_hires Ifvc 19/20 1.7 I.1 -0.13 0
ig_structual_hires | gaf 13/20 1.6 0.2 0.46 0
ig_structual_hires | hil 2/20 2.5 -0.7 0.54 50
ig_structual_hires lind 1120 0.0 -1.5 0.49 50
ig_structual_hires Ikem 920 2.0 -0.3 0.59 0
ig_structual_hires Imfa 19/20 3.2 0.7 -0.04 0
ig_structual_hires Imlb 18/20 3.7 09 0.35 0
ig_structual_hires Inbv 14/20 22 0.2 0.41 0
ig_structual_hires lopg 19/20 1.9 1.0 0.20 0
ig_structual_hires Ivfa 2/20 2.7 -1.2 0.33 50
ig_structual_hires lvge 13/20 4.1 0.0 -0.024 0
ig_structual_hires 2cgr 15/20 1.4 0.3 0.47 0
ig_structual_hires 2fb4 3/20 1.7 -1.0 0.48 50
ig_structual_hires 2fbj 10/20 1.4 -0.2 0.56 0
ig_structual_hires 6fab 12/20 2.1 0.0 0.46 0
ig_structual_hires 7fab 19/20 1.8 09 0.34 50
ig_structual_hires 8fab 13/20 5.6 0.4 -0.13 0

targets by our group. No consensus method nor align-
ment or template modeling has been used for scoring
models. The average loss in GDT_TS may be greatly
reduced by selecting homology modeling targets. Consid-
ering the consensus among predictors improves results in
many categories of predictions, as demonstrated in recent
CASP experiments.

Another important issue is that residues with incomplete
backbone or sidechain have been simply ignored in our
quality assessment predictions and therefore a large
number of models received very low score. In the depos-
ited quality assessments we ranked models according to
the energy per residue with a cutoff on the percentage of
modeled residues for half of the targets and according to
global energy for the remaining half. The energies for
models with different level of completeness are not
directly comparable and the chosen criterion had only the
purpose to single out best and most complete models.

Here we will discuss predictions based on the global
energy, but the results described here are however largely
overlapping with those deposited.

The presence of heterogeneous (regards to completeness
in length and heavy atoms) predictions made the correla-
tion between ranking and GDT_TS insignificant and, in
general, it impaired safe comparison of models.

The global energy appeared a reasonable criterion for
scoring best models but it was not designed in order to
maximize correlation of score rank with GDT_TS rank.

When the GDT_TS of the best models obtained from serv-
ers is compared with the GDT_TS of the best scoring
model according to PC2CA the results are outstanding
when one considers that the energy model employs only
two centers of interaction per residue. The average loss in
GDT_TS is 10.3 for all targets (10.0 and 11.9 for template
modeling and template free modeling targets according to

Table 7: Performance evaluation of the energy function on lattice_ssfit set

Decoy set PDB id. rank native RMSD Z-score cc F.E.
lattice_ssfit Ibeo 1/1998 0.0 -5.6 0.08 12.6
lattice_ssfit | ctf 1/2001 0.0 -6.0 0.03 16.0
lattice_ssfit Idkt-A 171999 0.0 -3.1 -0.01 1.6
lattice_ssfit Ifca 1/2001 0.0 47 0.04 9.0
lattice_ssfit Inkl 1/1998 0.0 -4.1 0.01 14.1
lattice_ssfit I pgb 1/2000 0.0 -4.7 0.04 10.5
lattice_ssfit Itrl-A 1/2000 0.0 -3.6 0.02 10.0
lattice_ssfit 4icb 1/2000 0.0 -4.4 -0.00 15.5
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Table 8: Performance evaluation of the energy function on Imds decoy set

Decoy set PDB id. rank native RMSD Z-score cc F.E.
Imds 1bOn-B 1/498 0.0 -3.3 0.05 18.4
Imds Ibba 501/501 45 214 -0.23 10.0
Imds lctf 1/498 0.0 -34 0.31 2.0
Imds ldtk 2/216 6.3 -2.5 0.21 333
Imds 1fc2-C 53/501 5.4 -1.3 0.17 24.0
Imds ligd 1/501 0.0 -4.0 0.10 6.0
Imds Ishf-A 1/438 0.0 -5.3 0.11 1.6
Imds 2cro 1/501 0.0 -7.7 0.13 20.0
Imds 2ovo 1/348 0.0 -32 0.11 5.9
Imds 4pti 1/344 0.0 -3.5 0.02 14.7

the assessors' classification, respectively). When the best
scoring model is compared to the first model submitted
by most successful servers like Zhang server and ROBETTA
server the difference in GDT_TS is as low as 5.4 and 1.5,
respectively, and in general the average loss in GDT_TS
compared to the best MQAP predictor is 4.7. Comparison
with other MQAP predictors in CASP7 is not straightfor-
ward because only 7 groups (including ours) deposited
predictions for all targets. When we compare the average
GDT_TS of the best PC2CA scoring models with that of
other predictors (with the average performed on the same
predictions deposited by each group) PC2CA ranks 15th
out of 26 for template free modeling and 18th out of 26
for all models. The average loss in GDT_TS computed is
10.1, smaller than the average of 10.7 of all quality assess-
ment methods.

The best PC2CA scoring models have consistently higher
GDT_TS than the average GDT_TS computed on all mod-
els for each target (Figure 2).

Discussion

The reduced representation of proteins presented in this
work has two features which makes it attractive for appli-
cation in biophysical areas: it is simple and it is capable of
discerning native-like models among non native-like
models produced using a wide variety of methods. A blind
test performed in the CASP7 quality assessment category
confirms this conclusion and, in spite of its granularity,

our scoring potential ranks in the average of methods
using finer granularity and applying consensus proce-
dures.

The good scoring properties of the model however do not
guarantee that the same model can be used for folding
small proteins e. g. by Monte Carlo simulated annealing.
Indeed, the potential could have lower minima for con-
formations that are not explored by the algorithms used
for generating decoys or predictive models in CASP7. The
range of values for terms involving bonds, angles and
pseudodihedrals in the systems tested is limited. It is
likely that it would be possible to slightly increase the
energy of these terms, reaching non-physical conforma-
tions, and simultaneously decrease other, e. g. non-
bonded energy terms.

An obvious correction to the potential for model genera-
tion applications is the replacement of flat high energy
regions at large distances with increasing potential, in
order to prevent bonds to break. A less obvious issue is
that the weights of the different terms, in particular those
which have less variability in the decoy test sets, could
have to be changed when using the potential to generate
models. It is also likely that the correlation found between
torsional and bending energy terms in native structures
will need proper treatment. Such correlations are some-
how taken into account by the attractive potential
between CA's.

Table 9: Performance evaluation of the energy function on semfold decoy set

Decoy set PDB id. rank native RMSD Z-score cc F.E.
semfold lctf 1/11402 0.0 -4.7 0.13 19.7
semfold le68 5/11361 4.5 -2.3 0.09 21.0
semfold leh2 69/11442 0.3 2.3 0.06 133
semfold Ikhm 10/21081 1.4 -3.0 0.02 1.3
semfold Inkl 4/11662 0.2 -3.5 0.09 19.4
semfold I pgb 1/11282 0.0 -3.1 0.03 12.7
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Table 10: Performance evaluation of the energy function on vhp_mcmd decoy set

Decoy set PDB id. rank native

RMSD

Z-score cc F.E.

vhp_mcmd lvii 2364/6256

Another important point is that the pseudo-minimization
used in this work is a very rough approximation of a real
energy minimization procedure.

The ultimate test for a scoring potential function is how-
ever recognition of native-like structures among decoys
generated with the task of minimizing the same potential
function.

All these issues above are being considered for using the
potential in model generation applications under devel-
opment in our laboratories.

Conclusion

The results obtained on decoy sets and those obtained in
the blind CASP7 quality assessment experiment suggest
that the energetic model proposed here is suited for scor-
ing predictive protein models. In spite of its simplicity the
potential compares well with scoring potentials with
much finer granularity. Tests are underway in order to
assess its application for fast exploration of conforma-
tional space.

Methods

Selection of a protein dataset

The dataset of proteins used for the extraction of the sta-
tistical potential is Top500H [49]. This is a non-redun-
dant set of 500 hand-cured proteins resolved by X-ray
cristallography to 1.8 A or better resolution. There are few
Van der Waals clashes and few significant deviations from
ideal bond lenghts and angles and a maximum of 60%
sequence identity is allowed for each structure pair.

Derivation of a statistical potential

All protein structures in the Top500H dataset have been
read and converted in reduced form including only C,
atoms (CA), representing the backbone atoms, and the
center of mass of each sidechain representing the
sidechain itself (CM). Adjacency between amino acids
was checked by the requirement that, after sorting residue
numbers and residue insertions in the PDB file the dis-
tance between consecutive C,'s was in the range 2.7 to 4.3
A. Based on this reduced model a statistical effective
energy function has been derived from the analysis of the
Top500H dataset. Incomplete backbone groups or
sidechains have been discarded from analysis.

For this reduced model a pseudocovalent structure may be
defined where each CA is bonded to its sidechain center of

-0.6 0.57 35.0

mass (CM) and to the adjacent CAs [25] (Figure 3). Con-
sequently, following the standard terminology for molec-
ular mechanics forcefields, the energy model entails
bonded and non-bonded terms. CM is absent for glycine
residues.

The energy linked to the quality of the pseudocovalent
structure E_,, rather than to the quality of the conforma-
tion itself, is described by the sum of six terms (each
implying summation on index i):

Eo = i) Ey(d(CA(i),CA(i +1))) +
i) E(d(CA(i), CM(i))) +

%Ea (O(CA(i), CA(i +1), CM(i +1))) +

%Ea (O(CM(i), CA(i), CA(i + 1)) +
V) E,(6(CA(i), CA(i +1), CA(i + 2)))) +
vi)  E,($(CA(i), CA(i +1), CA(i + 2), CM(i +1))))

where the subscripts b, a and p refer to bond, angle and
pseudodihedral energies, respectively.

The domain of each bond, angle and pseudodihedral var-
iable considered has been divided into bins and the
energy corresponding to the k' bin has been obtained as

N,
E(k) = -log( N—k ), where N, is the number of counts in the
tot

k™ bin and N, is the number of total counts. Intervals
with N, = 0 were assigned arbitrarily a value E(k) = -
1

2log( ), which is equivalent to the usage of pseudo-

tot

counts ( ). The width of the bins and particular cases

tot
will be discussed in the following.

The first term (i) is the energy associated with the bond
between two consecutive CAs. The distribution of the CA-
CA distance depends essentially on the presence or
absence of a proline in the second position and therefore
only two distributions (with proline or any other residue
at the second position, respectively) have been consid-
ered. The bins are 0.025 A wide. The second term (ii) is the
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Figure |
Energy versus RMSD plots for the 4state decoy sets.
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Table | I: Comparison of different model quality assessment programs

4state_reduced lattice_ssfit Imds

MQAP Rank native Z-score Rank native Z-score Rank native Z-score
PC2CA 6/7 -2.5 8/8 -4.5 7/10 -1.3
ProQ 5/7 -4.1 7/8 -12.1 4/10 -37
Prosa Il 5/7 27 8/8 -5.6 6/10 -25
Verify3D 4/7 -2.6 7/8 -4.5 2/10 -1.4
AKBP 717 -3.2 8/8 -6.6 3/10 -0.5
DFIRE 6/7 -3.5 8/8 9.5 7/10 -0.9
RAPDF 717 -3.0 8/8 -7.2 3/10 +0.5
FRST 717 -4.4 8/8 -6.7 6/10 -3.5

energy associated with the bonds between CA and the
sidechain center of mass CM. This energy term is specific
for all amino acid types (other than glycine). The bins
considered are 0.1 A wide. The terms (iii) and (iv) repre-
sent the energy associated with the angles between the CA-
CM vector and the preceding and following CA-CA vec-
tors, respectively. These terms are specific for the amino
acid type of the residue involving the CA-CM vector. The

1
bins are 5 degrees wide. The 3 factor is used because the

terms (iii) to (vi) are not independent and clearly a single
angular term involving CM would suffice to restrain the
position of CM with respect to the trace of the protein.
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Figure 2

GDT_TS of the best PC2CA scoring models (black trian-
gles)and average GDT_TS of predictive models (red circles)
versus GDT_TS of the best predictive model for each target
in CASP7 MQAP.

1
The 5 factor in terms (iii) and (iv) does not apply for

terms involving the ends of the chain.

The term (v) represents the energy associated with the
angle among three consecutive CAs. The last term (vi) is
an energy term associated with the pseudodihedral
defined by three consecutive CAs and the sidechain center
of mass of the second residue. This term is needed in order
to mantain the proper orientation of the sidechain center
of mass with respect to the main chain plane.

Both terms (v) and (vi) are specific for the central amino
acid type. The bins considered are 5 degrees wide.

The sequence local conformational propensity is taken
into account with an energy which depends on the dihe-
dral angle defined by four consecutive CAs

E, = vi) E,(4(CA(i), CA(i + 1), CA(i + 2), CA(i + 3)))

where the subscript ¢ refers to torsional energies. The bins
considered here are 10 degree wide.

This term is specific for the two central amino acid types,
i.e. there are 400 different potentials of mean force
defined.

In order to take into account properly the occurrence of
secondary structure elements and other frequent local
conformation motifs, like turns, an additional term
describes the correlation between adjacent local confor-
mations:

E,,, = viii) E.(¢(CA(i), CA(i + 1), CA(i + 2), CA(i + 3)),
#(CA(i + 1), CA(i + 2), CA(i + 3), CA(i + 4)))

where the subscript c refers to correlation energies. If ¢ is
the dihedral defined by CA(i) - CA(i + 1) - CA(i + 2) - CA(i
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Figure 3
Pseudocovalent structure for a five-residue fragment of a
protein (PDB id ICTF, fragment 54-58).

+ 3), the correlation energy for the two-dimensional bin
(m, n) is defined as:

p(m, n) )

1B )

http://www.biomedcentral.com/1472-6807/7/15

where m and n refer to angles ¢;and ¢, , ;, respectively and
the probability p(m, n) is computed over all pairs ¢, ¢, , ;.

The energetics of non-bonded interactions among the
centers of interaction in the reduced model is described by
the sum of three terms:

Ep = ix) E(d(CM(i) - CM(}))) .11 +

x) E(d(CA(7) - CA())) jif>2 +
xi) B(d(CA(1) - CM()))jij1

The energy of the ki bin of the distribution is computed
as:

Bl = ~log( )
exp

where N,,,(i) and N, are the number of counts of centers

of interaction expected and actually found in the k" bin of
the distribution, respectively. The expected number of
counts in a given bin (N,,,) requires a proper treatment,
because proteins are finite systems and different types of
center of interactions have different dimensions. The
finite size of proteins will result in a decay of the counts at
long distances. In the absence of specific interactions and
neglecting excluded volume or correlation effects, the

expected number of counts within any given distance
A A .
ranger - ?T tor+ TT depends on the density of the rel-

evant centers of interaction in the dataset proteins and is
proportional to the spherical shell volume around the ref-
erence center:

Ar Ar 2
No(r——,r+—)=a*xr" *Ar
exp( 2 2)

The finite size of proteins makes larger distances less and
less probable. We found that a simple exponential damp-
ing factor describes this effect fairly well. For this reason
the expected number of counts in a bin at a given distance
r may be expressed as:

Noy(r) = a * 12 * exp(-(r/b)) * Ar

where 4, b and c are fitting parameters. These parameters
take account of both the density of the interaction centers
and finite size of proteins. Assuming that the interactions
among amino acids are short ranged, as it is usally
assumed, the fitting parameters a, b and ¢ may be esti-
mated from the observed distributions at large distances
(say at more than 16 A). This was done here and the effec-
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Figure 4

Orriginal histogram of counts for the distances between the
lle and Ala sidechain centers of interaction (bin width = 0.25
A) (upper panel). Computed radial distribution function
(lower panel).

tiveness of this approach is shown in Figure 4 where the
original counts' distribution and the computed radial dis-
tribution function are shown. This choice for the reference
state corresponds to a finite size randomly collapsed pro-
tein. It has the advantage, over other possible definition of
the reference state, of taking into account in a straightfor-
ward way the finite size of proteins and the different size
of amino acids. Note that the definition of average amino
acid interactions would be problematic in the presence of
very different radial distributions.

Computation of conformational energies

In order to properly evaluate conformational energies,
some energy minimization should be performed, because
the model at hand might have been not refined and minor

http://www.biomedcentral.com/1472-6807/7/15

deviations from standard geometry could result in large
unfavorable energy terms. We assumed that any given
conformation could relax toward lower energies, this is
even more true when simplified models are taken into
account. A dislocation of 10 degrees was therefore
allowed as far as angles and pseudoangles are concerned,
as well as a variation of 0.05 A for the distance d(CA(i),
CA(i + 1)) and of 0.2 A for the distance d(CA(i), CM(i)).
We remark that no real movement of the structure is
allowed, but rather we take the minimum energy value in
the allowed range for every contribution to the energy.
This virtual relaxation of the structure is able to reduce the
dependence of the energy on the simplification procedure
and on building details.

Another problem concerns the exact weigthing of the dif-
ferent contributions. Energy terms connected with the
covalent structure of the reduced model have been treated
ad hoc, in order to avoid that a structure built with all
angles and lengths at their energy minimum values could
get a very low energy. All these contributions (terms i to vi
in equation 6) have been reassigned as follows:

0 if E<E+og
E= E_E—GE(l,O—EXpE_E_O-E) leZE"r‘O-E
Of E

where E is the average energy contribution per residue
and oy, is the standard deviation in the top500H dataset.
Since there are eleven different terms contributing the
energy we decided to group together the covalent terms,
but considered separately the dihedral term, the correla-
tion term and the three non-bonded terms, and apply dif-
ferent weights to this terms. Setting the weights of the
covalent term to one we tested combinatorially weights
0.5, 1, 2, 4, 8 on all other terms. The set of all multiple
decoy sets in the Decoys'R'us database were tested and the
performance of the weighting scheme was judged by aver-
age RMSD from native of the lowest energy model and by
the average Z-score of the native structure. The final cho-
sen weights were of 1 for the covalent, the dihedral and
the correlation terms, and 8, 4 and 1 for CM-CM, CA-CA
and CM-CA non-bonded interactions, respectively. The
decoy sets more sensitive to the choice of weights was the
semfold decoy set containing the largest number of
decoys.

Performance assessment: decoy sets and quality measures
In order to test extensively the performance of the model
and associated energy function we considered all the
decoy sets in the multiple category in the Decoys'R'us
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database [58]. These decoys have peculiar features and are
representative of different realistic simulation scenarios.
The potential function has been also tested in the model
quality assessment program category of prediction at
CASP7 (see e. g. ref. [69]). Five performance measures are
considered for evaluation of the performance of the
model [72].

1. rank native, the ranking of the native structure among
the decoys. Ideally this should be 1, but for simplified
models it might be that native-like models score even bet-
ter than native structure.

2. RMSD, the RMSD of the best scoring conformation.
This is a direct assessment of the quality of the reduced
model and the associated energy function, provided that
decoys are well constructed and that there are native-like
decoys in the set.

3. cc, the correlation coefficient between energy and
RMSD. This may be low if the set is composed mostly of
misfolded structures.

4. Z-score, the Z-score of the native structure in the decoys
set. This parameter should measure the discriminative
power of the potential. It strongly depends on the quality
of the decoys in the set.

5. F.E., the Fraction Enrichment, that is the percentage of
the top 10% lowest RMSD structures that are found also
in the top 10% best scoring ones.

Availability and requirements
Parameters for the potential presented here are available
at the URL http://www.dstb.uniud.it/~ffogolari/down-

load/.
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