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Abstract

Background: Determining the complete repertoire of protein structures for all soluble, globular
proteins in a single organism has been one of the major goals of several structural genomics
projects in recent years.

Results: We report that this goal has nearly been reached for several "minimal organisms" —
parasites or symbionts with reduced genomes — for which over 95% of the soluble, globular
proteins may now be assigned folds, overall 3-D backbone structures. We analyze the structures
of these proteins as they relate to cellular functions, and compare conservation of fold usage
between functional categories. We also compare patterns in the conservation of folds among
minimal organisms and those observed between minimal organisms and other bacteria.

Conclusion: We find that proteins performing essential cellular functions closely related to
transcription and translation exhibit a higher degree of conservation in fold usage than proteins in
other functional categories. Folds related to transcription and translation functional categories
were also overrepresented in minimal organisms compared to other bacteria.

Background

The availability of complete genome sequences opened
up a new era in biology, providing a global and systems
view of the range of genome sizes in different organisms,
the presence or absence of genes involved in various cellu-
lar functions, the genes involved in particular cellular
functions, and the relative abundance of different gene
families. This new global view is creating major new areas
of research such as functional genomics [1]. At the time of
this writing, over 224 prokaryotic genomes and over 22
complete eukaryotic genomes have been sequenced [2].
Just as the field of sequence genomics has yielded com-
plete genome sequences for a variety of organisms, the
field of structural genomics aims to provide structures for

the complete array of biological macromolecules found in
nature, [3-7]. The first phase of structural genomics
focused only on proteins (not RNAs), and has proven to
be an efficient means of providing structural information
for new protein families [8-10].

After the first sequencing of a complete genome of Haemo-
philus influenzae [11], some of the earliest subsequent
genomes sequenced were from the "minimal organisms"
Mpycoplasma genitalium and M. pneumoniae [12,13]. Mini-
mal organisms have been the subject of numerous exper-
imental and computational genomic studies because of
the possibility of identifying the minimal complement of
genes necessary for sustaining life [14-16]. Because of
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Table I: Status of near-complete structural proteomes as of 22 February 2005. How many proteins may be assigned folds in near-complete proteomes? The status for five near-

complete prokaryotes are shown. E. coli, a well-studied bacteria that is not considered a minimal organism, is included for comparison.

Organism Total # # of soluble, # of soluble, # of # of folds % folds % folds #ofremaining #ofremaining # of remaining
of proteins globular non-globular membrane assigned assigned assigned soluble, soluble, non- membrane
proteins proteins proteins (of total) (of soluble, globular globular proteins
globular) proteins proteins
Candidatus 583 451 12 120 502 86.1% 95.6% 20 3 58
Blochmannia
floridanus
Wigglesworth 612 536 28 217 508 83.0% 94.8% 28 7 69
ia glossinidia
brevipalpis
Buchnera 572 446 39 87 495 86.5% 94.4% 25 9 43
aphidicola
(subsp.
Acyrthosipho
n pisum)
Mycoplasma 486 341 34 I 350 72.0% 87.1% 44 10 82
genitalium
Tropheryma 781 430 55 127 556 71.2% 87.0% 56 15 154
whipplei
(strain
TWO08/27)
Escherichia 4338 3130 146 1062 2945 67.9% 78.0% 688 76 629
coli
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Four Major SCOP Fold Classes
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Four major SCOP classes. The predominant form of secondary structure in each of the first four SCOP classes is shown.
Alpha helices are shown as red cylinders, and beta strands as yellow ribbons.

their small size, organisms with minimal genomes have
also been popular for structure and function prediction
[13,17-24]. The minimal organisms M. genitalium (~486
protein-encoding genes) and M. pneumoniae (~690 genes)
have also been the focus of structural genomics research at
the Berkeley Structural Genomics Center [25,26].

Other minimal organisms that have been sequenced more
recently include the aphid symbiont Buchnera aphidicola
(~572 genes) [27], the ant symbiont Candidatus Blochman-
nia floridanus (~583 genes) [28], the tsetse fly symbiont
Wigglesworthia glossinidia brevipalpis (~612 genes) [29],
and the Whipple's disease parasite Tropheryma whipplei
(~781 genes) [30]. Comparative analysis of the first three
symbiont genomes and M. genitalium has demonstrated
that the symbionts are closely related, sharing 313 orthol-
ogous genes (51-55% of each genome), and that they
share 179 genes with M. genitalium [31]. However, a
broader comparison of all five species, including T. whip-
plei, indicated significant variability in the functional rep-
ertoire of proteins in these organisms, suggesting that
minimal genomes are not the result of a unique reductive
evolutionary pathway, but the products of reductive evo-
lution in specific environments [32].

A recent survey of proteins from 238 complete genomes
revealed that fold assignments (approximate 3-D back-
bone structures) can be made for the majority of non-

membrane proteins of minimal organisms [33]. Statisti-
cally significant sequence similarity to a protein of known
structure allows homology (evolutionary relatedness) to
be inferred, thus enabling the fold of the homologous
proteins to be assigned even in cases where the degree of
sequence similarity is insufficiently high to allow accurate
modeling [34].

Fold assignment of a protein has implications for func-
tional annotation, because the link between molecular
function and structure is well known. Todd and col-
leagues showed that while the majority of superfamilies
display variation in enzyme function (i.e., molecular
function), the biochemical mechanisms (as represented
by the Enzyme Commission [EC] number) are almost
always conserved between proteins with 40% sequence
identity or above [35]. More recent work has shown that
conserved domain combinations, or supradomains, are
more likely to maintain a conserved molecular function
even at lower sequence identity [36]. A study in two pro-
teomes (yeast and Escherichia coli) found clear tendencies
for fold-function association across a broad range of
molecular functions [37]. The latter study also found the
fold distributions in the two proteomes surveyed did not
vary significantly from the average across all sequenced
proteomes, although the study was based on fold assign-
ments for less than 10% of the total number of proteins.
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SCOP class distribution of domains from near-complete proteomes
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SCOP class distribution in near-complete proteomes. The fraction of domains in each proteome belonging to each of
the first 7 SCOP classes is shown. "Unclassified" domains are from proteins annotated as homologous to a known structure
using Pfam, but not classified in one of the first 7 classes of SCOP (e.g., due to being in a superfamily solved since the SCOP
cutoff date of 15 May 2004). "Unsolved" domains are from proteins not annotated as homologous to a known structure. For
statistical analysis, each ORF in the latter two categories was treated as containing exactly one domain. "Unsolved" domains
are further divided into three categories based on predicted tractability in high-throughput experiments: "Unsolved, TM" are
predicted to contain at least one transmembrane helix, "Unsolved, LCCC" have no predicted transmembrane helices but at
least 20% of the sequence in low complexity or coiled coil regions, and "Unsolved, Soluble Globular" are predicted to be trac-
table in high-throughput experiments due to having neither of these features.

We now report that recent efforts in structural biology and
structural genomics have succeeded in enabling fold
assignments for over ~90% of soluble, globular proteins
in the five minimal organisms described above. In this
report, we survey the classes of protein folds found in each
organism, and examine the conservation in fold usage of
proteins in several broad categories of cellular function.
We find that the degree of conservation of fold usage var-
ies among cellular functional categories, with the most
conserved categories of proteins performing essential cel-
lular functions closely related to transcription and transla-
tion. Finally, we compare the degree of conservation in
cellular functions and fold usage among the five minimal
organisms and E. coli, a non-minimal organism.

Results and discussion

Near-complete coverage of soluble, globular proteomes of
"minimal" organisms

In Table 1, we show the percentage of proteomes that may
be assigned folds for five minimal organisms and for E.
coli, an example of a well-studied organism that is not
"minimal." For the minimal organisms considered in this
study, nearly all proteins annotated as soluble and globu-
lar may be assigned to a known fold. The aphid symbiont
B. floridanus has the highest coverage, at 96% of soluble,
globular proteins (431 of 451 proteins). 58 of the remain-
ing proteins in the proteome (10% of the proteome) have
unknown structure, but are predicted to have at least one
transmembrane helix. 3 additional proteins have
unknown structure and no predicted transmembrane hel-
ices, but 20% or more of their residues are in predicted
low complexity or coiled coil regions, and thus not easily
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SCOP class distribution of domains from proteins with "Protein Synthesis" function
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Wigglesworthia glossinidia
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Figure 3

SCOP class distribution of proteins with "Protein Synthesis' function. The fraction of domains in each proteome
from the TIGR role category "Protein Synthesis" belonging to each of the first 7 SCOP classes is shown. "Unclassified" and

"Unsolved" domains were counted as described in Figure |.

tractable in experimental structural studies. Overall, the
folds of 502 of 583 B. floridanus proteins (86%) may be
annotated by sequence similarity to a protein of known
structure. Other minimal organisms also have high struc-
tural coverage: 95% of soluble, globular W. glossinidia pro-
teins, 94% of soluble, globular B. aphidicola proteins, 87%
of soluble, globular M. genitalium proteins, and 87% of
soluble, globular T. whipplei proteins can reliably be
assigned folds. In contrast, only 78% of soluble, globular
E. coli proteins can reliably be assigned folds. The low
numbers of predicted transmembrane proteins in several
of the minimal organisms (e.g., only 87 of 572 B. aphidi-
cola proteins) is also notable; previous analyses suggest
that some transmembrane proteins (e.g., proteins with a
role in cell defense or transporters of diverse nutritional
sources) are less important to intracellular symbiotes than
to free-living bacteria [27].

alf fold class is the most common category of fold

For the proteins that could be reliably assigned folds, we
examined their structural classification in the SCOP data-
base [38]. SCOP is a widely used, manually curated data-
base in which protein structures are divided into domains,

which are classified in a hierarchy indicating different
types of structural and evolutionary relationships between
the domains. Domains classified together in a single
"family" or "superfamily" are hypothesized to have a
common evolutionary origin on the basis of sequence or
structural evidence. Superfamilies that share similar sec-
ondary structural features and topology, but for which
there is little or no evidence to suggest a common evolu-
tionary origin, are classified together at the "fold" level.
SCOP folds are grouped together in seven major "classes"
(all-a, all-B, o/B, o+P, multi-domain, membrane, and
small), based on common physical characteristics such as
the predominant type of secondary structure or the order
of connection of the different secondary structures (Figure
1). Note that the SCOP "multi-domain" class encom-
passes folds that are comprised of multiple domains that
individually would belong to different classes; individual
domains from multi-domain proteins are not classified in
the "multi-domain" class. Although we use the term
"fold" to refer to a protein's overall 3D backbone struc-
ture, we use the term "SCOP fold" to refer to a specific fold
classification within the SCOP database.
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SCOP class distribution of domains from proteins with "Cell Envelope" function
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SCOP class distribution of proteins with "Cell Envelope" function. The fraction of domains in each proteome from
the TIGR role category "Cell Envelope" belonging to each of the first 7 SCOP classes is shown. "Unclassified" and "Unsolved"

domains were counted as described in Figure .

The fraction of proteins found in each organism belong-
ing to each of these SCOP classes is shown in Figure 2.
Those proteins that could not reliably be assigned folds,
and those that were assigned a fold based on homology to
a protein not yet classified in SCOP, are described as
"Unsolved" and "Unclassified," respectively. For all
organisms, the highest proportion of SCOP folds are in
the o/ class, and those in the o/f and a+B classes
together comprise over half of the assigned SCOP folds.
This reflects the observation that the a/f class contains
some of the most functionally diverse "superfolds" that
act as scaffolds for a wide array of molecular or chemical
functions [39].

Usage of protein fold classes are conserved for key cellular
processes

In order to analyze how the annotated cellular function of
each protein correlates with its structure, we examined the
"functional role" annotation for each protein as provided
in the TIGR database [40]. We found that the distribution
of proteins among SCOP fold classes was highly con-
served within some roles and showed much more varia-
bility in others.

Figure 3 shows the fold class distribution of proteins in
the "Protein Synthesis" functional category across all 6
proteomes. The fraction of these proteins in each struc-
tural class shows little variability, with no more than a 4%
difference between proteomes. Furthermore, the proteins
in this functional category comprise a relatively large frac-
tion of the proteins in each proteome (99 proteins on
average, or 8% of the proteome). The extremely low vari-
ability is consistent with the idea that these proteins have
been fundamental part of cellular biochemistry since early
evolution, and are thus essential to any organism regard-
less of its environment.

In contrast, Figure 4 shows the fold class distribution of
proteins in the "Cell Envelope" functional category across
all 6 proteomes. This functional category is also highly
represented in each proteome (73.8 proteins on average),
but the proteins show a much higher degree of variation
in fold usage. This category contains the highest propor-
tion of unassigned folds, as well as a diverse array of
assigned SCOP folds: for example, 6% and 4% of domains
from W. glossinidia and E. coli cell envelope proteins
belong to the all-a structural class, while cell envelope
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Table 2: Variation within functional categories based on sequence and structure. Which functional categories show the most variation
in fold usage between organisms? The first column lists 17 TIGR cellular function categories, and an additional category composed of
all proteins in each proteome. The "fold-based variation" column is based on a calculation of the coefficient of variation in the number
of structurally characterized domains in each functional role in each of the first 7 SCOP classes (all-o, all-B, a/f, o+, multi- domain,
membrane, small). As described in Equation 2, the coefficient of variation is calculated separately for each of the 7 classes, and then
averaged across all 7 classes to produce CV,, ., c.re- The "sequence-based variation™ column gives the coefficient of variation in the
number of proteins in each category (CV,quences Equation 1). The "fold-based rank" and "sequenced-based rank" show the ranking of
functional categories based on the amount of fold-based and sequence-based variation, from lowest amount of variation to the highest.
Cellular function categories are ordered in the table according to their fold-based rank.

Category Average # of Proteins Fold-based variation Sequence-based varia- Fold-based Rank/
(CVructure) tion (CVsequence) Sequence-based Rank
Protein synthesis 99.0 0.141 0.100 171
Transcription 20.8 0.286 0.409 2/2
Purines, pyrimidines, 36.8 0.462 0.570 33
nucleosides, and
nucleotides
DNA metabolism 46.8 0.586 0.753 4/6
Protein fate 48.3 0.731 0.723 5/4
Amino acid biosynthesis 44.7 0.935 0.972 6/8
All Proteins 1228.7 1.061 1.242 7/12
Cell envelope 738 1.099 0.971 8/7
Central intermediary 27.5 1.228 1.113 9/10
metabolism
Energy metabolism 116.7 1.276 1.220 10/11
Fatty acid and phospholipid 20.0 1.328 1.014 11/9
metabolism
Biosynthesis of cofactors, 50.3 1.332 0.731 12/5
prosthetic groups, and
carriers
Cellular processes 62.0 1.364 1.301 13/13
Regulatory functions 345 1.427 1.940 14/18
Unknown function 115.6 1.659 1.865 15/17
Transport and binding 81.8 1.809 1.638 16/15
proteins
Hypothetical proteins 205.8 1.984 1.631 17/14
Unclassified 118.0 2.020 1.835 18/16

proteins from the other proteomes contain few or no all-
a structures. E. coli also contains a number of solved trans-

Cellular functions with most conserved SCOP fold usage
Previous comparative sequence genomic analyses of sym-

membrane structures, while other proteomes contain sig-
nificant numbers of proteins predicted to be
transmembrane proteins not detectably homologous to
any protein with a known 3D structure. M. genitalium and
T. whipplei contain the largest fractions of cell envelope
proteins that could not be reliably assigned a fold at this
time, although most of these M. genitalium proteins are
expected to be soluble and globular, while the majority of
such proteins from T. whipplei are predicted to contain at
least one transmembrane helix. The high amount of vari-
ability suggests that proteins in the "Cell Envelope" cate-
gory evolve rapidly in response to specific pressures in an
organism's environment, and different sets of these pro-
teins remain after reductive evolution in the different
environments occupied by the different species of mini-
mal organisms.

bionts have shown that the number of proteins in most
cellular function categories varies little between symbiont
proteomes, and that many of the most highly conserved
proteins have cellular functions related to information
storage and processing, particularly translation and ribos-
omal structure [31]. We calculated the coefficient of vari-
ation (CV) in the number of proteins in each functional
role category (N, for the first species, N, for the second
species, etc.), as shown in Equation 1.

StdeU(Nl . NG)

CV, = 1
sequence Mean(Nj ...Ng) ( )

Results are shown in Table 2. As expected, the category
with the lowest variation in the number of proteins is

"Protein synthesis," and the top three categories are all
closely related to transcription or translation.
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A) Variation in fold usage between organisms,
in different cellular function categories
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Variation in fold usage between organisms differs between functional categories. A) Variation in fold usage (CV,
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B) Variation in fold usage between minimal
organisms only
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struc-

wre) between organisms within each TIGR role category is shown for each category that represents a cellular function. The
data are also given in the "fold-based variation" column in Table 2. B) Variation in fold usage between minimal organisms only,

excluding E. coli data as per Table 3.

We also calculated the coefficient of variation in the
number of protein domains assigned to each SCOP class
(N} 411, for the first species in the all-a class, N, ., for the
second species in the all-a class, etc), then averaged that
data across all 7 structural classes, as shown in Equation 2.

2’7 stdev(Ny ggss - - No class )
class=1 Mean(Ny, gy - - N class)

7

CV,

structure =

(2)

CVirucure Was calculated separately for each functional
role category, and these data are shown in Table 2 and Fig-
ure 5A. The functional category with the lowest variation
in the number of domains in each structural class is "Pro-
tein Synthesis," as would be expected from Figure 3. How-
ever, there are some interesting differences between the
rankings based only on the CV e and the rankings

based on CV,.ur For example, fold usage of proteins

involved in biosynthesis of cofactors, carriers, and pros-
thetic groups varies to a higher degree than the variation
in total numbers of these proteins in each proteome. This
implies that the repertoire of specific functions in this
broad category is specialized to the particular needs of
each organism, even though the overall number of such
proteins varies little. As expected, the distribution of struc-
tures in "catch-all" classes such as hypothetical and
unclassified proteins are more varied than the distribution
of structures found in more well-defined functional cate-
gories.

We also analyzed the degree of variation using data from
only the five near-complete minimal organisms, exclud-
ing data from E. coli. Results are shown in Table 3 and Fig-
ure 5B. As before, fold usage of proteins in the "protein
synthesis" category shows the least variance of all func-
tional categories. The total genome size also slows rela-
tively little variation among minimal organisms, as has
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Table 3: Variation within functional categories in minimal organisms. Which functional categories show the most variation in fold
usage between minimal organisms? The data are calculated as in Table 2, but ignore data from E. coli. The structure-based variation

when E coli data are included (from Table 2) is provided for comparison.

Category Average # of Fold-based varia- Fold-based varia- Sequence-based Fold-based Rank/
Proteins tion (CV uceure) tion, including E. variation(CV, Sequence-based

coli quence Rank

Protein synthesis 95.2 0.108 0.141 0.039 171

Transcription 17.6 0.200 0.286 0.199 2/3

All Proteins 606.8 0.210 1.061 0.178 32

DNA metabolism 33.0 0.314 0.586 0.328 4/6

Fatty acid and 12.0 0.358 1.328 0.486 5/9

phospholipid

metabolism

Regulatory functions 72 0.402 1.427 0.465 6/8

Purines, pyrimidines, 28.8 0.405 0.462 0.284 7/4

nucleosides, and

nucleotides

Protein fate 34.6 0.560 0.731 0.303 8/5

Unknown function 27.8 0.776 1.659 0.555 9/12

Transport and binding 27.4 0.796 1.809 0.574 10/13

proteins

Energy metabolism 594 0.799 1.276 0.454 1177

Biosynthesis of 38.6 0.816 1.332 0.666 12/15

cofactors, prosthetic

groups, and carriers

Amino acid 29.0 0.844 0.935 0.782 13/17

biosynthesis

Cellular processes 29.8 0.853 1.364 0.636 14/14

Cell envelope 45.8 0.893 1.099 0.506 15/10

Central intermediary 15.4 0.952 1.228 0.552 16/11

metabolism

Unclassified 30.0 1.006 2.020 0.749 17/16

Hypothetical proteins 70.6 1.125 1.984 0.871 18/18

been observed previously [31]. However, some functional
categories show relatively more variation between mini-
mal organisms than between minimal organisms and E.

envelope,"

coli. For example, the cellular function categories "Cell
"Central intermediary metabolism,"
"Amino Acid Biosynthesis" all drop in rank (the relative

and

Table 4: Most common SCOP folds in minimal organisms. Which SCOP folds are most common in minimal organisms? The first
column gives the name and SCOP sccs identifier for folds classified in SCOP 1.67. The second column gives the total number of
domains assigned to each fold among the five minimal organisms. The third column is calculated as the average number of domains
among the five minimal organisms studied that were assigned to each fold, divided by the number of domains in E. coli assigned to the

same fold.
Fold Name Number Ratio
P-loop containing nucleoside triphosphate 319 0.23
hydrolases (c.37)
TIM beta/alpha-barrel (c.I) 115 0.14
OB (Oligonucleotide/oligosaccharide-binding) 108 0.34
fold (b.40)
Ferredoxin-like (d.58) 95 0.15
Adenine nucleotide alpha hydrolase-like (c.26) 92 0.40
Ribonuclease H-like motif (c.55) 79 0.16
NAD(P)-binding Rossmann-fold domains (c.2) 75 0.12
Class Il aaRS and biotin synthetases (d.104) 56 0.75
DNA/RNA-binding 3-helical bundle (a.4) 53 0.04
Reductase/isomerase/elongation factor 51 0.43
common domain (b.43)
Flavodoxin-like (c.23) 51 0.11
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Table 5: Over-represented SCOP folds in minimal organisms. Which SCOP folds are most over-represented in minimal organisms,
relative to E. coli? The first column gives the name and SCOP sccs identifier for folds from SCOP 1.67. The second column gives the
total number of domains with each fold among the five organisms. The third column is calculated as the average number of domains
among the five minimal organisms studied that were assigned to each fold, divided by the number of domains in E. coli assigned to the
same fold. 37 other folds also have a ratio of 1.0 and | representative in each minimal organism.

Fold Name Number Ratio
DNA primase core (e.13) 7 1.4
An anticodon-binding domain of class | 6 1.2
aminoacyl-tRNA synthetases (a.97)

Head domain of nucleotide exchange factor 6 1.2
GrpE (b.73)

Ribosomal proteins L23 and L15e (d.12) 6 1.2
DNA clamp (d.131) 16 .1
ValRS/IleRS/LeuRS editing domain (b.51) 15 1.0
S-adenosylmethionine synthetase (d.130) 15 1.0
Dihydrofolate reductases (c.71) 10 1.0
Ribosomal protein L6 (d.141) 10 1.0
beta and beta-prime subunits of DNA 10 1.0

dependent RNA- polymerase (e.29)

degree of conservation in fold usage among functional
categories) by 7 positions relative to Table 2, indicating
higher diversity of folds in these functional categories
among minimal organisms. In contrast, fold usage of pro-
teins in the "Regulatory functions" category shows rela-
tively less variation among minimal organisms than
between minimal organisms and E. coli. This suggests that
although the minimal organisms have lost many of the
regulatory pathways unnecessary for survival in their rela-
tively unchanging environments, they maintain a rela-
tively conserved set of proteins responsible for common
regulatory functions. A more thorough phylogenetic anal-
ysis of these proteins would be necessary to test this
hypothesis.

Common and overrepresented folds in minimal organisms
We examined the most common protein folds (as defined
in SCOP 1.67) in minimal organisms. Results are shown
in Table 4. Four of the eleven most common SCOP folds
(TIM barrel, nucleoside triphosphate hydrolase, flavo-
doxin-like, and ferredoxin-like) are among the nine super-
folds originally described by Orengo and colleagues as
scaffolds that can support a wide array of molecular func-
tions [39]. However, all have fewer copies in minimal
organisms than are found in E. coli.

Table 5 shows SCOP folds that are found in both minimal
organisms and in E. coli, which are represented at equal or
greater levels in the minimal organisms. Proteins with
these folds are presumably important for the survival of
the organisms, and were not eliminated during reductive
evolution. Five SCOP folds are present in slightly greater
numbers in minimal organisms than in E. coli. For exam-
ple, the DNA primase core fold (e.13) has 3 representa-

tives in M. genitalium: the DNA primase protein itself
(dnaE) and two conserved hypothetical proteins
(NP_072670 and NP_072719). All five folds are involved
in the critical functions of transcription, translation, or
DNA replication. Forty-two other SCOP folds are present
in the same numbers in each minimal genome as in E. coli.
The five with the largest number of copies per genome are
shown in Table 5. Some appear to be key metabolic
enzymes, while others are involved in transcription, trans-
lation, or DNA replication.

Interestingly, all 47 SCOP folds present in equal or greater
numbers in all minimal organisms as in E. coli are also
folds for which only a single superfamily is characterized
in SCOP; i.e., all proteins sharing the fold are also anno-
tated as evolutionarily related to each other. The case of
multiple superfamilies sharing one fold may arise from
two alternative causes: convergent evolution of two or
more families to one fold, or a single family that has
diverged enough that homology between different
branches of the family are no longer evident even from
structure (in this case, each branch would be classified as
a different superfamily in SCOP). These data imply that
proteins that play sufficiently important roles to avoid
elimination during reductive evolution have also not
diverged as much as other protein families due to this
same evolutionary pressure.

An additional set of SCOP folds found only in minimal
organisms and not in E. coli is given in Table 6. None of
these folds are found in all five minimal organisms, and
the proteins are not generally related to essential cellular
functions such as transcription, translation, or replication.
Some are presumably adaptations to the specific environ-
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Table 6: SCOP folds in minimal organisms but not E. coli. Which SCOP folds are found in minimal organisms, but not E. coli? The total
number of domains from all five minimal organisms that were assigned to each fold is given in the second column.

MHC antigen-recognition domain (d.19)
Thymidylate synthase-complementing protein Thy| (d.207)
Smc hinge domain (d.215)

Fold Name Number
alpha-2-Macroglobulin receptor associated protein (RAP) domain (a.l3) |
STAT-like (a.47) |
Annexin (a.65) |
DBL homology domain (DH-domain) (a.87) |
Non-globular all-alpha subunits of globular proteins (a.137) |
GatB/YqeY domain (a.182) 2
gamma-Crystallin-like (b.11) |
SMAD/FHA domain (b.26) 3
Sortase (b.100) |
C-terminal autoproteolytic domain of nucleoporin nup98 (b.119) |
Nucleoplasmin-like/VP (viral coat and capsid proteins) (b.121) 2
Hypothetical protein TM1070 (b.123) |
Hypothetical protein YojF (b.128) |
Amidase signature (AS) enzymes (c.117) 2
DegV-like (c.119) 2
Urease, gamma-subunit (d.8) |
Penicillin-binding protein 2x (pbp-2x), c-terminal domain (d.I I) 2
|
|
|
|

Polo-box domain (d.223)

ment of the organism, and several (e.g., viral coat and cap-
sid proteins, and the MHC antigen-recognition domain)
are not typically found in bacteria. These may represent
lateral gene transfers or erroneous annotations.

Conclusion

After five years of progress in structural genomics, near-
complete structural complements of the soluble proteins
of several "minimal organisms" are now known. A com-
plete set of fold assignments for nearly all soluble, globu-
lar proteins in a proteome is providing a global view of
how minimal organisms are using various protein fold
classes for different cellular functions and how the fold
usage in each class is conserved.

Data from near-complete structural proteomes can yield
hypotheses on protein evolution at a global level. Simple
statistical analyses of the variation in numbers of struc-
tures in each structural and functional category can shed
light on which functional categories are more or less con-
served in minimal organisms. For example, the functional
categories that showed the least variability in both
sequence- and structure-based analyses were involved in
essential cellular functions such as transcription and
translation. Furthermore, every SCOP fold identified in
equal or greater numbers in minimal organisms as in E.
coli was the product of a single protein family, indicating
that the proteins retained during reductive evolution of
minimal organisms also tend to be from slow-evolving
families. The latter observation was expected, as essential

genes in other species have previously been shown to
evolve more slowly than non-essential genes [41,42].

Such observations may be followed up with more detailed
studies based on phylogenetic modeling of protein fami-
lies [43] or the construction of atomic models of proteins
in those categories. Detailed atomic modeling of all pro-
teins in a biochemical pathway will be useful to study the
plasticity of these pathways in response to evolutionary
pressures imposed by different organisms' environments
[44].

Methods

Databases

Our database of known protein structures, knownstr, was
created on 22 Feb 2005. This database contained
sequences of every protein chain released by the PDB [45],
including those of obsolete entries, sequences of proteins
deposited in the PDB and made available while the struc-
tures were still on hold, and sequences from TargetDB
[46], for which a structure had been solved by a participat-
ing structural genomics center.

Pfam [47] classification of known structures was evalu-
ated using Pfam version 16.0. The HMMER tool (version
2.3.2) [48] was used to compare the Pfam_lIs library of
hidden Markov models to the knownstr database, using
the family-specific "trusted cutoff" score as a cutoff for
assigning significance.
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INTEGRS version 12 [2] was used for sequence data. The
Integr8 database contains data for 238 complete pro-
teomes, including 19 eukaryotes. The proteome for each
organism is composed of proteins curated from the Swiss-
Prot and TrEMBL databases. All proteins were annotated
with hidden Markov models [48,49] from the InterPro
[50] database. Since InterPro includes models from Pfam,
we used the supplied InterPro annotations to map Pfam
domains onto each protein. The version of InterPro used
to annotate Integr8 version 12 includes Pfam 16.0

SUPERFAMILY [51] version 1.67 contains hidden Markov
models based on superfamilies from the SCOP database
[38,52], also version 1.67. Recent versions of SUPER-
FAMILY [53] provide pre-calculated annotations of
genomes downloaded from NCBI with all the superfamily
models. We used these precalculated annotations to
assign SCOP domains to sequences from minimal organ-
isms and E. coli, as described below. The false positive rate
for SUPERFAMILY annotations is estimated to be less
than 1% [54].

The Comprehensive Microbial Resource [40] contains
annotations of TIGR role categories in its OMNIOME
database. We obtained TIGR role annotations from the
version of OMNIOME downloaded on 12 May 2005. Of
19 TIGR role categories, two ("signal transduction" and
"other categories") were found in low average abundance
in the proteomes we analyzed (averaging 0.7 and 9.0 pro-
teins per proteome, respectively), and these categories
were excluded from our analysis. The remaining 17 cate-
gories are listed in Table 2.

Mapping annotations

To use annotations from the SUPERFAMILY and OMNI-
OME databases, we mapped proteins from the Integr8
database onto corresponding proteins in the NCBI and
CMR Locus databases, respectively. In most cases, this was
done by mapping identical sequences from the corre-
sponding genome. However, in some cases, the gene or
ORF annotations of the same genomes varied between the
databases, resulting in different protein sequences. In
these cases, we used BLAST [55] version 2.2.9 to map each
Integr8 sequence to the most similar sequence in the other
databases. We mapped each protein in Integr8 that could
not be mapped by direct sequence match to the most sig-
nificant BLAST hit in the other database, provided the
BLAST E-value of the hit at least as significant as an empir-
ically chosen threshold of 10-19. An average of 16.3 pro-
teins in each proteome could not be mapped to any of the
functional categories in OMNIOME, and were not
included in this analysis.

http://www.biomedcentral.com/1472-6807/6/7

Predicting tractability in high-throughput experiments
We identified all proteins with a predicted transmem-
brane helix, or with 20% or more residues in low com-
plexity regions, or with 20% or more residues in coiled
coil regions, as likely to be intractable in high-throughput
experiments. Other proteins were annotated as soluble,
globular proteins. The 20% threshold were used in more
recent target selection rounds at the Berkeley Structural
Genomics Center [25]. Similar thresholds have also been
justified by recent comprehensive crystallization trials on
the Thermotoga maritima proteome [56].

The "seg" program [57] (version dated 5/24/2000) was
run on all sequences in Integr8 to identify putative low
complexity regions. The "ccp" program [58] (version
dated 6/14/1998) was used to predict coiled coil regions
in all sequences, and TMHMM 2.0a [59] was used to pre-
dict the locations of transmembrane helices. TMHMM can
distinguish between soluble and membrane proteins with
both specificity and sensitivity greater than 99%, but fre-
quently produces false positive predictions when signal
peptides are present. Default options were used for all
programs.
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