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Abstract
Background: Protein structure comparison is one of the most important problems in
computational biology and plays a key role in protein structure prediction, fold family classification,
motif finding, phylogenetic tree reconstruction and protein docking.

Results: We propose a novel method to compare the protein structures in an accurate and
efficient manner. Such a method can be used to not only reveal divergent evolution, but also identify
circular permutations and further detect active-sites. Specifically, we define the structure alignment
as a multi-objective optimization problem, i.e., maximizing the number of aligned atoms and
minimizing their root mean square distance. By controlling a single distance-related parameter,
theoretically we can obtain a variety of optimal alignments corresponding to different optimal
matching patterns, i.e., from a large matching portion to a small matching portion. The number of
variables in our algorithm increases with the number of atoms of protein pairs in almost a linear
manner. In addition to solid theoretical background, numerical experiments demonstrated
significant improvement of our approach over the existing methods in terms of quality and
efficiency. In particular, we show that divergent evolution, circular permutations and active-sites
(or structural motifs) can be identified by our method. The software SAMO is available upon
request from the authors, or from http://zhangroup.aporc.org/bioinfo/samo/ and http://
intelligent.eic.osaka-sandai.ac.jp/chenen/samo.htm.

Conclusion: A novel formulation is proposed to accurately align protein structures in the
framework of multi-objective optimization, based on a sequence order-independent strategy. A fast
and accurate algorithm based on the bipartite matching algorithm is developed by exploiting the
special features. Convergence of computation is shown in experiments and is also theoretically
proven.

Background
Proteins are macromolecules that regulate all biological

processes in a living organism, and their structures are
generally better conserved than sequences. Thus, identify-
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ing similarity of structures by comparing proteins could
yield valuable clues to their function, and can be
employed to fold family classification, motif finding, phy-
logenetic tree reconstruction and even protein docking. So
far, many algorithms have been developed for the struc-
ture alignment problem [1-3] including distance-based
methods and vector-based methods, such as iterative
dynamical programming [4,5], fuzzy matching method
[6], mean field equation approximation [7,8], distance
matrix alignment method Dali [9], combinatorial exten-
sion method CE [10] and genetic algorithm [11]. Despite
the relative success, there is much room for improvement
in terms of quality and computational efficiency of the
alignment [3,12]. On the other hand, from the viewpoint
of optimization, there are two criteria for distance-based
algorithms of structure comparison, i.e., maximizing the
number of the aligned atoms and minimizing the match-
ing distance between two protein's aligned atoms. Such
two objectives clearly have a trade-off relationship [7], i.e.,
minimizing the matching distance usually leads to
decrease of the number of aligned atoms whereas maxi-
mizing the number of aligned atoms will lead large
matching distance. In other words, the solutions of such
an alignment problem form a Pareto set [13].

With this clue, this paper presents a novel method in the
framework of multi-objective optimization [13], which is
called SAMO (protein Structure Alignment tool based on
Multiple Objective optimization). We define the structure
alignment as a two-objective optimization problem with
both discrete and continuous variables, i.e., maximizing
the number of aligned atoms and minimizing their root
mean square distance (RMSD) in the same time. The dis-
crete variables represent matching relation between atoms
whereas the continuous variables include a translation
vector and a rotation matrix with which one protein
matches the other as a rigid body. In particular, in contrast
to the conventional methods, we adopt a sequence order-
independent strategy in the formulation of structure
alignment problem. This allows us to detect similarity
between proteins in a more general way, e.g. revealing
divergent evolution, detecting circular permutations and
identifying active-sites (or structural motifs). In other
words, the similarity can be found not only between
homologous structures but also between active sites of
convergent structures, between different folding motifs,
between the scaffolds of unrelated proteins and between
recurring stable configurations in the interior of proteins.
As shown in this paper, we succeeded in finding the simi-
larity of divergently evolved proteins as well as that of
convergent proteins [14].

Although a pairwise protein comparison can theoretically
be formulated as a multi-objective optimization problem,
numerically it is still a complicated computational prob-

lem, in particular for the comparison of large-size pro-
teins. To alleviate such computation burden, we develop
a decomposition technique to divide the original problem
into two subproblems by exploiting the special features of
the protein alignment problem, i.e., one linear program-
ming subproblem (LPS) for the atom matching and one
weighted least square subproblem (LSS) for coordinate
transformation. A very efficient bipartite matching algo-
rithm is proposed for optimizing the LPS, whereas the LSS
is solved by the singular value decomposition (SVD) tech-
nique. By controlling a single distance-related parameter,
theoretically we can obtain a variety of optimal align-
ments corresponding to different optimal matching pat-
terns, which all belong to the Pareto set. In other words,
depending on how close we require to match a pair of pro-
teins, we can obtain a set of optimal alignment solution,
from a large portion matching to a small portion match-
ing. The main features for this paper are summarized as
follows.

• We propose a novel formulation to align protein struc-
tures, reveal divergent evolution, detect circular permuta-
tions and identify structural motifs in the framework of
multi-objective optimization.

• We develop an efficient and accurate algorithm based on
bipartite matching algorithm to solve the multi-objective
programming, and the convergence of the algorithm is
also theoretically guaranteed.

Although our algorithm can obtain an optimal alignment,
the resulting solution may not be globally optimal due to
the non-convexity of the protein structure alignment
problem. Generally, it is well known that the annealing
technique is effective to alleviate the influence of initial
conditions on the solution. This paper adopts an anneal-
ing procedure for expanding the searching region to
improve quality of solution. Other features of the model
include: according to information of the matching matrix,
the algorithm has the ability to identify circular permuta-
tions [7,8] and active sites; no heuristic parameter, such as
gap penalty, is required in our formulation. To demon-
strate the proposed method, we use several benchmark
examples [7,10,6] from Protein Data Bank as well as
SCOP database for numerical simulation. In addition to
solid theoretical background, numerical experiments
show significant improvement of our approach over the
existing methods in terms of both quality and efficiency.

Implementation
The method presented in this paper is mainly based on
the preliminary version in [15]. In this section, we formu-
late the pairwise structure alignment problem as a multi-
objective optimization problem with the similar notation
to that of [8,15].
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Preliminaries

Define nx and ny to be the number of atoms of two pro-

teins X = (X1, ..., ) and Y = (Y1, ..., ), where Xi =

(xi,1, xi,2, xi,3) and Yj = (yj,1, yj,2, yj,3) ∈ R3 (i = 1, ..., nx; j = 1,

..., ny) are the atom coordinates, which correspond to Cα

or Cβ atoms along the backbones. A square distance metric

between the chain atoms is adopted, i.e.

 is the square dis-

tance between the atom i in X and the atom j in Y. We view
each protein chain as a rigid geometric body in this paper.
The coordinate transformation of a rigid body is generally

expressed by a translation vector A ∈ R3 and a rotation

matrix R ∈ R3 × 3, i.e.,  = A + RXi for the atom i of the

chain X, where there are six independent variables for the
translation vector and the rotation matrix due to the rigid
body transformation. For a pairwise structure alignment,
we fix the coordinates of Y, which is assumed to be longer
than X. Therefore, after coordinate transformation, a
square distance between the atom i in X and the atom j in
Y is defined as follows

 = |A + RXi - Yj|2  (1)

A matching matrix S with binary elements sij is defined to
describe matching of two atoms for i = 1, ..., nx; j = 1, ..., ny:

Clearly S is an nx × ny matrix with only binary elements.
With allowing existence of gaps, each atom in one chain

must match at most one atom in the other. Therefore, we
have the following conditions.

We show a simple example in Figure 1 to illustrate a
matching matrix S with nx = 5 and ny = 7, where a row or a
column with all zeros means a gap. Then, the total square
distances T and the total number m for the aligned atoms
between the two proteins are respectively expressed as:

Multi-objective optimization for structure comparison
For structure alignment problem, there is generally a
trade-off relation [7,8] between the distance and the
number of aligned atoms. Therefore, a pairwise structure
alignment problem can be formulated as a two-objective
optimization problem [13] with discrete variables S and
continuous variables (A, R):

minimize T(S, A, R)  for S, A, R  (7)

maximize m(S)
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An example for two protein chains and their assignment matrix S with nx = 5 and ny = 7Figure 1
An example for two protein chains and their assignment matrix S with nx = 5 and ny = 7.
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subject to (3)–(4)  sij∈ {0,1}

where the first objective is to minimize the total square
distances of the aligned atoms, and the second objective is
to maximize the total number of aligned atoms for the
two proteins. Notice that there is no heuristic gap penalty
term in the formulation.

All of the optimal solutions for the two-objective optimi-
zation problem form a Pareto set [13]. The problem can
be solved by transforming the two objectives of (7) into a
single objective. One typical technique is the ε-method
[13], which alternates a positive scalar parameter λ to
obtain the Pareto set, with the following formulation.

From the definition of T(S, A, R) and m(S), the objective

is minimizing T(S, A, R) - λ2m(S). We can theoretically
obtain all optimal solutions belonging to the Pareto set,

by changing the parameter λ in the single-objective opti-

mization problem (8). Clearly, λ transforms the number
m into equivalent square distance, and controls the bal-
ance of T and m [15]. It should be noted that |A + RXi - Yj|2

- λ2 =  - λ2 implies that λ has the same physical meaning

and scale as the distance of dij. This paper exploits this

property to drastically simplify the computation of the

problem. If λ is small, the optimal alignment has a smaller
set of aligned atoms (m) but with a tight matching (T). In

contrast, for a big λ, we can have a bigger set of aligned
atoms but with a rough matching. Therefore, rather than
one solution, we can obtain a set of optimal solutions for

different pairs of (T, m) by changing λ. In addition to the
accurate form without any heuristic parameters of gaps in
the model, the objective function is a linear form of S, and
in formulation (8) the number m directly pairs with the
square distance T. Comparing SAMO with the conven-
tional superimposition-alignment approach, such as iter-
ative dynamic programming [4], there are mainly two
differences. One is that many of the conventional super-
imposition-alignment approaches use the heuristic objec-
tive function (e.g. using heuristic parameters in the
similarity criterion) or the heuristic gap penalty terms in
the formulation, which cause not only the poor quality of
alignment but also the poor convergence. Another one is
about the searching space, which usually is locally
restricted depending on the coordinate transformation or
superimposition strategy for the conventional methods,

whereas our algorithm theoretically has the ability for
implicit complete exploration of the entire space of align-
ments.

Decomposing structure comparison problem
We exploit the special features of the formulation to
decompose the optimization problem of the protein
structure comparison. Clearly, (8) is a mixed integer pro-
gramming for a given λ and has a special structure, i.e., all
of the terms in the constraints (3)–(4) are not related to
the continuous variables (A, R). Because of such a special
feature, (8) can be decomposed into two subproblems,
i.e., a weighted least square subproblem (LSS) that is to
find the best transformation of coordinates for the protein
X, and an integer linear programming subproblem (LPS)
that is to find the best superposition for the protein pairs.
The procedure of SAMO is an iterative computation of LSS
and LPS in succession. Next, we give detail explanation for
each subproblem and the solving technique.

Weighted Least Square Subproblem (LSS)
(9) is the LSS for solving (A, R) with fixed (S, λ)

which is a weighted least square problem of two 3-D
chains and can actually be solved analytically [7,6,16].
Notice that for the LSS, in addition to (3)–(4),

 is constant due to the fixed (S, λ), which

has no effect on the optimization and is eliminated from
the objective function in (8). Numerically, R and A can
also be obtained by singular value decomposition (SVD)
as shown in Appendix A.1 of [7]. There are six independ-
ent variables for LSS. LSS pulls the protein X closer to the
protein Y by computing the optimal rotation matrix R and
translation vector A. Note that LSS is not affected by those
coordinate pairs (Xi, Yj) with sij = 0, which are actually

known before the computation of each iteration. Such a
property is exploited in next section to drastically improve
the efficiency of LPS computation.

Integer Linear Programming Subproblem (LPS)
(10) is the LPS for solving S with fixed (A, R, λ)

minimize for 
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which is an integer linear programming problem because
of the binary variables S. But it can be exactly solved in
polynomial time. As a matter of fact, (10) is a maximum
weighted bipartite matching problem [17] which has the inte-
grality property, i.e. the optimal solution is ensured to be

integers even without the constraint sij ∈ {0,1}. Hence, the

discrete optimal solution of LPS can be obtained by
directly using any linear programming algorithm such as
simplex algorithm or interior-point method by relaxing

the binary variables as continuous variables 0 ≤ sij ≤ 1.

However, there exists a more effective algorithm based on
Hungarian method [17] to solve the maximum weighted
bipartite matching problem. It is easy to show that the
computational complexity of LPS with such a method is

O( (  + log )) where  = nx + ny and  = nx × ny.

Hungarian method is an efficient algorithm, but for large-
scale problems, such as proteins with several hundreds

amino acids, O( (  + log )) is still too high for fast
structure alignment. The algorithm for LPS can be further
improved by exploiting its special feature. Notice that the
objective function of (10) is to

 for the fixed (dij, λ).

Therefore for i = 1, ..., nx and j = 1, ..., ny, if dij ≥ λ, then sij =

0 must hold at the optimal solution. In other words, λ cor-
responds to the radius of the search region in the optimi-
zation process, and we can eliminate all sij corresponding

to dij ≥ λ from both the objective function and the con-

straints of (10). We can show that such a manipulation

significantly simplifies LPS, and reduces total variables 

from nx × ny to |{dij : dij <λ}| = O(λ2min{nx, ny}). An pro-

cedure for solving LPS based on Hungarian method with
the reduced variables can be found in [15], and the algo-
rithm ensures an integer solution without any approxima-
tion.

Computational procedure for SAMO
Basically, (8) is optimized by solving LSS and LPS itera-
tively. In such a spirit, the algorithm of SAMO is summa-
rized straightforward for a given λ.

• Step-0: Setting initial conditions:

- Assuming nx ≤ ny, fix the coordinates of Y, and move X to

their common center of mass by translation

. Set λ, annealing coefficients γ

and , and convergence criterion ε, which are all positive
numbers. Set all initial values of variables sij, and let the

iteration index t = 1.

• Step-1: Solving LSS:

- Solve (9) for (A, R) with the fixed S by the SVD algorithm
(see [7]).

• Step-2: Solving LPS:

- Solve (10) for S with the given (A, R) in Step-1 by the
procedure based on Hungarian method. Reduce variables
based on λ as explained in Section LPS.

• Step-3: Checking convergence:

- When |T(t) - T(t-1)| ≤ ε is satisfied, terminate the computa-
tion and output rms and m. Otherwise, let t ← t + 1.

• Step-4: Annealing process:

- Let λ(t) = λ + γt where λ is the target value,  ≥ 0 and

1 > γ > 0 (a cooling coefficient for annealing). Then go to
Step-1 with the updated S.

For Step-0, the original centers of mass for proteins X and

Y are  and  respectively.

rms or RMSD is defined as , where T and m are

expressed in (5)–(6). Step-4 of Algorithm is for the

annealing. That is, first a large initial λ(0) = λ +  is set so
that the algorithm performs a global search on a large
region to find a better matching in the earlier iterations.

Then, reduce λ(t) = λ + γt by γ to narrow the searching
region during each iteration until convergence. Although
introducing the annealing process requires additional
computation cost, it enlarges the searching region which
results in the improvement of alignment quality. Such an
annealing process is only activated when the quality of the
alignment is not satisfied. For the computation without

annealing, simply set  = 0.

Parameter selection
As discussed in previous sections, sij is possibly 1 at the
optimal solution only if dij <λ. If the distance of any two
atoms i and j is bigger than λ, no matching for such two
atoms is considered in LPS. In other words, only atom
pairs with the distance less than λ are further considered
in LSS for the translation and rotation operation because
of sij = 0 for any atom pairs with dij > λ. As a result, the
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aligned rms in LSS is less than λ. We can use this property
to obtain an alignment for a specific rms by setting an
appropriate λ but without searching the Pareto set com-
pletely. Empirically, we can obtain an optimal solution
with rms = r if setting λ = 2r ~ 3r, where rms is expected to
be r = 0 ~ 3 because an alignment for rms > 3 is not gener-
ally considered as a good matching. In other words, we
can give a list of solutions that covers all the reasonable
alignments with λ changing from 0 to 9 because the range
of rms for those solutions generally in [0, 3]. In the imple-
ment of the software SAMO, we set the default value of the
parameter λ as 6.0 according to this rule. Actually, in most
cases it always gives satisfactory alignment results. Con-
sidering that the distance is approximately 3.8Å for two
consecutive Cα atoms or Cβ atoms in a protein chain, the
reduced LPS generally has variables less than min{nx,
ny}(λ + 3.8)2/3.82, which is a much smaller Linear Pro-
gramming (LP) than the original LP with variables nx × ny.
For example, the number of variables is approximately
less than 400 × (6 + 3.8)2/3.82 ≈ 2660 for a pair of proteins
both with 400 amino acids and λ = 6, while there are 400
× 400 = 160000 variables in the original LP.

Convergence analysis
The decomposition of the algorithm actually ensures the
local convergence. We next prove the convergence of the
proposed algorithm. Let Ak and Rk be the solution of LSS
(9) at the k-th iteration with an assignment Sk-1. Then

Using Ak and Rk, we solve LPS (10), and let the solution be
Sk. Then there is

which shows that the value of the objective function T(Sk,
Ak, Rk) always decreases with the iteration of the compu-
tation. Noticing that the objective function has a special
structure and the solution space of Sk is a finite set,
decrease of the objective function implies that Ak + RkXi
will be in a bounded neighborhood of the point Yi. There-
fore, there will be a subsequence of the solution sequence
that converges to a cluster so that the termination condi-
tion will be satisfied to end the computation.

Note that although our algorithm can obtain an optimal

alignment for any specified λ, the resulting solution may
not be globally optimal because of the non-convexity of
the protein structure alignment problem. In other words,
depending on initial condition, the algorithm may result
in a different solution, as the same as most of determinis-

tic optimization techniques do. To improve the quality of
the solution, we can further adopt annealing technique to
enlarge the searching space [15]. Specifically, in our pro-

gram we set  = 10λ, and γ = 0.4 the annealing procedure
when the rms is undesirably large. In other words, the
radius of initial searching region with the annealing is
enlarged by 11 times.

Numerical simulations indicate that alignment of a pro-
tein pair typically requires 4–10 iterations, and the con-
vergence is always achieved from the numerical
computation viewpoint.

Figure 2 is a typical example of the alignment process for
a pair of proteins 1DHFa and 8DFR with translation, rota-
tion and matching of atoms. As shown in (a)–(d) of Fig-
ure 2, the protein 1DHFa rotates and translates by

approaching to 8DFR very fast with only four iterations,

(d) is the converged result, and  = 0 means that there is
no annealing process in the computation. Note that the
coordinate of 8DFR is fixed due to its longer amino
sequence according to the algorithm.

Results
The algorithm was implemented in C++ language. The
simulation for each structure alignment of a pair of pro-
teins generally requires a few minutes (most of them are
less than 10 seconds) on Pentium 4 CPU, which is consid-
ered fast. For example, alignment of proteins 1DHFa and
8DFR which have lengths 182 and 186 respectively can
find a long segment with length 182 and RMSD 0.72 in
only 6 seconds. The alignment results can be presented in
various output styles and saved for further analysis. The
detailed residue correspondence is provided and can be
saved in PDB file format for the purpose of the visualiza-
tion. The software SAMO [see Additional file 1,2,3] is
available upon request from authors or from [18]. We
have conducted the comparison experiments using doz-
ens proteins (benchmark examples) from major protein
families and folds, as shown in Table 1. The comparisons
are carried out both in same family, fold, and in different
family, fold. These results of comparison can be roughly
summarized as three categories according to their compar-
ison scores.

The first category is composed of the protein pairs with
lower RMSD value and larger number of matched amino-
acid pairs, which conserve the sequential orders (even
though no sequential order constraints are used). The
result of the proposed method indicates global similarity
between two whole structures. Because the geometric
match corresponds to a sequential order, protein pairs in
this category may imply evolutionary divergence. In the
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section "Revealing Divergent Evolution", we will compare
our method (SAMO) with the conventional methods and
further clarify the results.

In this paper, we analyze the convergent and divergent
evolutions by structure comparisons. Divergent evolution
is the process of two or more related species becoming
more and more dissimilar from a common ancestor. Sim-
ilarities in sequence and structure indicate that the two
species have a common ancestor. As they adapted to dif-
ferent environments, the structures of the two species
diverged. In convergent evolution, on the other hand,
unrelated species from different ancestors become more

and more similar in appearance or structure (not necessar-
ily in sequence) as they possibly adapt to the same kind of
environment. Convergent evolution takes place when spe-
cies of different ancestry begin to share analogous traits
because of a shared environment or other selection pres-
sure. Although it is generally difficult to distinguish such
two evolutions, our method in this paper can provide
some insight about this problem.

The second category is composed of the protein pairs with
higher RMSD value and smaller number of matched
amino-acid pairs. The result of the proposed method
mainly demonstrates local similarity between substruc-

An example of the alignment for two protein chains 1DHFa and 8DFRFigure 2
An example of the alignment for two protein chains 1DHFa and 8DFR. The iteration number of the algorithm is represented by 
t. (a) The two proteins 1DHFa and 8DFR are in the original coordinates, which are in the Cα representation of the backbone. (b) 
and (c) Relative positions of the two proteins during the convergence process. (d) The optimal alignment by our algorithm. The 

final alignment number m is 182 with rms = 0.7 at λ = 6.0 and  = 0.0.
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tures. These matches contain fewer matched amino-acid
pairs than the first category, and do not necessarily con-
serve the sequential order. Proteins with such substruc-
tural similarity may imply evolutionary convergence. At
first sight, it seems that it is a random match of small seg-
ments plus isolated residues. However close inspection
reveals that many of the matched amino-acid pairs per-
form some common biological functions. Since our com-

parison is conducted in a structural level without any
sequential order constraint, the match is completely 3D.
We define these recurring detected substructures as struc-
ture motifs or active-sites in this paper. They are "real" 3D
motifs, which are different from the conventional concept
of motifs defined by the multiple sequence alignment. In
the section "Identifying Active Sites", we will report the
ability of our method (SAMO) to find similarity of active

Table 1: Comparisons of structure alignment algorithms with rms distance and the number of aligned atoms m.

Protein Pairs SAMO Dali CE Lund
rms m λ rms m rms m rms m

Reductases 1DHFa - 8DFR 0.7 182 6.0 0.7 182 0.7 182 0.7 182
1DHFa - 4DFRa 1.8 156 6.0 2.0 154 2.0 154 2.0 156
1DHFa - 3DFR 1.6 159 6.0 1.7 158 1.7 158 1.7 159
8DFR - 4DFRa 1.9 157 6.0 2.0 155 2.0 155 2.0 157
8DFR - 3DFR 1.6 159 6.0 1.8 159 1.8 158 1.8 160
4DFRa - 3DFR 1.5 156 6.0 1.5 154 1.5 155 1.5 155

Globins 2HHBa - 2HHBb 1.4 139 6.0 1.4 138 1.5 139 1.4 139
2HHBa - 1MBD 1.5 141 6.0 1.5 139 1.6 141 1.5 141
2HHBa - 2HBG 1.6 140 6.0 1.7 138 1.7 136 1.6 138
2HHBa - 1ECD 2.2 131 6.0 2.3 129 2.6 128 2.3 130
1MBD - 2HBG 2.0 141 8.0 2.2 140 2.1 140 2.0 140
2HHBb - 1MBD 1.6 145 6.0 1.6 145 1.6 144 1.6 145
2HHBb - 2HBG 1.7 137 6.0 2.0 135 1.9 134 1.7 136
2HHBb - 1MBA 2.2 140 6.0 2.3 138 2.4 139 2.4 140
2LHB - 1MBD 1.4 137 6.0 1.4 135 1.6 137 1.5 137
2LHB - 2HBG 1.9 133 6.0 2.0 128 2.1 130 2.0 132
1MBD - 1MBA 1.9 143 6.0 1.9 142 1.8 141 1.9 143
1MBA - 1ECD 1.9 136 8.0 1.9 133 2.0 134 2.0 136
2HBG - 1ECD 2.4 129 6.5 2.6 129 2.6 125 2.5 129

Ten 'difficult' structures 1FXIa - 1UBQ 2.5 70 6.0 2.6 60 3.8 64 2.6 63
1TEN - 3HHRb 1.7 87 6.0 1.9 86 1.9 87 1.8 87
3HLAb - 2RHE 2.9 87 6.0 3.0 75 3.4 84 3.3 83
2AZAa - 1PAZ 2.5 82 4.5 2.5 81 2.9 84 2.4 83
1CEWi - lMOLa 2.3 83 6.5 2.3 81 2.3 81 2.2 82
1CID - 2RHE 2.3 98 6.5 3.2 97 2.9 97 2.5 97
1CRL - 1EDE 3.1 281 6.0 3.5 211 3.8 219 5.0 126
2SIM - 1NSBa 2.9 322 6.0 3.3 291 3.0 275 2.9 292

1BGEb - 2GMFa 3.3 110 7.5 3.3 94 3.9 107 3.3 104
1TIE - 4FGF 2.4 115 6.0 3.1 114 2.9 116 2.7 115

Different folds 1NSBa - 1TIE 3.1 156 6.0 - 6.4 88 -
1NSBa - 4FGF 3.0 118 6.0 - 5.8 72 -
1FXIa - 1CEWi 2.9 56 6.0 - 7.2 56 -
1FXIa - 1MOLa 2.9 70 6.0 - 5.8 48 -

Different Classes 1BGEb - 1TEN 2.8 82 6.0 - 7.4 40 -
1BGEb - 1PAZ 3.2 103 6.0 - 6.2 48 -
2GMFa - 1TEN 3.0 68 6.0 - 4.8 40 -

Circular permutation 1LED - 1NLS 1.1 213 6.0 1.9 119 1.1 112 -
2PIA - 1AXJ 3.3 118 6.0 3.49 36 3.3 62 -
Page 8 of 14
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sites or 3D structural motifs. The third category corre-
sponds to spurious matches between unrelated and dis-
similar structures. These may contain equivalences of
single α-helix, β-strands, or randomly matched isolated
residues. The protein pairs in this category have higher
RMSD and smaller number of matched amino-acid pairs,
which are not located in a local area. Those pairs can be
regarded as the negative samples identified by our method
(SAMO), which means that the two proteins are not sim-
ilar biologically, and can be excluded from the results by
checking biologically meaningful similarity of the
matched residues.

Circular permutation is a special phenomenon in struc-
ture database formed by mutation in the sequential order.
It provides challenge for the structure alignment methods
with sequential order constraint. We show the advantage
of our method (SAMO) in finding circular permutation
due to the sequence order-independent strategy in the sec-
tion "Detecting Circular Permutations". In addition, other
features of our method (SAMO) are also reported in the
section "Results", such as stable convergence and high
computation efficiency.

Revealing divergent evolution
In this paper, we compare the 3D protein structures in the
multi-objective optimization framework without the
sequential order constraint. This allows us to detect simi-
larity between protein molecules, and find out whether
those amino acids are on the surfaces or in the interior.
This truly 3D comparison approach overcomes a limita-
tion inherent in other conventional structure alignment
techniques which require that the linear order of the
amino acid sequences be conserved. In this section, we
will compare SAMO with the conventional methods, such
as Dali, CE and Lund.

First we emphasize that one of the basic roles of protein
comparison is to provide insight into evolution. i.e.
address the question of divergence or convergence of pro-
teins [14]. Originally, interest in automated structural
comparison methods arose from the need to superimpose
the structures of divergently evolved proteins. In such
comparisons, a strict sequential order conservation has
been enforced. In this paper, we show that both SAMO
and the conventional methods perform well for the com-
parison of divergently evolved proteins (in the first cate-
gory).

However, SAMO can deduce additional evidence of diver-
gent evolution when the results of a pure 3D structural
comparison reveal that sequential order is conserved. In
other words, SAMO "rediscovers" the dual sequence-
structure homology in divergent species. We will clarify
this point in the following examples. We adopt the same

benchmark examples as those of [10,7,6] from Protein
Data Bank [19] as a basic set for numerical simulation by
comparing with the several existing methods, i.e. Dali
[9,20], CE [10,21], and Lund [6]. There is no post process-
ing in our simulation, and Cα representation is adopted
for each protein chain. The convergence criterion is ε =
0.01 for all examples.

The simulation results are shown in Table 1, where Dihy-
drofolate reductases and Globins are considered easy for
alignment while other ten protein pairs are thought to be
very difficult to align [10]. For any protein pair, SAMO
gives a list of solutions corresponding to different λ from
small value to large value, which all belong to the Pareto
set. Since a different λ gives an optimal solution with dif-
ferent m and rms for the proposed method, we listed those
results with the corresponding λ, which are comparable to
others. According to Table 1, all of the aligned results by
SAMO are almost consistently better than others. The
comparison results in Reductases and Globins family
show that both SAMO and the conventional methods can
obtain good matches. All of the rms are lower than 2.5 and
almost all the residues are matched. The difference lies in
that our results are obtained without the sequential order
constraint. In particular, for the ten most difficult protein
pairs [10], our algorithm performs effectively and typi-
cally produces alignments with much lower rms distances
or longer chains. Since most of the matched amino-acid
pairs by SAMO conserve sequential order, the protein
pairs for "Reductases", "Globins" and "Ten difficult struc-
tures" of Table 1 belong to the first category, which indi-
cates that those pairs are evolutionarily divergent, and are
originally from the same family.

In addition, we also aligned protein pairs for different
folds and different classes, and compared the results with
other methods. The results indicated that our algorithm
can obtain an alignment with a larger matching portion
with a better RMSD for those protein pairs. "-" in the table
means that method does not give a result or the result is
not available. Simple analysis indicates that the conven-
tional methods perform well for proteins belonging to the
same family or fold, but it is difficult for them to detect
similarities of proteins belonging to different folds and
classes unless there are sufficiently large fragments of con-
secutive residues in both proteins. In contrast, our
approach overcomes these limitations. In particular, in
addition to aligning protein structures for the first cate-
gory (typically with a lower rms and more aligned pairs),
it is able to obtain matches of isolated residues not
belonging to contiguous fragments or belonging to non-
secondary structure elements, in particular, structure
motifs. To demonstrate that the aligned 3D structure
motif by SAMO has biological meaning, we give several
examples of detecting similarity for active sites in subsec-
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tion "Identifying Active Sites", which belong to the second
category. Furthermore, in the last part of Table 1, two cir-
cular permutation examples are given. The results show
that SAMO also outperforms other methods. At the same
level of rms, the number of matched amino-acid pairs in
SAMO experiments is almost double. More examples for
finding circular permutation are discussed in details in
subsection "Detecting Circular Permutations".

Detecting circular permutations
A circularly permuted protein arises from protein duplica-
tion and subsequent deletion of N- and C-terminal
regions in the corresponding duplicated units. The moti-
vation of emphasis on comparing such proteins is partly
originated in that circularly permuted proteins are com-
mon in the protein structure database. As reported in [22],
there are 47% of all protein domains are superimposable
to at least one other protein domain in the database after
their sequences are circularly permuted by a systematic
search for all protein pairs in the SCOP domain database.
Especially some of them are nonsymmetric proteins,
which become structurally superimposable to other pro-
tein only after a circular permutation of the sequence. In
such a way, their remote homology can be detected. Also
discovery of circular permutation at genome wide scale
will enable systematic studies of its contribution to the
generation of novel protein function and novel protein
fold.

Currently there are mainly two classes of the available cir-
cularly permuted detecting methods. One is sequence
alignment-based methods [23]. Its drawback lies in that it
can miss many circularly permuted proteins, because
either one or both fragments may escape detection by
local alignment if the two proteins are distantly related.
The second class is structure alignment-based methods. As
shown in Table 1, the conventional methods such as, Dali
and CE fail to detect circular permutation due to sequen-
tial order constraint in computation. One feasible way is
to use structure alignment in an order-independent man-
ner [7,24], which is promising to uncover many more
ancient permutation events. In this subsection, we will
focus on detecting circularly permuted proteins by com-
paring with the method of [24] on a larger set of examples.
These results are listed in Table 2. With the parameter A
taking the default value 6.0, SAMO outperforms the
method in [24] both in naturally occurring and human
made examples of permuted proteins. The match between
naturally occurring pair 1RIN and 2CNA is illustrated in
Figure 3.

Identifying active sites
Recognition of common substructural features (the pure
structure motif) that do not generally conserve the amino-
acid sequential order entails application of the sequence

order-independent methods. Examples of such features
may include similarities between active sites of convergent
structures, between different folding motifs, between scaf-
folds of unrelated proteins, and between recurring stable
configurations in the interior of proteins. In contrast to
the concept of motifs defined by the multiple sequence
alignment, we aim to identify structural motifs or active
sites which are "real" 3D motifs. As shown in this section,
SAMO succeeded in detecting the similarities of active
sites or structural motifs.

The structural similarity between the active sites of pro-
teins only can be recognized by visual inspection. Similar
to the results in [14], SAMO succeeded in finding the
rough similarity around the active sites of proteins auto-
matically, without any prior knowledge of their existence
and the information of side chains. For example in Figure
4, we give the comparison result of proteins β-trypsin
(1TPO) and actinidin (2ACT). At first sight, it seems that
it is a random match of small segments plus isolated resi-
dues (subfigure (a) of Figure 4, active sites are highlighted
in different colors). However close inspection reveals that
most of the matched pairs are located in the active sites.
The subfigures (b) and (c) of Figure 4 show the detailed
match of the detected active-sites by removing the aligned
isolated residues which are not biological meaningful.
Clearly the residues composing the active site come from
different regions of the protein chain. The similarity is
evaluated from pure structural viewpoint and can only be
detected in a sequence order-independent strategy. Our
findings are similar to the results in [14] (ref. Fig. 3) but
have more matched amino-acid pairs. In addition, for
another example (β-trypsin (1TPO) and proteinase K
(2PRK)) in [14], we also obtain better results.

The comparison with the order-independent structure
comparison method in [14] was conducted and the results
are listed in Table 3. The protein pairs are taken from the
Table 1 of [14], where some entries are removed due to
the structure data update of PDB database. Another crite-
rion (Score in Table 3) proposed in [14] is introduced to
assess the quality of protein structure comparison. The
Score is defined as: Score = m/((nx - m) + (ny - m) + m) = m/
(nx + ny - m), where m is the number of matched amino-
acid pairs between two proteins; nx and ny are the number
of amino acids of the two proteins X and Y respectively.
Clearly, the number of matched amino-acid pairs is
divided by the sum of the number of unmatched residues
in protein X, the number of unmatched residues in pro-
tein Y and the number of matched amino-acid pairs. This
score is designed to take into account the number of
matched amino-acid pairs and to penalize the difference
in sizes between two proteins. The comparison results
show that SAMO performs better when considering all
Page 10 of 14
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three criteria together: m (number of matched amino-acid
pairs), rms (root mean square distance) and Score.

Discussion
As demonstrated in the paper, SAMO has the following
features in addition to structure alignment: 1) detect spa-
tial similarity between evolutionary convergent or diver-
gent structures; 2) identify active sites (structural motifs)
and circular permutations; 3) reduce the computational
complexity and improve the comparison quality.

For evolutionarily related proteins, the alignment results
by SAMO show the strict sequential order. Hence, our

method (SAMO) not only can detect this kind of structure
similarity, but also can provide stronger evidence in favor
of divergent evolution comparing with the conventional
structure alignment methods. Also SAMO has the ability
to find circular permutations by structure comparison.

By matching isolated residues, one of major benefits for
SAMO is that it can find the similar three dimensional
motifs (structural motifs) between proteins which belong
to different families or different folds, although many of
these motifs have not be generally found and their biolog-
ical functions are not well identified. Another potential
application is to use SAMO to detect similarity for pockets

Table 2: Comparisons of our algorithm with method of [24] for circularly permuted proteins.

ID/Size ID/Size SAMO Method in [24]
λ rms m rms m

Naturally 
occurring

1RIN/180 2CNA/237 6.0 1.581 174 0.877 45

1RSY/121 1QAS/123 6.0 1.741 118 1.107 44
1NKL/78 1QDM/74 6.0 2.852 72 1.823 48

1ONR/316 1FBA/360 6.0 3.016 244 2.444 77
1AQI/382 1BOO/282 6.0 3.329 200 3.571 66

Human made 1AVD/123 1SWG/112 6.0 2.499 98 0.815 66
1GBG/214 1AJK/212 6.0 2.879 182 0.347 110

The comparison result of a naturally occurring protein pair 1RIN/180 and 2CNA/237 by SAMOFigure 3
The comparison result of a naturally occurring protein pair 1RIN/180 and 2CNA/237 by SAMO. The subfigures (a) and (c) are 
backbone of proteins 1RIN and 2CNA respectively. The subfigure (c) illustrates the aligned result after the optimal superim-
posing by different colors. The red chain is 2CNA and the blue chain is 1RIN. The two termini of the two structures are indi-
cated by labeling their residue names respectively. Notice that the termini of the blue chain (1RIN) are aligned to the middle of 
the red chain (2CNA) and vice versa.

THR1.CA

PRO180.CA

(a) Backbone of 1rin.

THR1.CA

PRO180.CA

ALA1.CA

ASN237.CA

(b) Alignment result.

ALA1.CA

ASN237.CA

(c) Backbone of 2cna.
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The comparison result of protein pair 1TPO/223 (β-trysin) and 2ACT/218 (actinidin) by SAMOFigure 4
The comparison result of protein pair 1TPO/223 (β-trysin) and 2ACT/218 (actinidin) by SAMO. Subfigure (a) illustrates the 
aligned result after the optimal superimposing by different colors. The red chain is 1TPO and the blue chain is 2ACT. There are 
122 amino-acid matching pairs with RMSD = 2.02. Also the active site region on 1TPO is highlighted in yellow and the active 
site region on 2act is drawn in green. Subfigure (b) is the detail match of the active sites between 1TPO(red) and 2ACT(blue). 
As indicated in the figure, the superposition of Cαs found by SAMO brings the catalytic triads close together. In the matched 
active sites, the amino acids come from different fragments of each protein chain. Some segments contain contiguous residues. 
The actual matching of these segments is, for 2ACT: 24–25, 151–152, 132–137, 158–167, 177–183, 191–198; for 1TPO: 194–
195, 85–86, 31–36, 39–48, 50–56, 101–108. The actual matching of the residues formed the active sites is listed in Subfigure (c).

(a) Alignment result of 1tpo and 2act. (b) Detail of the active site match.

1tpo: GLY24   CYS25   ......  PRO132 VAL133 SER134 VAL135 ALA136 LEU137

2act: ASP194 GLY193 ......  VAL31     SER32   LEU33   ASN34   SER37   GLY38 

1tpo: ILE151  PHE152 ...... THR158  ALA159  VAL160  ASP161  HIS162  ALA163

2act: SER86  ALA85    ......    TYR39     HIS40      PHE41   CYS42   GLY43   GLY44

1tpo: ILE164 VAL165  ILE166  VAL167 ...... TYR177  TRP178  ILE179  VAL180 LYS181

2act:  SER45  LEU46    ILE47    ASN48 ......   GLN50    TRP51   VAL52   VAL53 SER54

1tpo: ASN182 SER183……GLU191 GLU192 TYR193  ARG195  ILE196 LEU197  ARG198

2act: ALA55    ALA56  ……ASP102  ILE103  MET104  LEU105  ILE106  LYS107  LEU108

1tpo: GLY24   CYS25   ......  PRO132 VAL133 SER134 VAL135 ALA136 LEU137

2act: ASP194 GLY193 ......  VAL31     SER32   LEU33   ASN34   SER37   GLY38 

1tpo: ILE151  PHE152 ...... THR158  ALA159  VAL160  ASP161  HIS162  ALA163

2act: SER86  ALA85    ......    TYR39     HIS40      PHE41   CYS42   GLY43   GLY44

1tpo: ILE164 VAL165  ILE166  VAL167 ...... TYR177  TRP178  ILE179  VAL180 LYS181

2act:  SER45  LEU46    ILE47    ASN48 ......   GLN50    TRP51   VAL52   VAL53 SER54

1tpo: ASN182 SER183……GLU191 GLU192 TYR193  ARG195  ILE196 LEU197  ARG198

2act: ALA55    ALA56  ……ASP102  ILE103  MET104  LEU105  ILE106  LYS107  LEU108

(c) The actual matching of residues formed the active sites.
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or mouths in protein surfaces that are closely related to
protein functions [25]. In fact, one reason to develop the
method is because the detection of similar protein surface
patterns with different underlying primary sequence order
can not be addressed by the current structure alignment
method. The need to develop such a method is further
illustrated in [25]. For example, when convergent evolu-
tion occurs, nature discovers the same functional surfaces
multiple times, as is the case of the catalytic triad in serine
protease. It is likely that there may be many such examples
where proteins with similar functional surfaces have dif-
ferent underlying protein core architectures, and in partic-
ular, the key residues important for function may have
different order in primary sequences. Our method cur-
rently can detect such similarity and can be used in assess-
ing similarity of order-independent surface patterns. The
comparison for protein pockets by SAMO and the results
assessment are currently in progress.

Although the proposed algorithm can find the structural
motifs by comparing protein pairs, the aligned residues
may not always represent biologically meaningful sub-
structures or regions. One reason is that the aligned atom
pairs may be distributed in a wide area or may not be
always restricted in a local area of a protein. To exclude
such cases (in the third category), manual inspection is
needed to find biologically meaningful match of residues.

As reported in this paper, another major contribution of
the new method is its concise in mathematics and cheap
in computation. We expect that our method will enable
routine comparisons of any picked structure against the
large database of 3D structures and provide web service by
exploiting current information technology in the similar
manner to the comparison of a query DNA sequence with
the sequence database. It will further provide a wealth of
information and an insight into evolutionary and func-
tional aspects of biological macromolecules. The implica-

tion of the availability of such a tool can provide
applications ranging from protein folding problem to
computer-aided drug design because it is the structure that
plays a critical role in carrying out the necessary biological
functions. The software SAMO is available at the website
[18].

Conclusion
In this paper we developed SAMO which is able to align
protein structures, reveal divergent evolution, detect circu-
lar permutations and identify structural motifs in an accu-
rate and efficient manner. The proposed algorithm is
general and treats the structure alignment in a more accu-
rate way with implicit complete exploration of the entire
space. The original protein alignment problem is formu-
lated as a multi-objective optimization problem with
mixed variables, and further decomposed into LPS and
LSS. A very efficient algorithm with a numerically stable
convergent process is developed for solving LPS and LSS
successively. We show that the size of variables linearly
increases with respect to the number of atoms of the pro-
tein pairs. By controlling a single distance-related param-
eter, theoretically we can obtain a variety of optimal
alignments corresponding to different optimal matching
patterns, i.e., from a large matching portion to a small
matching portion. Numerical results further support that
SAMO can not only detect close spatial similarity between
evolutionarily divergent structures and circular permuta-
tions but also identify remote convergent relationships by
the similarity of active sites.

Availability and requirements
• Project name: SAMO

• Project home page: http://zhangroup.aporc.org/bio
info/samo/ or http://intelligent.eic.osaka-sandai.ac.jp/
chenen/samo.htm

Table 3: Comparisons of our algorithm with method of [14].

ID/Size ID/Size SAMO Method in [14]
Score rms m Score rms m

1CHO/238 1CHO/238 1.00 0.00 238 1.00 0. 00 238
1CHO/238 2CHA/236 0.99 0.55 236 0.99 0. 55 236
1CHO/238 2PTCE/223 0.85 0.85 212 0.84 0.85 211
1CHO/238 1TPO/223 0.82 0.80 208 0.81 0. 81 207
1CHO/238 1TGSE/225 0.78 0.88 203 0.78 0.89 203
1CHO/238 2PRK/279 0.25 1.77 104 0.25 1. 67 103
1CHO/238 3ACT/218 0.26 1.69 93 0.25 1.69 86
1CHO/238 1SBT/275 0.25 1.87 111 0.24 1. 76 96
1CHO/238 2SECE/274 0.27 1.90 117 0.23 1. 78 95
1CHO/238 1FX1/147 0.23 1.94 80 0.23 1.69 71
1CHO/238 1CSE/274 0.26 1.89 117 0.23 1.72 94
1CHO/238 1TECE/279 0.27 1.94 105 0.22 1.79 94
1CHO/238 9PAP/212 0.29 1.99 102 0.22 1. 74 81
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• Operating system(s): Windows, Linux

• Programming language: C++

• Other requirements: None

• License: FreeBSD

• Any restrictions to use by non-academics: licence
needed
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LPS: integer Linear Programming Subproblem
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