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Abstract
Background: Short fragments of proteins are fundamental starting points in various structure
prediction applications, such as in fragment based loop modeling methods but also in various full
structure build-up procedures. The applicability and performance of these approaches depend on
the availability of short fragments in structure databanks.

Results: We studied the representation of protein loop fragments up to 14 residues in length. All
possible query fragments found in sequence databases (Sequence Space) were clustered and cross
referenced with available structural fragments in Protein Data Bank (Structure Space). We found
that the expansion of PDB in the last few years resulted in a dense coverage of loop conformational
fragments. For each loops of length 8 in the current Sequence Space there is at least one loop in
Structure Space with 50% or higher sequence identity. By correlating sequence and structure
clusters of loops we found that a 50% sequence identity generally guarantees structural similarity.
These percentages of coverage at 50% sequence cutoff drop to 96, 94, 68, 53, 33 and 13% for loops
of length 9, 10, 11, 12, 13, and 14, respectively. There is not a single loop in the current Sequence
Space at any length up to 14 residues that is not matched with a conformational segment that shares
at least 20% sequence identity. This minimum observed identity is 40% for loops of 12 residues or
shorter and is as high as 50% for 10 residue or shorter loops. We also assessed the impact of
rapidly growing sequence databanks on the estimated number of new loop conformations and
found that while the number of sequentially unique sequence segments increased about six folds
during the last five years there are almost no unique conformational segments among these up to
12 residues long fragments.

Conclusion: The results suggest that fragment based prediction approaches are not limited any
more by the completeness of fragments in databanks but rather by the effective scoring and search
algorithms to locate them. The current favorable coverage and trends observed will be further
accentuated with the progress of Protein Structure Initiative that targets new protein folds and
ultimately aims at providing an exhaustive coverage of the structure space.

Published: 04 July 2006

BMC Structural Biology 2006, 6:15 doi:10.1186/1472-6807-6-15

Received: 27 January 2006
Accepted: 04 July 2006

This article is available from: http://www.biomedcentral.com/1472-6807/6/15

© 2006 Fernandez-Fuentes and Fiser; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16820050
http://www.biomedcentral.com/1472-6807/6/15
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Structural Biology 2006, 6:15 http://www.biomedcentral.com/1472-6807/6/15
Background
Functional characterization of proteins is one of the most
frequent problems in biology. While sequences provide
valuable information, their high plasticity makes it fre-
quently impossible to identify functionally relevant resi-
dues. For instance, it is estimated that 75% of
homologous enzymes share less than 30% identical posi-
tions[1]. Meanwhile less than 30% of related protein pairs
above 50% sequence identity have entirely identical EC
numbers[2]. Functional characterization of a protein is
usually facilitated by its three-dimensional (3D) struc-
ture[3]. These structures can be obtained by experiments,
such as X-ray crystallography, NMR spectroscopy, Cryo-
electron microscopy, or by computation. It has been rec-
ognized that technically complicate, time consuming and
expensive 3D experimental approaches will not catch up
with the millions of sequences that are emerging from
high-throughput projects around the world[4]. Two
major computational alternatives are available[5]. The
first ones are the template based approaches (comparative
modeling, threading) that have been employed in the Pro-
tein Structure Initiative (PSI)[6]. PSI efforts are expected
to experimentally solve ~5000 carefully selected protein
folds that could serve as seed templates for comparative
modeling to provide useful three dimensional models for
the rest of the -hundreds of thousands of- sequences.
While the resulting comparative models will be accurate
for most of the structure, some of the most critical parts of
the proteins may not be modeled accurately. For instance,
the overall accuracy of a comparative model for a protein
that belongs to one of the superfolds[7] can be very high,
because there are many high resolution structures availa-
ble as templates sharing the same general fold, however
the variable regions of these structures are different. The
variable regions are often unique in each of these proteins,
and define the function and specificity of the molecules.
For these unique structural segments that are often found
on the surface of the proteins and without any transla-
tional symmetry (i.e., loops), comparative modeling tech-
niques cannot generally be applied; loop segments in the
target may be missing in the template or structurally diver-
gent, resulting in inaccurate parts in the model. On the
other hand, short fragments of proteins play a critical role
in full structure buildup approaches, too. Some of the
most accurate methods available assemble full protein
structures by locating short segments in the databanks and
packing them together using some sort of minimization
protocol such as Monte Carlo simulation[8,9]. These
approaches proved to be useful to provide reasonable
structures (within 4–8 A RMSD to the experimental solu-
tion) for small proteins, typically less than a 100 resi-
dues[10]. To improve the accuracy of models that are
already subject to computational modeling and to extend
the applicability of whole structure buildup methods to

more sequences it is critical to have a good selection of
short building blocks in the structure databases.

The relevance of database search methods for predicting
loop structures was explored in 1994 by Fidelis et al[11].
The database search approach consists of finding a seg-
ment of mainchain that fits the two stem regions of a loop
[12-20]. It was concluded that only segments of 7 residues
or less (4 loop and 1+2 anchor residues) had most of their
conceivable conformations present in the database of
known protein structures[11]. In contrast, 8 and 9-residue
segments occurred more than once in less than 70% and
40% of the cases, respectively. These numbers were
obtained by extrapolation, by comparing the frequency
distribution of repeat conformations in PDB, where seg-
ments were clustered if they were structurally related to
one other by 1 Å RMSD or less. These types of estimates
strongly depend on the criteria for selecting matching con-
formations. Lessel and Schomburg explored the com-
pleteness of fragments in Protein Data Bank (PDB) using
a similar clustering approach. Fragments were grouped if
the distance between first and last Cα atoms was shorter
than 1.6 Å and the RMSD, considering Cα atoms only,
was smaller than 0.8 Å. Lessel and Schomburg's con-
firmed the conclusions of Fidelis et al[11], but with their
slightly stricter criteria only short fragments of three and
four residues long were well sampled in PDB despite the
three years older and larger database investigated[21]. The
situation is made even worse by the requirement for an
overlap of at least one residue between the database frag-
ment and the anchor core regions, which means that
modeling of a five residue insertion requires at least a
seven residue fragment from the database[15]. While only
few insertions in a family of homologous proteins are
longer than 14 residues, there are many insertions that are
longer than five residues[22]. Based on these studies in
the mid and late 90ies much recent research shifted to full
conformational search approaches, since those methods
are not limited by the size of the available database but
rather on our understanding of physics that guides folding
of local conformations [5,9,22-27]

A recent analysis argued for a more favorable coverage of
loop conformations in PDB. Du et al. [28] divided loop
structures between a "template" and a "query" databases
and compared these sets. They extrapolated that for seven
residue fragments there was a 99% probability that a sim-
ilar fragment is found within 0.7 Å RMSD, and even for
long loops (15 residues) there was a high probability that
there exists a non-homologous structure within 2 Å
RMSD, considering Cα atoms only.

The number of sequences and structures dramatically
increased over the last few years; accordingly, the differ-
ence in the sizes of sequence and structure databases is
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larger than ever before. Nevertheless, in part due to the
efforts of Protein Structure Initiative, it will be possible to
provide a reasonable model for most protein sequences
within approximately 5 years, where more than 99% of
these models will be generated by comparative modeling.

The practical questions are the following: is the current
structural databank useful to supply fragments from vari-
ous unrelated folds to complete these comparative mod-
els in their loop regions for any query that may emerge
from the current sequence databanks? In case it is not, is
there a promising trend towards this goal? In other words,
are there many unique sequence and/or structural frag-
ments being deposited to databanks?

In this work, we explore the question of what fraction of
loops extracted from all known protein sequences
(Sequence Space) is covered by loops extracted form all
known protein structures (Structure Space). Our approach
differs from the ones described in the past [11,21,28]
because we do not restrict our investigation on assessing
loop sampling on known protein structures but we esti-
mate the current structural coverage of short segments in
the Sequence Space, i.e. in the entire set of known
sequences. Fragments from Structure Space were structur-
ally clustered after an all-to-all comparison and sequence
identity cutoffs assuring structural similarities were identi-
fied for each loop length. Next, all possible loop frag-
ments from clusters of Sequence Space were matched with
the sequences from Structure Space, and the coverage
assessed. We also investigated the growth and change in
the databases by repeating these exhaustive comparisons
between sequence and structure databases that were avail-
able in 2001 and now. We focused our analysis on
"medium" and "long" loops that are in the range of 8 to
14 residues.

Results
Structure Space
The Structure Space is composed of 105,950 loop seg-
ments with lengths between 4 and 14 residues. The histo-
gram of distribution of the RMSDglobal values of an all-to-
all structure comparison within each loop length class is
shown in Figure 1. The distributions reflect the expected
values from random comparisons and show bell-shaped
curves with peak RMSDglobal values of 3.6, 3.9, 4.1, 4.7,
4.9, 5.1 and 5.4 Å for loop lengths of 8, 9, 10, 11, 12, 13
and 14, respectively. These are the expected accuracies if
one assigns loop conformation to target segments by
chance. At each length there is a small peak in the distri-
bution in the range of 0 to 1.0 Å that refers to the small
subset of related loops (inset in Figure 1). There is a clear
transition between the RMSD distribution of related and
unrelated loops at all lengths.

Sequence identity as a function of structural similarity in 
the Structure Space
The shorter the sequences compared the higher sequence
identity is required between them to confer structural sim-
ilarity. The structural similarity (RMSDglobal) as a function
of sequence identity is shown in Figure 2a. The standard
deviations of averages (not shown) are around or below
1.5 Å in the range of 0 to 50% sequence identity and drops
to around 0.5 Å when sequence identity increases above
50%, for all loop lengths of 8 to 14 residues. The decrease
of RMSDglobal variation indicates that as sequence identity
increases, consistently low values of RMSDglobal are
obtained for pairs of superposed loops. In the range of 42
to 55% sequence identity there is a sharp transition
between high to low RMSDglobal values at all lengths.
When loops were filtered for redundancy by removing
proteins on a SCOP superfamily or family level similar
trends can be observed, however, with much smaller
number of cases the observed. In other words, here we
identify the set of loops, which are structurally very similar
but belong to different structures. The sequence identity
range of transition between high (>3 Å RMSD) and low
(<2 Å RMSD) for these subsets of loops is shifted to the
range of 50–64% (Figure 2b).

In general, a partially different trend is followed by loops
of length 10. Instead of a monotonous decrease of RMSD-

global values with increasing sequence identity there is a
spike in RMSD values among highly similar loops. Most
of the 10 residues long loops close to or at 100% sequence
identity level belong to the complementarity determining
regions (CDRs) of immunoglobulins. These loops are
involved in the recognition of the antigen molecules and
have been shown that for five of the six CDR loops (also
known as the hypervariable regions) there are few differ-
ent main-chain conformations (canonical forms)[29].
The sixth loop is highly variable and it is involved in bind-
ing specificity. Out of total 590 loop pairs with 100%
sequence identity, 489 pair show a RMSDglobal larger than
1.0 Å and all of these pairs are CDRs. A more general over-
view of this question is provided in Table 1: the number
of loop pairs with identical sequence to one other with
RMSDglobal values of 0–1, 1–2, 2–3 or more than 3 Å is
listed. Apart from the unique but large subset of hypervar-
iable CDR loops there is a strong correlation between con-
formational and sequence conservation at all lengths.
Table 2 contains statistics on structural similarity about
loops at the other extreme: pairs of loops with unrelated
sequence (25% or less sequence identity) but with similar
conformations. Although it is a relatively small fraction of
all loops compared, but nevertheless hundreds or even a
few thousands of pairs of loops exhibit a highly similar
conformation (<1 Å) even though there is an apparent
lack of sequence similarity.
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Sequence identity cutoffs were identified for each loop
lengths that guarantee conformational similarity (<1 Å).
For instance, for loop length 8 a 62.5% cutoff is required
to guarantee similar conformations but in case of 12 resi-
due loops 41.6% cutoff is already enough to ensure struc-
tural similarity (Figure 2a and Table 3 and 4). These

cutoffs values were used to infer structural relationship
among loops using sequence information alone.

Sequence Spaces
We extracted 1,308,121; 1,071,712; 884,632; 720,202;
586,760; 476,596; and 387,190 loop sequences for

Histogram of RMSDglobal values after an all-to-all structural comparison of loops in Structure SpaceFigure 1
Histogram of RMSDglobal values after an all-to-all structural comparison of loops in Structure Space. The distribution of RMSDglo-

bal values are grouped into bins of 0.1 Å. Loop lengths and symbols correspond as: 8 (�), 9 (■), 10 (▲), 11 (× ), 12 (Ж), 13 (●), 
and 14 (+). Insert plot shows a blow up of the RMSDglobal distribution between 0 to 2 Å.
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Average RMSDglobal (Y-axis) is computed as a function of percentage sequence identity (X-axis) for loops of 8 (�), 9 (■), 10 (▲), 11 (×), 12 (), 13 (●), and 14 (+) residues long, respectively, for a set of loops extracted from proteins (A) sharing less than 95% sequence identity (B) that belong to different SCOP familiesFigure 2
Average RMSDglobal (Y-axis) is computed as a function of percentage sequence identity (X-axis) for loops of 8 (�), 9 (■), 10 
(▲), 11 (×), 12 (Ж), 13 (●), and 14 (+) residues long, respectively, for a set of loops extracted from proteins (A) sharing less 
than 95% sequence identity (B) that belong to different SCOP families.

(A)

(B)
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lengths 8, 9, 10, 11, 12, 13, and 14 respectively from
1,730,689 protein sequences that compose the Sequence
Space 2005. In case of Sequence Space 2001 we obtained
263,032; 213,973; 176,200; 141,832; 114,769; 92527;
and 74613 loops for lengths 8, 9, 10, 11, 12, 13, and 14
respectively, from 350,412 protein sequences. This indi-
cates an approximately 6 fold increase in the number of
short fragments between years 2001 and 2005.

Comparing Structure Space and Sequence Space 2005
With the identified minimum sequence signal (Figure 2)
that guarantees a structural similarity we can assess the
fraction of loop conformations (as obtained from the
Sequence Space) that is covered by known fragments in
the Structure Space. Figure 3 shows the cumulative fre-
quency distribution of percent of sequence identity of
fragment pairs after an all-to-all sequence comparison of
loops from both Structure Space and Sequence Space
2005. The frequency is accumulated from right to left, i.e.
each value indicates the cumulative fraction of fragments
in Sequence Space that share a corresponding or greater
sequence identity to at least one loop in the Structure
Space. Below 40% sequence identity only 20 and 10% of
loops of length 13 and 14 from Sequence Space 2005 can-
not be matched to at least one loop from Structure Space,
while all other loop lengths matched at 100%. Meanwhile
all loops (100%) of length 8 from Sequence Space 2005
have at least one loop in Structure Space at 50% or larger
sequence identity. These percentages of coverage at 50%
sequence cutoff drop to 96, 94, 68, 53, 33 and 13% for
loops of length 9, 10, 11, 12, 13, and 14, respectively
(Table 3). There is not a single loop in the current
sequence space at any length up to 14 residues that is not

matched with a conformational segment that shares at
least 20% a sequence identity. Moreover, this minimum
observed similarity is 40% for loops of 12 residues or
shorter and is as high as 50% for 10 residue or shorter
loops. As we recall an all-to-all structure comparisons
(Figure 2a and Table 3) indicate that a 50% sequence
identity will essentially ensure a structural similarity at
any of these loop lengths

Tracking trends in Sequence and Structure Space
We observed a strong coverage of structural loop frag-
ments for the currently available sequence database. We
made this comparison with the assumption that the cur-
rent sequence database of approx 3 million protein entries
is a good representation of all expected sequences. Next
we explored two more issues: whether it is a correct
assumption that the current, Sequence Space 2005 con-
tains a near exhaustive compilation of all possible loop
sequences. Second, if the good structural coverage of frag-
ments observed is a consequence of a recent expansion of
PDB or if it was the case earlier, in 2001 as well. Following
the same approach described in the previous section, we
compared Sequence Space 2005 against Sequence Space
2001. Figure 4 shows the cumulative frequency distribu-
tion of percentage of sequence identities for loops
between 8 to 14 residues. One observes a 100% sequence
identity for a large, 20 to 25% fraction of loop pairs at all
explored lengths. A sharp transition takes place in the
range of 40 to 75% sequence identity. At 50% sequence
identity 100% of loops of length 8, 9 and 10, more than
95% of loops of length 11 and 12, 80% of loop of length
13 and 73% of length 14 are matched with at least one
segment between the two Sequence Spaces (see also Table

Table 1: Structural variation (percent distribution among RMSD bins) of loops with identical sequences.

Loop length Number of Pairs 0–1 Ang. 1–2 Ang. 2–3 Ang. > 3 Ang.

8 332 318 23 1 0
9 286 256 23 6 1
10 590 101 182 286 21
11 211 151 21 33 6
12 98 88 5 2 3
13 69 57 10 1 1
14 56 44 8 3 1

Table 2: Structural variation among sequentially unrelated loops (loops with less than 25% sequence identity.)

Loop length Number of Pairs 0–1 Ang. 1–2 Ang. 2–3 Ang. > 3 Ang.

8 1281596 5077 13867 215875 1046777
9 1231208 425 4927 114366 111490
10 1216131 342 2734 72567 1140488
11 1273594 108 935 35397 1237154
12 928413 408 915 17222 909868
13 527656 173 246 5603 521634
14 392981 245 232 3078 389426
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4). This fraction indicates that while sequence databases
keep growing at an exponential rate there are almost no
unique conformational segment deposited up to 12 resi-
dues long fragments during the last 5 years.

The impact of the growing PDB was assessed by using a
2001 version of PDB to predict all possible sequences in
the Sequence Space of 2005 (Figure 5). While there is an
incremental improvement over the last five year period in
coverage, especially at longer loop lengths, the availability
of loop fragments was already good in 2001. While the
ongoing saturation of conformational loop fragments will
ensure an even finer granularity (delivering fragments at
higher than 50% identity), essentially all possible query
segments were already matched at 50% with a known
structure in 2001.

Impact of sequence identity in loop prediction
The structural similarity so far was exclusively related to
sequence signal. This is a conservative approach as it was
shown in Table 2: although it is a small fraction of the
total number cases but at each length there are hundreds
or even thousands of loops that are structurally very simi-
lar despite the apparent lack of sequence signal. If a pre-
diction method locates these loops an even better
coverage can be achieved than what was discussed above.
Therefore we tried to estimate the fraction of loops that

can be covered by known fragments if not only sequence
information is used alone but some additional parame-
ters. We compared two different scenarios: (1) Similar
loop structures were predicted using sequence signal only;
and (2) loops of similar conformation were predicted
using a more elaborated prediction algorithm [12] that
includes information about the geometrical fit of stem
regions, 3 types of angles and a distance, the fit of pre-
ferred and observed main-chain dihedral angle prefer-
ences, and the fit of a template loop in a given protein
environment with regards to steric clashes and non-boned
contacts. In order to make both scenarios comparable
under different conditions, we ran loop prediction by
applying various sequence cut-offs (25, 50, 75%) to pre-
filter the available structure database as compared to the
query loops. This dynamic filtering approach was neces-
sary because a prediction method using a structure data-
base that offers sequentially obviously similar loops will
not benefit much from a more sophisticated approach,
and vice versa, a structure database that is overly cleaned
up from trivial sequence similarities will be unfairly pun-
ishing sequence only methods, further, it would not be
reflecting the observed good coverage in actual databases.
The accuracies of predictions are shown in Figure 6. As
sequence identity grows the prediction becomes more
accurate but always the accuracy achieved is higher for the
prediction algorithm than for the simple sequence iden-

Table 3: Observed fraction of loop fragments of various length (8–14 residues) that share at least the corresponding level (40%, 50%, 
60%) of sequence identity with at least one other loop when comparing datasets of Sequence Space 2005 and Structure Space 2005.

Loop length Sequence identity

40 50 60

8 100 100 92
9 100 96 65
10 100 94 30
11 100 68 18
12 100 53 5
13 90 33 2
14 80 13 1

Table 4: Observed fraction of loop fragments of various length (8–14 residues) that share at least the corresponding level (40%, 50%, 
60%) of sequence identity with at least one other loop when comparing Sequence Space 2005 and Sequence Space 2001.

Loop length Sequence identity

40 50 60

8 100 100 100
9 100 100 90
10 100 100 89
11 100 98 60
12 100 97 49
13 100 79 35
14 100 73 31
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tity lookup algorithm. Essentially the prediction method
maintains the same accuracy as obtained for sequence
only approach but for 1–3 residues longer loops as well.
The longer the actual segments the bigger improvement
can be achieved. Also, the gain in prediction accuracies
increase as sequence identity of available segments drops,
so other search factors weigh in.

Discussion and conclusion
Short identical fragments can have completely different
conformations [30,31]. However, these examples are
rather rare exceptions to well established trends. As it is
shown in Table 1 and 2 and in Figure 2a this is in general
a highly unlikely situation. Sufficient sequence conserva-
tion -even for short segments- implicates structural simi-
larity. This fact has been exploited in various database
search dependent loop structure prediction methods. The
shorter a given sequence the higher identity is required in
general to assume structural similarity. For the medium
and long loops (8–14 residues) studied here a 40–60%
sequence identity was found to be a conservative limit to
ensure structural similarity. Using a 40% sequence iden-
tity cutoff only about 5% of all studied short segments do
not a match to a known fragment in the current structure

space (Table 3 and Figure 3). Given the current numbers
in PDB (Structure Space) and UniProt databases
(Sequence Space 2005) there is a >95% coverage for loops
up to 10 residues long. This favorable coverage is probably
a consequence of the enormous expansion of PDB in the
last few years, partially because of the Structural Genomics
efforts that amalgamate the databank with new or
remotely similar folds[6]. When sequence datasets were
compared, we found that although the number of frag-
ments in Sequence Space 2005 is almost 6 times larger
than in Sequence Space 2001, this expansion is not
reflected in form of many structurally new loop
sequences. Almost all loop fragments in 2005 can be
matched sequentially to a fragment already known in
2001 with 40% of greater sequence identity, and 25% of
all loop sequences in 2005 have a 100% sequence identity
to loop sequences in 2001 (Figure 4). This indicates that
sampling of loop segments up to 12 residues in sequence
databases might be close to saturation and a near full
structural coverage is available for up to 10 residue long
segments.

Cumulative frequency distribution of sequence identity com-paring Sequence Space 2005 to Sequence Space 2001 for loops of 8 (�), 9 (■), 10 (▲), 11 (×), 12 (), 13 (●), and 14 (+) residues longFigure 4
Cumulative frequency distribution of sequence identity com-
paring Sequence Space 2005 to Sequence Space 2001 for 
loops of 8 (�), 9 (■), 10 (▲), 11 (×), 12 (Ж), 13 (●), and 14 
(+) residues long. The cumulative frequency at a given 
sequence identity value indicates the fraction of fragments in 
Sequence Space 2005 that has the corresponding or higher 
sequence identity to at least one loop in the Sequence Space 
2001.

Cumulative frequency distribution of sequence identity com-paring Sequence Space 2005 to Structure Space 2005 for loops of 8 (�), 9 (■), 10 (▲), 11 (×), 12 (), 13 (●), and 14 (+) resi-dues longFigure 3
Cumulative frequency distribution of sequence identity com-
paring Sequence Space 2005 to Structure Space 2005 for loops 
of 8 (�), 9 (■), 10 (▲), 11 (×), 12 (Ж), 13 (●), and 14 (+) 
residues long. The cumulative frequency at a given sequence 
identity value indicates the fraction of fragments in Sequence 
Space that has the corresponding or higher sequence identity 
to at least one loop in the Structure Space.
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All our calculations were made and conclusions drawn in
a conservative manner, using sequence information only
as our sole assessment. It is safe to assume that the struc-
tural coverage of short segments is substantially larger
than our estimations. We simulated a loop prediction
exercise that includes not only selection and ranking of
candidate loops by sequence information alone, but fit-

ting the loops in the new protein environment and the
assessment of their conformational fit. In this scenario the
earlier established sequence identity thresholds can be
less strict. As it is shown in Figure 6, for any given
sequence identity threshold, the accuracy of loop predic-
tion is always better. Essentially the prediction method
extends the applicability of prediction (without loosing its

Comparing conformational fragment coverage in PDB in 2001 and 2005Figure 5
Comparing conformational fragment coverage in PDB in 2001 and 2005. Grey bars indicate the gain in structural coverage 
between 2001 and 2005 for loops (A) 8, (B) 10 (C) 12 and (D) 14, respectively.
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performance) by approximately 2–3 virtual residues at
each length.

According to the results reported here, the bottleneck in
database search based loop modeling approaches is likely
to shift from issues of database completeness of suitable
fragments (sampling) to the development of novel scor-
ing schemes that are capable of efficiently and accurately
recognizing similar conformations. Once these tech-
niques are available they seem to provide a dense coverage
of loop segments for modeling studies.

Methods
Loop structure dataset
A representative set of 6578 protein structures were
selected from the PDB [32]. The selected proteins were
clustered and filtered so that any two share less than 95%
sequence identity and all of them are determined by X-ray
crystallography at a resolution of 2.5 Å or better. The DSSP
program [33] was used to locate loop segments i.e. frag-
ments that connect two regular secondary structures. The
initial dataset of loops was further filtered by various qual-

ity rules: (i) loops with missing residues and/or main
chain atoms (including Cβ, except for Gly), and (ii) loops
with high crystallographic B-factors were discarded. The
final set contains 105,950 protein loops of length ranging
from 4 to 14 residues long. This compilation of loops will
be referred as Structure Space.

Loop sequence datasets
Two sequence datasets were considered using the
sequence databanks from 2005 and 2001. Loop
sequences were extracted from the 2005 release of UniProt
catalog [34]. In order to have a comprehensive set of
sequences but avoiding obvious redundancies the dataset
UniRef90 v.6.0 containing 1,730,689 clusters or repre-
sentative sequences was used. Secondary structures were
predicted for all these sequences using PHD program [35],
loops were defined as segments connecting two regular
secondary elements. Only those α-helices and/or β-
strands were considered that span at least 5 and 4 resi-
dues, respectively. We refer to this set as Sequence Space
2005. Loop sequences for dataset Sequence Space 2001
were compiled in a similar manner, except that instead of
UniProt, that did not exist in 2001, protein sequences
from the current SWISSPROT and TrEMBL databases [36]
were downloaded. Those sequences that were deposited
in 2001 or before were collected. The program CDHIT
[37] was used to remove redundancy at 90% sequence
identity that resulted in 350,412 clusters. This dataset is
referred as Sequence Space 2001.

Loop prediction datasets
Eleven test sets, each of which had 50 randomly selected
loops from the Structure Space, between lengths 4 to 14
were used to test the performance of the prediction using
only sequence signal or a loop prediction method. In
order to explore different database conditions, several pre-
filtered structure databases were prepared. Fragments were
removed above a certain sequence identity cutoffs for each
query segment using various cutoff values (25%, 50%,
75%).

Assessing structural similarity between loops in structure 
space
The structure similarity was measured by the root mean
square difference (RMSD) of the atomic coordinates. In
order to fit a segment into the surrounding structure, an
overlap at each end must be allowed. The optimal number
of overlapping residues is three, two residues at the N-ter-
minal and one residue at C-terminal of the segment[15].
Then, for a loop of length 8, 11 residues are considered, 2
in N-terminal, 8 in loop, and 1 in C-terminal regions. We
referred to this RMSD values as the global RMSD (RMSD-

global). The main chain atoms (N, Cα, C and O) were used
for RMSD calculation. Structure alignments and RMSD
were calculated with the MODELLER package [38].

Accuracy of fragment search based loop prediction using sequence  information only (dashed lines) and using a predic-tion method[12]  (continuous lines) using 3 different data-bases, filtered for redundancy with regards to the query at 25% (▲), 50%(■), and 75%(●) sequence identity, respec-tivelyFigure 6
Accuracy of fragment search based loop prediction using 
sequence  information only (dashed lines) and using a predic-
tion method[12]  (continuous lines) using 3 different data-
bases, filtered for redundancy with regards to the query at 
25% (▲), 50%(■), and 75%(●) sequence identity, respec-
tively.
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Cross referencing Sequence and Structure Spaces
Loop sequences from Sequence Space were aligned
against loop sequences form Structure Space and
sequence identities were computed as the percentage of
identical aligned position. The sequences from Sequence
Space were aligned with the set of loops with the same
length ± 2 residues from Structure Space and the highest
sequence identity was kept (i.e. a loop of length 3 from
sequence space was compared with loops of length 1, 2, 3,
4 and 5 of Structure Space adding as many residues from
flanking secondary structures as needed). The wobbling of
± 2 residues was allowed in order to compensate for the
errors produced by secondary structure prediction
method when predicting secondary structure boundaries
[39,40].
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