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Abstract

Background: The eukaryotic RNA-dependent RNA polymerase (RDRP) is involved in the
amplification of regulatory microRNAs during post-transcriptional gene silencing. This enzyme is
highly conserved in most eukaryotes but is missing in archaea and bacteria. No evolutionary
relationship between RDRP and other polymerases has been reported so far, hence the origin of
this eukaryote-specific polymerase remains a mystery.

Results: Using extensive sequence profile searches, we identified bacteriophage homologs of the
eukaryotic RDRP. The comparison of the eukaryotic RDRP and their homologs from
bacteriophages led to the delineation of the conserved portion of these enzymes, which is
predicted to harbor the catalytic site. Further, detailed sequence comparison, aided by examination
of the crystal structure of the DNA-dependent RNA polymerase (DDRP), showed that the RDRP
and the ' subunit of DDRP (and its orthologs in archaea and eukaryotes) contain a conserved
double-psi 3-barrel (DPBB) domain. This DPBB domain contains the signature motif DbDGD (b is
a bulky residue), which is conserved in all RDRPs and DDRPs and contributes to catalysis via a
coordinated divalent cation. Apart from the DPBB domain, no similarity was detected between
RDRP and DDRP, which leaves open two scenarios for the origin of RDRP: i) RDRP evolved at the
onset of the evolution of eukaryotes via a duplication of the DDRP B' subunit followed by dramatic
divergence that obliterated the sequence similarity outside the core catalytic domain and ii) the
primordial RDRP, which consisted primarily of the DPBB domain, evolved from a common
ancestor with the DDRP at a very early stage of evolution, during the RNA world era. The latter
hypothesis implies that RDRP had been subsequently eliminated from cellular life forms and might
have been reintroduced into the eukaryotic genomes through a bacteriophage. Sequence and
structure analysis of the DDRP led to further insights into the evolution of RNA polymerases. In
addition to the B' subunit, § subunit of DDRP also contains a DPBB domain, which is, however,
distorted by large inserts and does not harbor a counterpart of the DbDGD motif. The DPBB
domains of the two DDRP subunits together form the catalytic cleft, with the domain from the '
subunit supplying the metal-coordinating DbDGD motif and the one from the 3 subunit providing
two lysine residues involved in catalysis. Given that the two DPBB domains of DDRP contribute
completely different sets of active residues to the catalytic center, it is hypothesized that the
ultimate ancestor of RNA polymerases functioned as a homodimer of a generic, RNA-binding
DPBB domain. This ancestral protein probably did not have catalytic activity and served as a
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cofactor for a ribozyme RNA polymerase. Subsequent evolution of DDRP and RDRP involved
accretion of distinct sets of additional domains. In the DDRPs, these included a RNA-binding Zn-
ribbon, an AT-hook-like module and a sandwich-barrel hybrid motif (SBHM) domain. Further,
lineage-specific accretion of SBHM domains and other, DDRP-specific domains is observed in
bacterial DDRPs. In contrast, the orthologs of the ' subunit in archaea and eukaryotes contains a
four-stranded o + B domain that is shared with the a-subunit of bacterial DDRP, eukaryotic DDRP
subunit RBPI I, translation factor elF| and type Il topoisomerases. The additional domains of the
RDRPs remain to be characterized.

Conclusions: Eukaryotic RNA-dependent RNA polymerases share the catalytic double-psi f3-
barrel domain, containing a signature metal-coordinating motif, with the universally conserved [’
subunit of DNA-dependent RNA polymerases. Beyond this core catalytic domain, the two classes
of RNA polymerases do not have common domains, suggesting early divergence from a common
ancestor, with subsequent independent domain accretion. The B-subunit of DDRP contains
another, highly diverged DPBB domain. The presence of two distinct DPBB domains in two
subunits of DDRP is compatible with the hypothesis that the ultimate ancestor of RNA
polymerases was a RNA-binding DPBB domain that had no catalytic activity but rather functioned
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as a homodimeric cofactor for a ribozyme polymerase.

Background

Polymerization of ribonucleoside triphosphates (NTPs),
which is central to a variety of crucial biological processes,
including transcription, primer synthesis during DNA rep-
lication, addition of polyA tails to mRNA, addition of
CCA to tRNA, uridylation in RNA editing, replication of
RNA viruses, amplification of RNA in eukaryotic post-
transcriptional gene silencing (PTGS), and oligoadenylate
synthesis during interferon signaling, is catalyzed by a
broad variety of distinct enzymes [1-4]. These polymeras-
es belong to two major mechanistic categories, those that
copy a nucleic acid template and those that are independ-
ent of a template. The DNA-dependent RNA polymerases
(DDRPs) involved in the transcription of cellular and
DNA viral genes, primases, and RNA-dependent RNA
polymerases (RDRPs) of RNA viruses and cellular PTGS
systems are template-dependent polymerases. Template-
independent RNA polymerases (nucleotidyltransferases)
include CCA-adding enzymes, polyA polymerases, uridy-
lyl transferases and oligoA-synthetases. Some of the RNA
polymerases function as single-subunit proteins, whereas
others form large complexes that consist of multiple, dis-
tinct subunits; however, in all known cases, the basic cat-
alytic activity maps to a single polypeptide containing a
characteristic metal-chelating active site [5-7]. Typically,
active sites of polymerases contain acidic or polar resi-
dues, which coordinate divalent metal cations, most often
Mg2+. The metal cations direct a 5' nucleoside triphos-
phate to form a phosphoester bond with the 3' hydroxyl
of the preceding nucleotide (the 3'-terminal nucleotide of
a growing polynucleotide chain), with the elimination of
pyrophosphate [6].

Despite the basic biochemical similarity among all RNA
polymerases, sequence and structure comparisons indi-

cate that these enzymes belong to at least five evolutionar-
ily unrelated folds. The RDRPs of RNA viruses define one
major lineage of nucleic acid polymerases, which addi-
tionally includes reverse transcriptases, archaeo-eukaryot-
ic DNA polymerases, and nucleotide cyclases [8-13]. The
DNA-dependent RNA polymerase of certain bacteri-
ophages, such as T7, and the archaeo-eukaryotic primase
(also detected in some bacteria) are divergent derivatives
of the same fold [11,14]. The core catalytic domain of all
these enzymes, the so-called "palm" domain, has an RNA-
recognition motif (RRM)-like fold with strategically
placed metal-coordinating residues, which form the active
site [11,15,16]. In contrast, bacterial DnaG-type primases
(also present in archaea and some eukaryotes) contain a
polymerase domain of the Rossmann-like TOPRIM fold,
which is shared with topoisomerases and OLD-family nu-
cleases [17-19]. The recently solved structures of the
DDRPs from yeast and the thermophilic bacterium Ther-
mus thermophilus indicate that the ' subunit (according
to the subunit nomenclature of Escherichia coli DDRP,
which we hereinafter employ to designate all orthologs of
the respective E. coli subunits) of these enzymes defines
another distinct catalytic scaffold, which is unrelated to
any of the above template-dependent RNA polymerases
[20-24]. Additionally, the structural and evolutionary af-
finities of two other template-dependent RNA polymeras-
es, namely RDRPs involved in PTGS [25-27] and
primases of herpesviruses [28], remain obscure. In con-
trast to the template-dependent RNA polymerases, which
have several distinct scaffolds of the catalytic domains, all
template-independent RNA polymerases have the same
fold of the principal catalytic domain and belong to the
pol B superfamily of nucleotidyl transferases [29,30].
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Thus, RNA polymerase activity apparently has been inde-
pendently "invented" on several occasions. Nevertheless,
DDRP is one of the most conserved enzymes, which is
represented, without exception, in all cellular life forms
[31,32]. The DDRP complex from most organisms con-
sists of 5 to 15 polypeptides. Of these, four subunits,
which correspond to the bacterial o, B, ' and o, are uni-
versally present in all cellular DDRPs and constitute the
conserved DDRP core [7]. Orthologs of the § and B' subu-
nits are also encoded in the genomes of several families of
large eukaryotic DNA viruses [33-35]. Biochemical stud-
ies have shown that the catalytic site of DDRP resides in
the B' subunit and contains three invariant aspartates that
coordinate a Mg2+ cation [22-24,36]. Recent structural
analyses demonstrated that the core of DDRP is assem-
bled around the B and B' subunits, which interact with
each other to form a positively charged nucleic-acid-bind-
ing cleft. The a subunit further stabilizes this cleft, where-
as the o subunit interacts with the B' subunit [7]. Given
their ubiquitous presence in all cellular life forms and
high level of sequence conservation, it seems evident that
the core subunits of this complex RNA synthesis machine
were already present in the last universal common ances-
tor (LUCA) of the extant cellular life forms and performed
functions mechanistically similar to those of modern
DDRP.

In contrast to the ubiquitous DDRP, cellular RDRPs that
are involved in PTGS so far have been detected only in eu-
karyotes [1,26]. The PTGS phenomenon covers a variety
of complementarity-dependent silencing pathways, such
as RNA interference (RNAi) in animals and slime mold,
co-suppression (silencing of transgene and the corre-
sponding endogenous genes) and virus gene resistance in
plants, and quelling in fungi, all of which share a com-
mon mechanism of RNA turnover [28,37-40]. Essential-
ly, double-stranded (ds) RNA, which is formed in these
processes, triggers the activation of a sequence-specific
RNA degradation system, which targets homologous
RNAs [41,42]. The dsRNA is broken down by the Dicer en-
zyme into 21-25 nucleotide (nt) fragments called small
interfering RNA or siRNAs [43-45]. The siRNAs subse-
quently associate with a complex of proteins called RISC
and target homologous RNA by serving as guides for mul-
tiple rounds of RNA cleavage [45,46].

The RDRP is a component of the PTGS system that has
been initially described in plants as a cellular RNA
polymerase activity induced upon viral infection that syn-
thesized antisense RNA in a primer-dependent or inde-
pendent manner [26,47-50]. Subsequent genetic studies
showed that mutations in RDRP genes impaired PTGS in
avariety of systems [25,38,51,52]. Experimental studies in
C. elegans and in plants suggested that the RDRP is in-
volved in production and amplification of dsRNA using
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the target RNA as template and siRNAs as primers or
guides and resulting in amplification of the RNA silencing
response [53-56].

The RDRP is present in one or more copies in a wide range
of eukaryotes, from early-branching parabasalids, such as
Giardia, to multicellular forms, including fungi, plants
and animals [57,58]. This broad representation in eukary-
otes, including organisms that are considered primitive,
suggests that RDRP might have been encoded in the ge-
nome of the common ancestor of all modern eukaryotes.
However, this gene has been subsequently lost in several
eukaryotic lineages, such as the yeast Saccharomyces cerevi-
siae, insects and vertebrates. Although RDRPs display
some diversity in domain architecture and the level of se-
quence conservation, they form a tight, well-conserved
family of large proteins with no detectable prokaryotic or
viral homologs.

Here, we investigate the evolutionary history of RDRPs
and DDRPs in an attempt to unveil the origin of the
RDRP. We identify the first homologs of the cellular RDRP
outside the eukaryotic clade, in bacteriophages, and show
that RDRPs and DDRPs share a homologous catalytic
core, which comprises a six-stranded double-psi-p-barrel
(DPBB) domain. Evidence is presented that the ultimate
ancestor of RNA polymerases might have been a RNA-
binding DPBB domain, which functioned as a cofactor for
a polymerase ribozyme, and that subsequent evolution of
DDRPs and RDRPs proceeded via accretion of various
simple modules, such as the sandwich-barrel hybrid motif
domain, around this conserved core.

Results and discussion

Bacteriophage homologs of the eukaryotic RDRPs and
prediction of their active site

To investigate the evolutionary affinities of the RDRPs, we
carefully examined the results of BLAST searches of the
non-redundant (NR) protein sequence database (Nation-
al Center for Biotechnology Information, NIH, Bethesda)
for various RDRP sequences. These searches identified a
large region of 700-800 residues as the conserved module
shared by all RDRPs. This region was further examined by
searches of NR using the PSI-BLAST program, which was
iterated to convergence with a profile inclusion threshold
of E = 0.01. These searches, e.g. the search initiated with
the core RDRP module from Petunia (residues 37-775),
readily retrieved RDRPs from plants, C. elegans, Dictyostel-
ium discoideum, several fungi, and Giardia lamblia with sta-
tistically highly significant expectation (E) values.
Interestingly, the second iteration of this search retrieved
the YonO protein from the Bacillus subtilis phage Sppc2
with a significant E-value (7 x 10-3). YonO was also de-
tected with significant E-values in searches initiated with
other eukaryotic RDRP modules, e.g., that of Schizosaccha-
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romyces pombe. Reciprocal searches started with the YonO
protein sequence retrieved closely related proteins encod-
ed by prophages in the genome of Clostridium acetobutyli-
cum (CAC1139) and Clostridium perfringens (CPE1103).
Hereinafter, we refer to these bacteriophage proteins as
the YonO-like RDRP homologs (YRHs).

The Gibbs sampling alignment procedure detected 9 sta-
tistically significant motifs that are conserved across the
entire set of RARps and YRHs, with a probability of occur-
rence by chance in this set of protein sequences estimated
as <10-18, A multiple alignment of the RDRPs and YRHs
was constructed using the T-Coffee program and adjusted
using the alignments reported by PSI-BLAST and second-
ary structure prediction. Secondary structure prediction,
which was produced using the multiple alignment as the
query, included 16 a-helices and 20 B-strands, which are
conserved in RDRPs and YRHs (Fig. 1). Conserved se-
quence motifs are distributed throughout the aligned re-
gion; two motifs with the highest density of conserved
residues are located between strands 8 and 11 and strands
18 and 20 (Fig. 1). Twelve residues are conserved in all se-
quences from the two families, of which nine are charged
and one is polar (serine) (Fig. 1). The conserved charged
and polar residues conceivably might be involved in catal-
ysis and substrate-binding. The most notable signature
shared by the RDRPs and the YRH proteins is the DbDGD
(b is a bulky residue) motif located between strands 19
and 20 (Fig. 1). Closely spaced acidic residues that coordi-
nate divalent cations are characteristic of the active sites of
most nucleic acid polymerases, in spite of the fact that
they belong to several unrelated structural folds
[9,13,14,17,28,29,59]. Given that the DbDGD motif is
the only set of closely spaced acidic residues shared by the
RDRPs and the YRHE, it is likely to form part of the nucle-
otidyltransferase active site of these enzymes. Thus, these
comparisons identify previously undetected prokaryotic
homologs of the eukaryotic RDRPs, the YRH proteins,
which probably also have RNA-dependent RNA polymer-
ase activity.

Structural and evolutionary relationship between the cat-
alytic domains of the RDRPs and the DDRPs

Interestingly, the PSI-BLAST searches started with the se-
quences of the RDRP module of the RDRPs and the YRH
proteins consistently retrieved the B' subunits of DDRPs,
albeit at statistically not significant E-values. The high-
scoring segment pairs (HSPs) detected in these searches
aligned the highly conserved region of the RDRPs be-
tween the predicted strands 18 and 20, including the Db-
DGD motif, with the portion of the DDRP B' subunit
sequence, which contains the metal-chelating active site,
with a similar conserved motif, DxDGD. Additionally, a
search of the NR database with a position-specific scoring
matrix (PSSM) that included all unique RDRP and YRH
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sequences detected, with borderline E-values, a large pro-
tein from Corynebacterium glutamicum (Cgl1702),
which also contained a DXDGD motif. Reciprocal search-
es showed that this protein contained two regions of sta-
tistically significant similarity to the DDRPs. The N-
terminal region of similarity corresponded to the con-
served portion of the 3 subunits and the C-terminal region
corresponded to the core of the B' subunit and included
the DXDGD motif (see discussion below). Despite the
low statistical significance of the similarity between
RDRPs and DDRPs, the presence of the same signature
motif in the experimentally identified or predicted active
sites of the two classes of enzymes prompted us to per-
form a detailed comparison of the catalytic domains of
these two classes of RNA polymerases.

Among nucleic acid polymerases, a DxDxD motif is con-
served only in the RDRPs, the DDRP B' subunits and the
euryarchaea-specific DNA polymerase subunit II. Howev-
er, in the latter polymerase, the motif has the signature
DGDED, as opposed to the DxDGD pattern shared by the
RDRPs and DDRPs. To investigate the distribution of this
motif in the entire protein database, we conducted pattern
searches using the GREF program of the SEALS package,
with queries corresponding to the residue conservation
profile in the predicted active sites of the RDRPs. All these
queries contained the DxDGD motif with additional
flanking conserved residues. The only proteins with evo-
lutionarily conserved DxDGD motifs that were detected in
these searches were the RDRPs, the ' subunit of DDRPs,
the integrin calcium-binding module, and the EF-hand
domain (data not shown). Among these domains, the
motif was embedded in the context of conserved (predict-
ed) B-strands only in the RDRPs and DDRPs. Moreover, in
searches conducted with extended queries, such as Db-
DGDxhxh or DGDxhxh patterns (h is a hydrophobic resi-
due), the RDRPs and the B' subunits of DDRPs were
identified as the only protein families in which these mo-
tifs were conserved. We also ran database searches using
the PHI-BLAST program that combines a regular BLAST
search with a pattern search [60]. In these searches, the ac-
tive site motif was used as the pattern query, and various
RDRP sequences as the sequence queries. All these search-
es retrieved the YonO proteins with significant E-values
and some of the DDRP B' subunits with borderline E-val-
ues. For example, searches seeded with the RDRP (RrpB
gene product) sequence from Dictyostelium (gi:14475571)
and the pattern [GAS]-D- [FLYMQN]-D- [G]-D-X-
[ACLIVMFY]-X- [ACLIVMEFY] detected the rice DDRP cata-
lytic subunit with an E-value of 0.048.

Examination of the recently solved structures of the DDRP
showed that, although B' subunit is a large protein, the ac-
tive site containing the DxDGD motif mapped to a small,
compact B-barrel domain. A search of the PDB database
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Multiple sequenced alignment of the conserved RDRP module from eukaryotic RNA-dependent RNA
polymerases and their bacteriophage homologs. The sequences are denoted by gene names, abbreviated species names
and Gene ldentification (GI) numbers from the GenBank database. Species name abbreviations: At: Arabidopsis thaliana, Cac:
Clostridium acetobutylicum, Ce: Caenorhabditis elegans, Cpe: Clostridium perfringens, Ddi: Dictyostelium discoideum, Diam: Diaporthe
ambigua, Diper: Diaporthe perjuncta, Giin: Giardia intestindlis, Lyes: Lycopersicon esculentum, Nc: Neurospora crassa, Nt: Nicotiana
tabacum, Os: Oryza sativa, Pethy: Petunia hybrida, Phsp: Phomopsis sp., Sp: Schizosaccharomyces pombe, Spbc2: Bacteriophage
SpBc2. The positions of the first and the last residue of the aligned region in the corresponding protein are indicated before
and after each sequence, respectively. The numbers between aligned blocks represent poorly conserved inserts that are not
shown. The coloring is based on the 95% consensus shown underneath the alignment; h indicates hydrophobic residues
(ACFILMVWY), a indicates aromatic residues (FYW), | indicates aliphatic residues (ILVA), p indicates polar residues (STED-
KRNQHC), c indicates charged residues (DEKR), bi indicates bulky residue (ILFYWMKREQ), s indicates small residues (AGS-
VCDN). The predicted secondary structure elements are shown below the alignment; H indicates a-helix and E indicate
extended conformation (B-strand). The predicted helices are marked HI-16 and the predicted strands SI-20. The signature
motif DbDGD, which is predicted to form part of the catalytic site, is shown in reverse shading. The three sequences at the
bottom are those of bacteriophage homologs of the RDRPs (the YRH proteins); the remaining are RDRP sequences.

using the DALI program [61], with this B-barrel from Ther-
mus thermophilus B' subunit submitted as a query (pdb:
1iw7, chain D region: 625-749), retrieved the N-terminal
domain of the CDC48-like AAA ATPases, formate dehy-
drogenases, aspartate decarboxylases and Barwin. The re-
ported structural alignments span ~70 residues with

significant Z-scores (8.8-6.6) and root mean square devi-
ations (RMSD) between the C-a backbones in the range of
1.8-2.5 A, which is characteristic of homologous do-
mains. The region of structural similarity shared by the
catalytic domain of the B' subunit of the DDRPs and the
above proteins corresponds to a distinct globular fold
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known as the double-psi beta-barrel (DPBB) [62-64]. The
SCOP database included the RNA polymerase subunits in
the multidomain protein class but mentions the presence
of a DPBB domain in each of the p and B' subunits ([65];
see below).

The region of sequence similarity between the RDRPs and
the B' subunits of DDRPs, that was detected in the search-
es described above, almost precisely mapped to the DPBB-
fold catalytic domain of DDRP. The multiple-alignment-
based secondary structure prediction for the RDRPs and
the YRHs indicated that, like the similar region of the p'
subunit, this region was enriched in B-strands (Fig. 1).
Multiple alignment constructed on the basis of sequence
alignments produced in the PSI-BLAST and PHI-BLAST
searches and superposition of the predicted secondary
structure elements of RDRP and the experimentally deter-
mined structure of DDRP revealed considerable concord-
ance between the RDRP and DDRP families. In addition
to the DbDGD motif, which is located in the loop be-
tween strands 5 and 6, several residues are conserved be-
tween these polymerase families (Fig. 2). These include
hydrophobic residues in the -strands, a conserved pro-
line after strand 2, a small (typically, glycine) and polar
(typically, aspartate) residues before strand 3, small resi-
dues that typically mark the boundaries of secondary
structure elements and several charged and polar residues
(Fig. 2). A comparison of the RDRP and DDRP sequences
using the Gibbs sampling method identified two con-
served blocks, which were highly statistically significant (E
< 10-16) within the analyzed sequence set. One of these
blocks centered at the DbDGD motif, whereas the other
one encompassed strands 3 and 4, which contain several
partially conserved hydrophobic and polar positions (Fig.
2).

Importantly, approximately 10 conserved residues that
are detected in the structure-based alignments of the
DPBB domains are also conserved in the RDRPs (Fig. 3).
These include a doublet comprised of a small and a polar
residues preceding each of strands 3 and 6, a small residue
after strand 2 (proline in the DDRP f' subunit and RDRP),
bulky and polar residues in strand 3, a small residue im-
mediately downstream of strand 5, a bulky residue in the
loop between strands 5 and 6, and two hydrophobic resi-
dues in strand 6 (Fig. 3). The predicted DPBB domains of
the RDRPs differ from most of the DPBB domains of
DDRP B' subunits in that the former lack a long and vari-
able, in both length and sequence, insert between strands
2 and 3 that is characteristic of the latter (Fig. 2). However,
the DPBB from the RNA polymerases of yeast killer plas-
mids and the divergent predicted corynebacterial
polymerase Cgl1702 also lack this insert (Fig. 2). Taken
together, these observations suggest that, although RDRPs
and the B' subunits of DDRPs show limited sequence sim-
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ilarity, these two RNA polymerase families share a homol-
ogous catalytic domain, which consists of a double-psi-p-
barrel containing the metal-coordinating DbDGD motif.

The DPBB domains and early evolution of the catalytic do-
main of RNA polymerases

The SCOP database, while classifying the DDRP subunits
in the multidomain category, recognizes two DPBBs in the
DDRP complex. One of these corresponds to the catalytic,
metal-coordinating domain, containing the DbDGD mo-
tif, in the B' subunit (residues: 626-750 of pdb id:1iw7
chain D), whereas the other one corresponds to the con-
served core domain of the  subunit (residues:673-994 of
pdb id: 1iw7 chain C). The DPBB domains of the § and p'
subunits interact to form the catalytic cleft of the RNA
polymerases, with two conserved lysines in the B subunit
protruding into the cleft and interacting with the substrate
(Fig. 4). However, the DPBB domain in the p subunit is
distorted by two large inserts (Fig. 4 and see below) and
shows no detectable sequence similarity to the ' subunit
DPBB. Because of these inserts and the resulting distor-
tion, the DPBB of the B subunit does not show similarity
to any domains in structure database searches. Neverthe-
less, a structural alignment based on visual inspection
confirms the presence of all the bona fide features of the
DPBB domain in the B subunit (Fig. 3). The Cgl1702 pro-
tein from Corynebacterium, which we identified as one of
the most divergent members of the DDRP clade, showed
similarity to the other DDRPs only in two regions, which
corresponded to the DPBBs from the B and the B' subunit.
This observation, taken together with the spatial proximi-
ty of the two DPBBs in the catalytic cleft of the DDRP (Fig.
4), indicates that these domains comprise the ancestral
conserved core of the RNA polymerases. The arrangement
of the two DPBBs in the  and B' subunits suggests that, in
the primordial ancestor of the DDRPs, the two DPBBs
formed a "head-to-tail" homodimer that bound RNA at
the domain interface.

Although the cores of the two DDRP subunits are homol-
ogous and are likely to have evolved from a common an-
cestor (see discussion below), they have completely
different sets of conserved residues and contribute distinct
moieties to the catalytic cleft (Figs. 3, 4). Thus, these spe-
cific active residues apparently emerged after the diver-
gence of the f and ' subunit DPBBs, whereas the ancestral
DPBB homodimer probably did not have catalytic activity
and merely bound a ribozyme that originally catalyzed
the RNA polymerization. Subsequently, the two subunits
diverged from each other, with one (B') acquiring a diva-
lent cation-binding site in the insert between the two ter-
minal strands of the DPBB, whereas the DPBB in the other
(B) subunit acquired two basic residues that interacted
with the nucleic acid. At this stage, which might be
considered the emergence of modern-type RNA
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Multiple alignment of the double-psi 3-barrel (DPBB) domains from the ' subunit of DNA-dependent RNA
polymerases with the predicted DPBB domains of RNA-dependent RNA polymerases. The conventions for nam-
ing sequences and coloring conserved residues are as described in the legend to Figure |. The shared secondary structure ele-
ments are shown above the alignment with E denote the B-strand (extended) conformation. Non-conserved regions are
depicted as numbers with inserts. The species abbreviations are as in figure Fig. |. The species abbreviations that are not listed
in the legend to Figure | are: Thth: Thermus thermophilus, Dr: Deinococcus radiodurans, Ec: Escherischia coli, Atu: Agrobacterium
tumefaciens, Mlo: Mesorhizobium loti, Hp: Helicobacter pylori, Uu:Ureaplasma ureolyticum, Bs: Bacillus subtilis, Tm: Thermotoga mar-
itima, Ssp: Synechocystis species, Aae: Aquifex aeolicus, Ct Chlamydia trachomatis, Mpn Mycoplasma pneumoniae, Mtu: Mycobacte-
rium tuberculosis, Tp: Treponema pallidum, Sso: Sulfolbus solfataricus, Ap: Aeropyrum pernix, Mac: Methanosarcina acetivorans, Hsp:
Halobacterium species, Sc: Saccharomyces cerevisiae, Hs: Homo sapiens, VV: Vaccinia virus, BNV: Bombyx mori Nuclear Polyhedro-
sis virus, Cgl: Corynebacterium glutamicum, Klla: Kluyveromyces lactis.

polymerases, the catalytic activity probably was taken over

by the protein.

The basic DPBB fold consists of six B-strands and two var-

iable regions, which are located after strand 2 and strand
5 and, at least in some case, adopt a helical conformation
[62-64]. The domain can be further split into two
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Figure 3

A structure-based multiple alignment of the DPBB domains from the 3 and ' subunits of DDRPs with a selec-
tion of other structurally characterized DPBB domains and the predicted DPBB domains of RDRP. The align-
ments were generated by structural superposition of representatives of the DPBB domains followed by addition of sequence
neighbors. The predicted DPBB domain of the RDRPs was included on the basis of the alignment with the DDRP (' subunit's
DPBB domain. The functionally important lysines in the 3 subunits and the metal-coordinating aspartates in the ' subunits are
boxed. The conserved positions shared by the RDRPs with the structurally characterized DPBBs are indicated below the align-
ment by asterisks. The other conventions and abbreviations are as in the legends to Fig. | and Fig. 2.

symmetrical structural units, each with three core (-
strands. These two units are combined into a barrel with a
complex topology, with strand 5 wedged between strands
1 and 2 and strand 2 wedged between strands 4 and 5,
yielding two 'psi' loop structures (Fig. 4). The psi-loops
between strands 1 and 2 and between strands 4 and 5 of-
ten harbor the active site or substrate-interaction residues
of the respective DPBBs. Sequence comparisons and iden-
tification of specific conserved motifs showed that the
DPBB fold includes five major superfamilies. These super-
families are typified by the formate dehydrogenase C-ter-
minal (FDHC) domain, Barwin endoglucanase, aspartyl
protease, and the DPBB domains from the § and B' subu-
nits of DDRP. Two of these superfamilies show a restricted
phyletic distribution. Barwin-like endoglucanases are
present only in plants and fungi, whereas aspartyl proteas-
es are found in eukaryotes, retroviruses and a minority of
bacteria. The latter superfamily also has a circular permu-

tation, which suggests secondary derivation. Thus, none
of these superfamilies are likely to have been present in
the last universal common ancestor (LUCA) of extant life
forms. In contrast, the DPBBs detected in DDRP subunits
are universally present in all modern life forms and hence
are traceable to LUCA. The FDHC superfamily includes
several distinct families. The N-terminal domain of the
CDC438-like AAA ATPases is present largely in eukaryotes
and archaea and the N-terminal domain of thymidine
phosphorylases is archaea-specific. In contrast, the FDHC-
like DPBB domain associated with oxidoreductases, such
as formate dehydrogenase and molybdopterin-containing
dehydrogenases, is widespread in archaea and all major
lineages of free-living bacteria. Thus, at least one DPBB
domain of the FHDC superfamily probably was present in
LUCA.
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Figure 4

Structure of the catalytic cleft of DDRP formed by interacting DPBB domains of the § and ' subunits. The
metal-coordinating DbDGD motif of the ' subunit and the functionally important lysines projecting into the catalytic cleft of
the 3 subunit are shown in ball and stick representation. The two double psi-barrels are juxtaposed in an asymmetric head to

tail configuration.
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The above analysis shows that LUCA probably encoded
three distinct DPBB domains. Although the DPBB domain
in the RNA polymerase B subunit is distorted by inserts
and shows extreme sequence divergence, its role in the
formation of the catalytic cleft and the spatial arrange-
ment with respect to the more canonical DPBB of the B'
subunit (Fig. 4) are compatible with the hypothesis that
the two DPBB domains of DDRP shared a common ances-
tor to the exclusion of the other ancient, FDHC-like
DPBB. A structure-based sequence alignment shows that
the DPBB domains of the RNA polymerases share several
conserved residues with other DPBB domains. These in-
clude 7 hydrophobic residues, two sets of symmetrically
positioned small (mostly glycine) and polar (mostly as-
partate) residues preceding strands 3 and 6, respectively,
and at least three other small residues, two polar residues
and two bulky residues (Fig. 3). Of these, the small resi-
dues preceding strands 3 and 6 contribute a positive ¢ an-
gle, which results in turning of the C-a backbone to
stabilize the B-barrel [62]. These shared features notwith-
standing, the ancient DPBBs have no conserved residues
in their catalytic or substrate-binding sites. This is best
compatible with the notion that the common ancestor of
the DPBB domains was a generic binding domain devoid
of high specificity or catalytic activity (see also discussion
above).

The same three-stranded structural units that interlock to
give rise to DPBB also form another type of B-barrel via
terminal dimerization. This is the Elongation factor-Iso-
merase (EI)-barrel found in ribosomal proteins, such as
L3, GTPase translation factors, ferredoxin reductase, and
L-fucose isomerase [62,66]. It seems likely that the EI-bar-
rel and the DPBB evolved from ancient three-stranded an-
cestral units, which were stabilized via the formation of
different barrel structures through homo-dimerization.

Several versions of the DPBB, e.g., those in RNA polymer-
ases, and of the EIB, such as those in translation elonga-
tion factors and ribosomal protein L3, are parts of
ribonucleoprotein complexes. Other ancient forms, espe-
cially those that occur as accessory domains in enzymes,
appear to bind small molecules. Hence, the primordial
three-strand unit might have formed barrel-shaped
dimers that non-specifically associated with RNA or with
small molecules. These generic barrel domains subse-
quently diverged to occupy different functional niches in
ribonucleoproteins and metabolic enzymes. These con-
siderations, together with the inferred relationships be-
tween the different versions of the DPBB domain, lead to
the scenario of early evolution outlined in Figure 5. Only
the last bifurcation of the DPBB domains in the proposed
tree yielded the distinct forms present in the § and p' sub-
units of DDRP, which apparently acquired catalytic activ-
ity. Substantial divergence of the B-barrels seems to have
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occurred at a stage of evolution when the actual RNA
polymerase activity resided in a ribozyme whose function-
ing was facilitated by a non-specific, RNA-binding protein
cofactor.

Ancient conserved domains and evolution of DNA-depend-
ent RNA polymerases

While all bacteria, archaea and eukaryotes encode or-
thologs of at least four distinct subunits of DDRP, the di-
vergent RNA polymerases of baculoviruses and yeast killer
plasmids and the Corynebacterium Cgl1702 protein only
contain counterparts to the p and pB' subunits. The mini-
mal RNA polymerase seems to be represented by the pre-
dicted catalytic core of Cgl1702, which appears to consist
entirely of the B-type and B'-type DPBBs, in this case jux-
taposed in the same polypeptide. These observations are
not particularly surprising given that § and B' subunits
form the catalytic cleft of the DDRP (Fig. 3), whereas the
other subunits occupy peripheral positions in the com-
plex. In an attempt to gain further insight into the early ev-
olution of the catalytic core of RNA polymerases, we
sought to identify additional globular domains in  and B'
subunits.

Using the experimentally determined structure as a guide,
we split the § and B' subunits of the Thermus thermophilus
DDRP and the largest two subunits of the yeast DDRP into
individual globular domains and investigated them by
visual inspection of the topology, structural searches of
the PDB database using the DALI program and iterative
searches of the NR database using PSI-BLAST. An obvious
ancient conserved domain thus detected was a rubredox-
in-like Zn-ribbon. The Zn-ribbons are widespread, small
domains that are comprised of two B-hairpins bounded
by consecutive extended regions stabilized by metal-coor-
dinating residues in the hairpin loops [67-70]. Zn-rib-
bons are present in a variety of nucleic-acid-binding
proteins, including several ribosomal proteins, transla-
tion factors, aminoacyl-tRNA synthetases, RNA polymer-
ase cofactors in archaea and eukaryotes, and several
transcription factors. These domains are also present in
other contexts where they function as structural scaffolds
and as regulators of redox reactions. The B' subunit of bac-
terial DDRPs contains a single Zn-ribbon at the N-termi-
nus (region 56-81 of Thermus B' subunit; Fig. 6). The
orthologous largest subunits of the archaeal and eukaryo-
tic DDRPs have two Zn-ribbons in the N-terminal portion
of the protein (regions 59-88 and 103-173 in the yeast
protein). The distal ribbon is distorted by a large insert be-
tween the two core halves of the domain and a substitu-
tion of asparagine for one of the metal-coordinating
cysteines.

Although the sequences of the Zn-ribbons of bacterial and

archaeo-eukaryotic DDRP subunits have diverged
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Figure 5

A hypothetical scheme of evolution of two types of 6-stranded [-barrels from 3-stranded units. The scheme was
derived as the most parsimonious explanation for the phyletic patterns and structural peculiarities of each lineage of 6-stranded
barrels. The emergence of particular properties or characters characteristic of a given clade is indicated by horizontal bars.

considerably, their similar location in the orthologous
polypeptides from different kingdoms suggests that f3'
subunit of LUCA already contained a Zn-ribbon. Based on
the crystal structure, it has been proposed that the region
containing the Zn ribbon may interact with the promoter
during transcription initiation in bacteria [23]. Hence, it is
plausible that a nucleic-acid-binding Zn-ribbon had been
recruited to the ancestral polymerase core, which consist-
ed of the DPBB domains, and contributed to non-specific
interactions with the template. Consistent with this, the
Zn-ribbon had been subsequently reused in several basal

archaeo-eukaryotic transcription factors, such as TFIIB,
TFIIE and TFIIS [67,68,71-73].

A potential additional nucleic-acid-binding moiety that is
conserved in all B'-subunits is the AT-hook like module
(Fig. 6). The AT-hook is a simple, small protein module
that consists of a flap-like structure with a positively
charged surface that is inserted into the minor groove of
DNA [74]. The two AT-hook-like modules (residues 583-
603 of 1IW7 chain D) in the DDRP B' subunit are inserted
within the a-helix that is located immediately upstream of
the DPBB domain (Fig. 6). Previously, AT-hooks have
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Domain architectures of the § and 3’ subunits of DDRP. Domain designations: DPBB, double-psi 3-barrel, SBHM, sand-
wich-barrel hybrid motif, ZnR, Zn-ribbon, ATL, AT-hook like, BBM, B, B'-(specific) module. G is a domain containing a mini-
mal version of the 3 grasp fold. Other designations: A, archaea, B, bacteria, E, eukaryota, Pr, Proteobacteria, Aqae, Aquifex, Spi,
spirochetes, Chl, Chlamydia, Tth, Thermus thermophilus, Dra, Deinococcus radiodurans, Tma, Thermotoga maritima; Af, Archaeoglo-
bus fulgidus, Hsp, Halobacterium sp., Mj, Methanocaldococcus jannaschii, Mth, Methanothermobacter thermoautotrophicus. Other
globular regions that are conserved between the cellular DDRPs are shown by blue rectangles and non-conserved regions are
shown as gray lines. Globular regions conserved in the archaeo-eukaryotic lineage are shown by red rectangles, whereas those
conserved in all bacteria are shown by yellow rectangles. The proteins are not shown to scale. Splits indicated by arrows and
slashes are instances when different portions of the respective subunits are encoded in separate genes.
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been detected primarily in eukaryotic chromatin-associat-
ed proteins, particularly transcription factors, where they
function as accessory DNA-binding domains [74]. The
ubiquity of the AT-hook-like modules in the ' subunits of
DDRPs suggests that they were recruited for nucleic acid
recognition in LUCA if not earlier.

Analysis of a B-strand-rich insert between strands 2 and 3
of the 3 subunit DPBB (Figs. 4, 6) led to the identification
of another ancient conserved domain that could be traced
back to ancestral RNA polymerases. Visual examination of
the structure of this insert domain revealed a topology
with elements of both a sandwich and a barrel, and two
"waist"-like structures that are characteristic of the sand-
wich-barrel hybrid motif (SBHM) fold [75,76] (see also
the SCOP database [65]). The SBHM fold is present in bi-
otin/lipoate carrier domains and their homologs found in
a variety of enzymes and transporters [76]. A DALI search
with this insert domain from the B subunit of Thermus
DDRP showed similarity to the SBHMs from various bi-
otin/lipoate-binding enzymes, such as acetyl-CoA
carboxylase (1bdo) or dihydrolipoamide acetyltransferase
(1iyu) with Z scores of »6 and RMSD ~2.5 A in the aligned
regions spanning approximately 70 residues. An align-
ment of the SBHM domains from the DDRP  subunit
with the previously identified SBHMs showed conserva-
tion of most residues characteristic of the SBHM super-
family (Fig. 7). The defining structural feature of this
domain is seen in the loop between strands 5 and 6 (Figs.
7,8). This loop is bounded by small residues at each end
(mostly valine at the N-terminus and glycine at the C-ter-
minus) and has a distinct signature, with small (mostly
glycine), charged (mostly aspartate) and hydrophobic res-
idues occurring in succession, in the middle of the loop
(Figs. 7,8). These observations reveal an evolutionary rela-
tionship between the SBHM domain of DDRP and the SB-
HMs found in other, functionally distinct proteins.

The core SBHM domain consists of a repeat of two three-
stranded units with the characteristic "waist"-like struc-
ture occurring between the second and third strands of
each repeat (Fig. 8). In the complete SBHM, strand 1 packs
with strand 6 and the loops bounded by the two "waist"-
like regions adopt an extended conformation resulting in
the formation of a barrel. In the crystal structure of DDRP,
the SBHM domain inserted into the -subunit DPBB is in
contact with the outward-projecting insert between
strands 2 and 3 of the B'-subunit DPBB. Furthermore, the
SBHM also contributes to the stabilization of the catalytic
site by forming an interface between the two DPBBs (Fig.
4). The universal presence of the SBHM inserted in the
DPBB domain of the DDRP B-subunit suggests that this
domain was already present in the common ancestor of
all extant DDRPs. The wide spread in different phyloge-
netic lineages of two other SBHM domains, namely those

http://www.biomedcentral.com/1472-6807/3/1

found in dihydrolipoamide acetyltransferase and the gly-
cine-cleaving enzyme, is indicative of their presence in
LUCA [76]. The SBHM of the DDRPs is specifically related
to the biotin/lipoate-binding SBHMs. The two share a
conserved basic residue that is present immediately prior
to strand 4. In all biotin/lipoate-binding SBHMs, this po-
sition is occupied by a lysine, which covalently binds or-
ganic radical ligands (Fig. 7), but there is no evidence for
such a role in the DDRP [ subunits. These observations
suggest that the ancestral SBHM interacted with various
ligands with a low specificity. From such a precursor,
which existed prior to LUCA, the SBHM domain appar-
ently diversified into two forms, one that covalently
bound organic radicals, and another that specialized in
non-covalent interactions with proteins or nucleic acids.
This latter form was recruited into the RNA polymerase
catalytic core where it provided additional surfaces for the
interaction between the DPBB domains and formed part
of the interface between the catalytic domains. Thus, it ap-
pears likely that the ancestral DDRP evolved from the co-
alescence of at least 3 distinct domains: i) the DPBB that
probably originally bound RNA and, subsequently, segre-
gated into the cores of the ' subunit, where it acquired the
metal-coordinating active site, and of the B subunit, with
the two lysines projecting into the catalytic cleft (Fig. 4),
ii) the Zn-ribbon, which was probably involved in inter-
actions with the template, and iii) the SBHM domain that
stabilized the interactions between the DPBB domains
forming the catalytic cleft (Fig. 6). Additionally, two AT-
hook like modules, which probably had an accessory
DNA-binding function, were also inserted into a con-
served a-helix directly N-terminal of the DPBB domain in
the B' subunit.

The remaining conserved regions in the  and B' subunits
of the DDRPs do not show detectable relationship with
any other ancient conserved domains. Examination of
these structures shows that they are principally composed
of large a-helical hairpins that form coiled coil structures
or stretches with successive shorter a-helices. Some of the
other conserved regions consist of B-meanders with
unusually long p-strands. These regions probably
emerged, respectively, through duplication and diver-
gence of a simple a-helical unit or through stabilization of
long loops by selection for hydrophobic residues, result-
ing in the formation of the core units of the 3-meanders.

Proliferation of the Sandwich-Barrel Hybrid Motif and lin-
eage-specific innovations of the large subunits of bacterial
DDRP

Further visual examination and structural alignments re-
vealed the presence of one additional SBHM domain in
the B subunit (1iw7 chain C: region 592-659) and several
repeats of this domain in the ' subunit (1iw7 chain D, re-
gions: 163-195, 248-308, 311-368, 369-419 and 1270-
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A structure-based multiple alignment of the sandwich-barrel hybrid motif (SBHM) domains from 3 and (' sub-
units of DDRPs and other proteins. The alignments were generated by structural superposition of representatives of the
SBHM domains followed by addition of sequences neighbors of the representative structures. The conserved basic residue that
forms a covalent linkage with the organic radical in biotin/lipoate-binding domain-type SBHM is shown in reverse shading. The
individual sequence families of SBHMs are indicated to the right of the alignment. The waist-like loops are marked as 'L" in the
secondary structure shown above the alignment. Species abbreviations are as in Fig. | and Fig. 2 Additional species abbrevia-
tions not given above are: Ana, Anabaena sp., Azvi, Azotobacter vinelandii, Bb, Borrelia burgdorferi, Brra, Brassica rapa, Ccr,Caulo-
bacter crescentus, Cj, Campylobacter jejuni, Cpn, Chlamydophila pneumoniae, Haeso, Haemophilus somnus, Mge, Mycoplasma
genitalium, Mj, Methanocaldococcus jannaschii, Nm, Neisseria meningitidis, Pab, Pyrococcus abyssi, PhLa, Phormidium laminosum, Pisa,
Pisum sativum, Pmar, Prochlorococcus marinus, Prfr, Propionibacterium freudenreichii

1329) of the bacterial DDRPs (Fig. 6). A PSI-BLAST search
started with the N-terminal SBHM from the Aquifex aeoli-
cus DDRP B' subunit detected several SBHMs from
proteins other than the ' subunit, such as acetylornithine

deacetylase (E = 2 x 107, iteration 2), the C-terminal re-
gion of bacterial cytochrome F (E = 104, iteration 2), bi-
otin carboxyl carrier domain of biotin transcarboxylases
(E =6 x 104, iteration 2) and the phosphotransferase sys-
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An evolutionary scenario for the SBHM domains from the DDRP subunits and other proteins. The scenario for
the derivation of various versions of the SHBM fold from the simple, ancestral 3-stranded unit was inferred from phyletic pat-
terns, structural features and the internal duplication. The conserved basic residue present in the biotin/lipoate-binding
domain-type SBHMs and the 3 subunit of the DDRPs is shows as a ball-and-stick model. The emergence of different lineage-

specific specializations is indicated to the side of each clade.

tem enzyme Il (E = 10-3, iteration 2). This search also re-
trieved the bacteria-specific C-terminal SBHM domain of
the B subunit (e.g. Thermotoga, E ~10-3) and, interestingly,
also a SBHM in the N-terminal region of the NusG protein
from Thermotoga maritima (E = 2 x 1077, iteration 2). Re-
verse searches with the C-terminal region of cytochrome F
(gi: 11467387, residues 150-321) retrieved the bacterial

' sequences in the second and subsequent iterations with
statistically significant E-values. None of these additional
SBHMs were detectable in the archaeal or eukaryotic
DDRPs, either in sequence searches or in direct compari-
sons of the crystal structures. Thus there appears to have
been a lineage-specific proliferation and dissemination of
the SBHM domains in bacteria.
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Bacterial B and B' subunits show major variability in the
distribution of the SBHM domains (Fig. 6). All bacterial
subunits share one additional SBHM, which is located N-
terminal of the DPBB domain. Similarly, an extra SBHM,
located C-terminal of the DPBB, is conserved in bacterial
B' subunits. In some cyanobacteria, the portion of the B'
subunit containing the SBHM occurs as a separate
polypeptide. In addition to the SBHMs that are conserved
among all bacterial lineages, a cassette of up to four SB-
HMs are present N-terminal of the DPBB domain in the f'
subunit of Thermus, Deinococcus and Thermotoga (Fig. 6).
Similarly, the B' subunit of proteobacteria, Aquifex, spiro-
chaetes, cyanobacteria and chlamydiae contains an addi-
tional set of SBHMs C-terminal of the DPBB domain,
preceding the C-terminal SBHM that is shared by all bac-
teria (Fig. 6). The bacterial-specific SBHM domains
present in the B and B' subunits are typically located on
the periphery of the holoenzyme, which makes them ac-
cessible for interactions with other proteins. Two of these
SBHMs (regions 163-195 and 369-419 in 1iw7 chain D)
are involved in the interaction with the ¢ 70 subunit,
which is critical for transcription initiation in bacteria
[23]. Thus, it appears likely that, originally, the SBHM do-
main of the  subunit participated in generic protein-pro-
tein interactions that allowed the ancestral DDRP to
recruit accessory subunits. Subsequently, in the bacterial
lineage, proliferation of SBHMs provided for several oth-
er, specific interactions involved in initiation and
elongation.

Several of the SBHMs that are specific to the bacterial
DDRPs show degradation of the "waist"-like loop of the
first internal repeat. This is clearly a derived state because
the SBHM originally evolved through the duplication of a
single ancestral unit that contained an intact "waist"-like
loop between strands 2 and 3. The form of the SBHM with
a shortened loop in the first internal repeat is additionally
seen in several bacterial-specific families of SBHMs. These
include the SBHM of the phosphotransferase system en-
zyme II (glucose permease or PTS-EII) found in several
lineages of free-living bacteria, the one at the C-termini of
cytochrome F from cyanobacteria and chloroplasts, and
the NlpD-like cell wall peptidases that are present in most
bacteria. In addition to the specific structural relationship
between some of the SBHMs of the DDRPs and those
present in these bacterial proteins, they also show detect-
able sequence similarity. For example, a PSI-BLAST search
initiated with the SBHM from NlpD retrieved the derived
SBHMs of the bacterial RNA polymerase subunits (e.g.
Streptococcus B subunit, E = 104, iteration 2) well before
the classical SBHMs (eg. Mesorhizobium dihydrolipoamide
acetyltransferase, E = 10-3, iteration 4). The  and B' subu-
nits of the bacterial DDRP are the only proteins that con-
tain both versions of the SBHM (Fig. 7). Hence, it appears
likely that the form of the SBHM with the degraded loop

http://www.biomedcentral.com/1472-6807/3/1

in the first internal repeat initially evolved in the bacterial
DDRP subunits. Subsequently, these domains appear to
have been recruited for various interactions in other bac-
terial proteins.

Examination of the structure and multiple sequence align-
ments of bacterial B and B' subunits led to the identifica-
tion of two additional, distinct domains, which so far are
not detectable in any proteins other than the DDRP and
were accordingly designated Beta-Beta' Module 1 (BBM1,
region 119-165, 1iw7 chain D) and Beta-Beta' Module 2
(BBM2, region 1109-1190, 1iw7 chain D) (Fig. 6). Both
these domains share an unusual, common structural core
that we term the BBM-core (BBMC) of about 40-50 resi-
dues with an RMSD of 2A over the aligned region. The
BBMC consists of N- and C-terminal helices that bound a
central region with 4 unusual, extended regions that fold
into a curved hairpin structure (Fig. 9A). The BBM1 do-
main is inserted after the Zn-ribbon in all bacterial ' sub-
units and, additionally, into the SBHM domain of the f
subunit in proteobacteria, Aquifex and chlamydiae (Fig.
6). Notably, this is the same set of bacteria that contain ex-
tra SBHM domains inserted in the C-terminal region of
the B' subunit (Fig. 6 and see above). The BBM2 domain
shows a similar pattern of insertion: the C-terminal por-
tion of all bacterial ' subunit contains one copy, Thermo-
toga has two extra copies distal of the pan-bacterial copy.
Proteobacteria, Aquifex, spirochetes and chlamydiae have
a BBM2 inserted into the N-terminal region of the j sub-
unit (Fig. 6). The functions of these previously unnoticed
modules and the nature of the apparent congruence in the
evolution of the two RDRP subunits in a subset of bacteria
remain to be elucidated.

The RNA polymerase « subunit-core-related domain and
other elaborations of the archaeo-eukaryotic RNA
polymerase catalytic subunits

The bacterial DDRPs have two a-subunits that form a ho-
modimer at the "base" of the B-B' dimer and stabilize the
catalytic-binding cleft. In the archaeo-eukaryotic lineage,
there is a duplication of the a-subunit, resulting in two
paralogous subunits, RBP3 and RBP11. In the eukaryotic
DDRP complex, these subunits occupy a spatial position
very similar to that of the a-subunit homodimer of the
bacterial DDRPs. All these proteins share a common o + 3
core domain, with two a-helices, which form the dimer
interface. In the SCOP database, the a-subunit core
domains have been classified together with several other
domains, including the ligand-binding domain of the
bacterial arginine repressor, the dimerization cofactor of
the transcription factor HNF1 (DCOH), and a domain
specific to the bacterial aspartyl-tRNA synthetases. To
investigate this domain further, we conducted structural
similarity searches of the PDB database using the DALI
program, with the o-subunits of the bacterial and
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BBM2

Sui1

Structures of other conserved modules of DDRPs. (A) The core BBMC module of the BBM| and BBM2 domains (B)
Different versions of the a-subunit-core related (ASCR) domain ASCR domains from the bacterial DDRP a subunit, RBP1 |
(the eukaryotic ortholog of o), the ' subunit of the archaeo-eukaryotic DDRPs, topoisomerase ll/gyrase globular domain 3,
and the eukaryotic translation initiation factor | (Suil) are shown. Inserts or regions of poor X-ray diffraction are shown with
dotted lines. The ASCR domains from the archaeo-eukaryotic ' subunits are most similar to those from the o-subunits.

eukaryotic DDRPs used as the queries. These searches
showed that the core domain of the a-subunits were most
similar (Z scores 5.4-7, with RMSDs of 2.2-3 A over the
aligned C-a residues) to the arginine repressor ligand-
binding domain [77] and several domains that were not
previously recognized as being related (Fig. 9B). These
newly detected domains included the SUI1 domain, that
is found in eIF1 and related proteins [78], the third glob-

ular domain of DNA gyrase/Topoisomerase II and, most
interestingly, a distinct globular domain in the yeast
DDRP B' subunit (PDB: 1k83; region 1143-1271). Recip-
rocal DALI searches with these domains readily recovered
the a-subunits of DDRP as the best hits. For example, the
domain from the yeast B' subunit hit the a-subunits of
bacterial DDRPs with Z-scores of 5-7 and RMSD of 2.8-3
A. Hereinafter we refer to these domains as the a-subunit
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core-related (ASCR) domains. The ASCR fold has a $2-a-
B2-a topology and forms a two-layered structure with a 4-
stranded B-sheet and characteristic strand order of 1-2-4-3
(Fig. 9B). The ASCR domains of bacterial a-subunits and
eukaryotic RBP3 share a common insert domain between
helix-1 and strand 3, which apparently has been lost in the
RBP11 subunit of the eukaryotic DDRPs.

The ASCR domain in the yeast ' subunit is inserted into
another o + f domain. Visual examination of the topology
and structural searches of the PDB database using the
DALI program showed that this domain it adopts an RNA
Recognition Motif (RRM)-like structure with a B-a-f2-a-
topology forming a 4-stranded B-sheet. These two do-
mains comprise a conserved module that is specifically
shared by the archaeo-eukaryotic DDRPs to the exclusion
of the bacterial B' subunits (Fig. 6). This two-domain
module is inserted precisely in the same region as the C-
terminal SBHMs seen in the bacterial lineage (Fig. 6). The
closest relatives of the ASCR domain detected in the B'
subunit are those present in the a-subunits (Fig. 9B). This
observation suggests that the primary event in the diver-
gence of the archaeo-eukaryotic B' subunit was the inser-
tion of an RRM-like domain into the ancestral core. This
was followed by the insertion of the ASCR domain, which
probably evolved as a result of a duplication of the RBP3/
11 subunits, into this RRM-like domain. Both the spatial
arrangement of the ASCR domain in the ' subunits and
its extreme sequence divergence with respect to the ASCR
domains of the a-subunit suggests that it has acquired a
new function. The RRM-like domain and the ASCR do-
main are positioned in the exterior entrance to the catalyt-
ic cleft and could interact with cofactors or with nucleic
acid. There is no evidence that the ASCR domain in the
DDRP a-subunits binds nucleic acids and studies on SUI1
protein and the arginine repressor ligand-binding domain
implicate the ASCR domain in protein-protein interac-
tions and small molecule binding [77,79]. However, most
of the ASCR domains are present in proteins that interact
with nucleic acids (see above), raising the possibility of a
role in non-specific nucleic acid binding.

Mirroring the insertion of the ASCR domain in the ' sub-
unit, a distinct o + 3 globular domain, N-terminal to the
DPBB domain (region 578-632 of 1K83, Chain B), is in-
serted in the B subunits of all archaeal and eukaryotic
DDRPs (Fig. 6). This domain contains a 4-stranded sheet
with a 2-a-f2 topology, with the strands in a 2-1-4-3 or-
der. Visual examination of the topology and searches of
the PDB database using the DALI program showed that
this insert domain has the -grasp fold [80,81]. For exam-
ple, in the DALI search, the Staphylococcus immunoglobu-
lin-binding protein (IGBP; PDB code 2igd) was detected
with a Z score of 5.2 and a RMSD of 2.7 over ~50 residues.
This insert domain in the archaeo-eukaryotic § subunits
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resembles the version of the B-grasp domain that is
present in the bacterial translation initiation factor IF3
and the IGBPs, in contrast to the distinct version found in
ubiquitins, ferredoxins and ThiS. Specifically, the B-subu-
nit insert domain shares a 4-stranded core with the former
group and, like these proteins, lacks a long insert between
the two terminal strands (data not shown). Given that this
domain lies in the periphery of the holoenzyme, it is like-
ly to participate in interactions with cofactors, which is
compatible with the protein-protein interaction function
identified in several proteins with the p-grasp fold
[80,81].

Thus, a common set of ancient conserved modules ap-
pears to have been repeatedly reused in the evolutionary
diversification of the RNA polymerase subunits from their
ancestral cores. The lineage-specific domain insertions in
bacteria and in archaea-eukaryotes correlate with the fun-
damental differences between the basal transcription ma-
chinery of these two lineages [82,83]. This suggests
congruent evolution of the RNA polymerase catalytic sub-
units and the basal transcription factors [68].

Origin of the RDRPs

The evidence of an evolutionary relationship between the
core catalytic domains of the RDRPs and the DDRPs has
implications for the origin of the former group of pro-
teins. Given that DDRP is universal, whereas RDRP is eu-
karyote-specific, a plausible hypothesis might be that
RDRP evolved at the onset of eukaryotic evolution
through extensive, rapid sequence divergence following a
duplication of the B' subunit of the ancestral DDRP. How-
ever, despite extensive comparisons using PSSM and care-
ful visual examination, we failed to detect any residual
sequence similarity between DDRP and RDRP, outside
the core DPBB domain containing the metal-binding ac-
tive site. In particular, no traces of the Zn-ribbon and the
AT-hook-like modules, which are conserved in all B' sub-
units (Fig. 6), were detected. All RDRP sequences contain
two closely spaced lysines, which are conserved in the
YRH proteins (Fig. 1) and might functionally correspond
to the conserved lysines of the B-type DPBB. These resi-
dues are embedded in a secondary structure context that is
enriched in predicted B-strands (Fig. 1); hence, in
principle, this region might correspond to the B-type
DPBB of the DDRPs. However, the respective region of the
RDRP sequences shows no detectable similarity to the to
this DPBB domain, suggesting that the presence of two
functionally important lysines in both RDRP and DDRP
might be convergent. In principle, radical divergence
could have eroded all similarity between RDRP and
DDRP beyond the DPBB domain. An alternative, perhaps
more likely explanation is that, while the core catalytic do-
mains of the two polymerases evolved from the same an-
cestral DPBB, they subsequently accreted distinct sets of
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peripheral modules around this core. The bacteriophage
YRH proteins show no specific relationship with the
RDRPs from any one eukaryotic lineage, arguing against a
recent lateral transfer from eukaryotes to the phages. Tak-
en together, all these observations point to a scenario for
the origin of the RDRP, under which the RDRPs and the
YRHs diverged from the DDRPs at a stage of evolution
that succeeded the divergence of the DPBB domains of the
B and B' subunits (Fig. 5) but preceded the emergence of
eukaryotes and even LUCA. One class of substrates of the
extant eukaryotic RDRPs are small RNAs, such as microR-
NAs and stRNAs [84-90], and analogous small RNAs have
been identified in bacteria [91-94]. Given that small
RNAs are likely to have been abundant in the hypothetical
ancient RNA world, RDRPs might have been involved in
the replication of such RNAs since an early stage of evolu-
tion. Should that be the case, the YRH proteins could be
late surviving derivatives of these ancient enzymes, which
apparently have been shunned from cellular life forms
during the evolution of prokaryotes. Eukaryotes might
have acquired the YRH gene from a bacteriophage at an
early stage of their evolution and retained the RDRPs
thanks to the selective advantage conferred by the new
level of gene expression regulation mediated, in part, by
these enzymes.

The eukaryotic RDRP is part of a large ensemble of func-
tionally linked proteins, which include the Dicer helicase-
nuclease, PIWI family proteins, the Hen-2/Corymbosa-
like RNA methylase, AlkB-related RNA demethylases, and
Lin28-like RNA-binding proteins [1,45,46]. Since no
closely related homologs of any of these proteins are en-
coded in the genomes of the phages that encode YRH pro-
teins, the latter are unlikely to function in a biological
context similar to that of the eukaryotic RDRPs. Neverthe-
less, the extended similarity between the YRH and RDRP
sequences and the presence of potential nucleic-acid-
binding modules, such as a C-terminal Zn-ribbon in the
SpPC2 YonO protein, suggest that the YRH proteins also
have a RNA polymerase activity. Possible functions of the
YRH proteins include a regulatory activity via amplifica-
tion of antisense RNAs or perhaps a more conventional
role as a DNA-dependent RNA polymerase of the respec-
tive phages.

General discussion and conclusions

Here, we identified bacteriophage homologs of the eu-
karyotic RDRP, which is involved in post-transcriptional
gene silencing. We also present evidence that RDRP and
the ubiquitous B' subunit of DDRP contain a homolo-
gous, metal-coordinating, catalytic domain. This domain
adopts the DPBB fold, in which the signature DbDGD
motif, shared by RDRP and DDRP, is ensconced in the in-
sert between the ultimate and penultimate B-strands. A
second DPBB domain is present in the B subunit of the
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DDRPs. This version of the DPBB domain lacks the metal-
coordinating motif but contributes two lysine residues,
which are critical for substrate interactions in the catalytic
cleft. The DPBB domain in the § subunit is distorted by
large inserts and shares no detectable sequence similarity
with the DPBB from the ' subunit. However, the DPBBs
from the two DDRP subunits are spatially juxtaposed in
the DDRP crystal, with the catalytic cleft located between
them. This arrangement suggests that the primordial RNA
polymerase was a head to tail homodimer of a DPBB do-
main; a duplication of this primordial DPBB domain
probably gave rise to the two DPBBs of modern DDRPs.
The presence of completely different conserved residues
and the asymmetric head to tail arrangement of the mon-
omers in the pair suggest that the ancestral DPBB dimer
was not specialized, had no catalytic activity, and merely
bound RNA. Originally, these DPBB domains might have
functioned as protein cofactors that stabilized a ribozyme
RNA polymerase and eventually displaced the ribozyme
as they acquired key residues required for protein-based
polymerase activity. This evolutionary scenario comple-
ments a similar model proposed for the evolution of the
other major polymerase class, the palm-domain-contain-
ing RNA and DNA polymerases, whose primordial core
apparently consisted of a RNA-binding domain of the
RRM fold [11].

The B and B' subunits of DDRP additionally contain a Zn-
ribbon and a SBHM domain respectively. The former is a
widespread nucleic-acid-binding domain, whereas the lat-
ter functions in a variety of biochemical contexts as a
small-molecule-binding and protein-protein interaction
domain. Analysis of the conserved protein superfamilies
within these folds and their phyletic distribution patterns
suggests that diverse versions of these domains with dis-
tinct functions were already present in LUCA. Thus, sever-
al duplication-divergence events apparently preceded the
emergence of the forms of these domains that are seen in
the catalytic core of DDRPs (e.g., Fig. 5). The ancestral ver-
sions of these domains would not have the adaptations
for specific roles possessed by their descendant forms,
such as those in extant DDRP or RDRP, and probably
functioned as generic RNA-binding and protein-protein
interaction domains, with the specificity conferred by cat-
alytic RNA molecules. Hence, considerable diversity of
protein domains appears to have emerged prior to the
"crystallization" [95] of a transcription machinery similar
to the one that operates in modern cells and probably had
been already in place in LUCA [96]. Similar conclusions
regarding the early stages of protein domain evolution
have been reached previously as a result of evolutionary
analysis of proteins involved in translation, such as
aminoacyl-tRNA synthetases and GTPases: substantial di-
versification of protein domains had occurred prior to the
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"crystallization" of elaborate, modern-type translation
machinery [66,97].

Although the major events in the evolution of polymeras-
es occurred at very early stages of evolution and LUCA al-
ready had an advanced DDRP resembling the extant
forms, subsequent lineage-specific elaborations of consid-
erable magnitude have occurred. The most notable of
these is the proliferation and dissemination of SBHM and
the BBM domains in the bacterial  and B' subunits. In the
archaeo-eukaryotic lineage, another domain, apparently
derived through duplication of the dimerization domain
of the DDRP a-subunit, was inserted into the C-terminal
region of the B' subunit. Additionally, the Zn-ribbon un-
derwent duplication and elaboration in the ' subunit and
was also recruited in various transcription factors. Similar-
ly in the archaeo-eukaryotic B subunit, a minimal B-grasp
domain was added to the conserved core.

While we provide evidence that the catalytic cores of the
RDRPs, their bacteriophage homologs and the DDRPs
evolved from a common ancestor, the provenance of the
rest of the conserved RDRP module and, accordingly, the
evolutionary scenario for RDRP remain less clear. No
similarity to DDRPs was detected in the RDRP sequences
beyond the core DPBB domain. One possibility is that the
RDRP module has emerged at the onset of the evolution
of eukaryotes through extreme sequence divergence fol-
lowing a duplication of the DDRP ' subunit. An alterna-
tive scenario holds that the RDRPs are ancient enzymes
that diverged from the evolutionary precursor of DDRP at
a very early, pre-LUCA stage of evolution, albeit after the
duplication that led to the differentiation of the B and B'
versions of the DPBB domain. In fact, it appears likely that
the ancestral protein RNA polymerase, at the time of the
differentiation of the B-type and B'-type DPBB domains,
functioned as an RDRP because DNA probably had not
evolved by that stage [96]. The switch of the ancestral en-
zyme to the DDRP activity and the emergence of the evo-
lutionary precursor of RDRP might be tentatively linked
to one another and associated with the advent of DNA.
This view of the evolutionary history of RDRPs is compat-
ible with the presence of RDRP homologs in phages and
with their role in replicating microRNAs (potential relics
of the RNA world) during PTGS in eukaryotes. Subse-
quently, this enzyme apparently has been expunged from
the cellular RNA synthesis systems and survived only in
some parasitic elements, such as bacteriophages, through
which it might have been reintroduced into the genome
of an ancestral eukaryote. This scenario shows parallels to
the probable evolutionary history of another major, unre-
lated class of polymerases, the RDRPs and reverse tran-
scriptases containing the palm domain. Among extant
biological entities, these polymerases are encoded largely
by RNA viruses and retroid viruses, but a reverse tran-
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scriptase had been recruited by eukaryotes as the catalytic
subunit of the telomerase [98,99]. There seems to be a dis-
tinct possibility that both classes of RDRPs are vestiges of
the ancient RNA world that have been largely displaced
from cellular biochemical machinery at an early stage of
evolution, because of the deleterious effects of RNA repli-
cation in DNA-based organisms, while surviving in selfish
genetic elements.

Material and Methods

The non-redundant (NR) database of protein sequences
(National Center for Biotechnology Information, NIH,
Bethesda) was searched using the BLASTP program [100].
Position-specific scoring matrix (PSSM) searches were
conducted using the PSI-BLAST program, typically with a
PSSM inclusion expectation (E) value threshold of 0.01,
and were iterated until convergence [100,101]. Prior to
PSI-BLAST searches, query sequences were evaluated for
compositional bias using the SEG program [102]. If no
such bias was detected, searches were run with the compo-
sition-based statistics turned off, in order to maximize
sensitivity [103]. Multiple alignments of protein sequence
were constructed using the T_Coffee program [104], fol-
lowed by manual correction based on the PSI-BLAST re-
sults. Identification and statistical evaluation of conserved
motifs in multiple protein sequences were performed us-
ing the Gibbs sampling method as implemented in the
MACAW program [105,106]. Pattern searches were con-
ducted using the GREF program of the SEALS package
[107], and pattern-initiated BLAST searches were carried
out using the PHI-BLAST program [60]?. Protein structure
databases were searched for similar structures using the
DALI program [108]. Protein secondary structure was pre-
dicted using the PHD program implemented on the Pre-
dictProtein server with a multiple alignment submitted as
the [109,110]. Protein structures were visualized and ma-
nipulated using the Swiss-PDB viewer program [111] and
the ribbon diagrams were made using MOLSCRIPT [112].
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