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Abstract

Background: The ubiquitous non-receptor protein tyrosine phosphatase SHP2 (encoded by PTPNTT) plays a key
role in RAS/ERK signaling downstream of most, if not all growth factors, cytokines and integrins, although its major
substrates remain controversial. Mutations in PTPN11 lead to several distinct human diseases. Germ-line PTPNT1 mutations
cause about 50% of Noonan Syndrome (NS), which is among the most common autosomal dominant disorders. LEOPARD
Syndrome (LS) is an acronym for its major syndromic manifestations: multiple Lentigines, Electrocardiographic abnormalities,
Ocular hypertelorism, Pulmonary stenosis, Abnormalities of genitalia, Retardation of growth, and sensorineural Deafness.
Frequently, LS patients have hypertrophic cardiomyopathy, and they might also have an increased risk of neuroblastoma

PTPNT1 mutations cause these disorders.

conformational changes caused by each mutation.

for structure-based drug discovery programs.

(NS) and acute myeloid leukemia (AML). Consistent with the distinct pathogenesis of NS and LS, different types of

Results: Although multiple studies have reported the biochemical and biological consequences of NS- and LS-associated
PTPNT1 mutations, their structural consequences have not been analyzed fully. Here we report the crystal structures of
WT SHP2 and five NS/LS-associated SHP2 mutants. These findings enable direct structural comparisons of the local

Conclusions: Our structural analysis agrees with, and provides additional mechanistic insight into, the
previously reported catalytic properties of these mutants. The results of our research provide new information
regarding the structure-function relationship of this medically important target, and should serve as a solid foundation

Background

The ubiquitous non-receptor protein tyrosine phosphatase
SHP2 (encoded by PTPN11I) plays a key role in RAS/ERK
signaling downstream of most, if not all growth factors,
cytokines and integrins, although its major substrates re-
main controversial [1,2]. SHP2 contains two N-terminal
SH2 domains, a catalytic (PTP) domain, a C-terminal tail
with two tyrosine phosphorylation sites and a proline-rich
domain [2-5], and is regulated by an elegant molecular
switch mechanism that couples appropriate cellular
localization to catalytic activation [3,5]. In the absence
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of a tyrosine-phosphorylated binding partner for its
SH2 domains (basal state), SHP2 assumes a “closed”
conformation wherein the N-terminal SH2 (N-SH2)
domain is wedged into the PTP domain, blocking sub-
strate access (Figure 1a). Upon agonist stimulation, recruit-
ment of the N-SH2 domain to specific phosphotyrosyl
(pTyr-) peptides disrupts this self-locking conformation,
freeing the PTP domain for catalysis [3,5,6].

Mutations in PTPN11 cause several human diseases.
Germ-line PTPN11 mutations cause ~50% of Noonan
Syndrome (NS), which is among the most common
autosomal dominant disorders [7,8]. Gain-of-function
mutations in other RAS-RAF-MEK-ERK pathway mem-
bers, including SOSI [9,10], KRAS [11], NRAS [12], SHOC2
[13], and RAFI [14,15], are responsible for most remaining
NS cases. With an estimated incidence of 1/2,000 live
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Figure 1 SHP2 regulation and disease-associated mutants. a) SHP2 is regulated via a “self-locking” mechanism: in the absence of pTyr- proteins
(pY), SHP2 exists in a closed conformation with the N-SH2 domain bound to the PTP domain, blocking the catalytic site. Upon binding of the
appropriate pTyr-proteins, the closed confirmation is disrupted, opening up SHP2 so that substrates can bind to the active site. b) Positions

Q506P

of human disease-associated mutants used in this study.
.

births [16], NS is characterized by facial dysmorphism, pro-
portional short stature, cardiac anomalies, and various less
penetrant phenotypes, such as webbed neck, deafness, and
motor delay. Many (20-50%) NS patients develop some
type of myeloproliferative disorder (MPD), which is typic-
ally mild and self-limited [17]. Rare NS patients progress to
Juvenile Myelomonocytic Leukemia (J]MML), which is fatal
if not treated by bone marrow transplantation, somatic
PTPN11 mutations are the single most common cause of
sporadic JMML [7,18-20]. LEOPARD Syndrome (LS), a
much less common autosomal dominant disorder, is almost
always caused by PTPN1I mutations, and is related to, but
distinguishable from, NS [7,16,21]. LEOPARD is an acronym
for its major syndromic manifestations: multiple Lentigines,
Electrocardiographic abnormalities, Ocular hypertelorism,
Pulmonary stenosis, Abnormalities of genitalia, Retardation
of growth, and Deafness [22]. These patients often have
hypertrophic cardiomyopathy (HCM), and might also have
an increased risk of neuroblastoma (NS) and acute myeloid
leukemia (AML) [23,24]. Knock-in mouse models have been
generated for NS and LS alleles of Ptpnll and gener-
ally reproduce the phenotypes seen in the cognate hu-
man syndromes [25-27].

Consistent with the distinct pathogenesis of NS and
LS, different types of PTPN1I mutations cause these dis-
orders. Most NS-associated PTPN11 mutations alter res-
idues that reside at the interface between the N-SH2 and
PTP domains [16], resulting in elevated enzymatic activ-
ity and enhanced RAS/ERK activation [27-31]. These
data suggest that NS mutations disrupt the intramolecu-
lar interaction between the N-SH2 and PTP domains,
shifting the equilibrium between the closed and open

conformations and lowering the activation threshold for
SHP2. By contrast, LS mutations typically affect PTP
domain residues, result in markedly decreased catalytic
activity, and lower RAS/ERK activation in transient
transfection assays [31-33]. Studies of the LS Y279C
mouse model also indicate that LS mutants may have
dominant negative effects in at least some tissues
in vivo [25]. Whereas NS phenotypes arise from en-
hanced MEK/ERK activation and can be prevented or
reversed by MEK inhibition [34-36], LS-associated
HCM is caused by enhanced PI3K/AKT/mTORCI ac-
tivity and can be reversed by rapamycin [25].

Although multiple studies have reported the biochem-
ical and biological consequences of NS- and LS-associated
PTPNI11 mutations, their structural consequences have
not been analyzed. Here, we report the X-ray structures of
five NS/LS SHP2 mutants and discuss how these muta-
tions affect the interaction between different SHP2 do-
mains and its catalytic activity.

Methods

Cloning

A wild type (WT) SHP2 expression construct 1-539
(comprising the N + C SH2 and PTP domains) was PCR-
amplified from PTPN11 cDNA [37] with a set of custom-
designed primers (see Additional file 1: Description S1).
The resultant PCR fragment was cloned into a modified
version of the plasmid pET28b (Novagen) that generates a
fusion protein with an N-terminal hexahistidine tag. The
SHP2 catalytic domain expression construct (a.a. 221—
524) was cloned into pGEX4T, which introduces a GST-
tag at its N-terminus. Mutations were introduced into
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these expression constructs by site directed-mutagenesis
with specifically designed primers bearing one substitution
each (see Additional file 1: Description S1). Pfu Ultra II
high fidelity DNA polymerase (Stratagene) was used for
PCR, with an extension temperature of 68°C over 10 mi-
nutes. To remove any traces of the original cDNA, all re-
actions were subjected to digestion with Dpnl (New
England Biolabs) for 1 hour at 37°C. Reaction mixtures
were transformed into DH5a cells, and the genetic con-
tent of all constructs was verified by Sanger sequencing.

Protein expression & purification

Vectors encoding full length versions of SHP2 mutants
were transferred into E. coli BL21(DE3). Cells were grown
in Terrific Broth containing kanamycin (50 mg/l) in 1 L
Tunair flasks at 37°C to an ODgq of 3-5, after which the
temperature was lowered to 16°C, and isopropyl-1-thio-
[-D-galactopyranoside (IPTG) was added to 0.2 mM. Ex-
pression was allowed to proceed overnight, then cells were
harvested by centrifugation, flash-frozen in liquid nitrogen,
and stored at —80°C. Due to the low level of expression of
the Q506P construct, cells expressing this mutant were
washed using the osmotic shock technique [38] prior to
freezing. Unless stated otherwise, all purification proce-
dures were carried out at 4°C. Cells were thawed on ice
and resuspended in Binding Buffer (see Additional file 2:
Table S1 for detailed buffer components), supplemented
with phenylmethylsulfonylfluoride and benzamidine. After
disruption by sonication and centrifugation at 60,000 g for
40 min, cell-free extracts were passed through a DE-52 col-
umn (2.6 x 7 cm) that had been pre-equilibrated with the
same buffer, and loaded by gravity flow onto a Ni-
nitrilotriacetic acid (NTA) column (Qiagen, Germantown,
MD). The latter column was washed with 20-25 volumes
of Wash Buffer A, followed by 20-25 volumes of Wash
Buffer B and finally with Elution Buffer. N308D and
E139D eluted in Elution Buffer, whereas the other three
mutants eluted with the Wash buffers. For the latter pro-
teins, the wash fractions were diluted 15-fold and reloaded
on fresh Ni-NTA columns. After washing with 10 column
volumes of Binding Buffer, N308D and E139D proteins
were eluted in elution buffer. These samples were concen-
trated using a VIVASpin unit (Sartorius NA, Edgewood,
NY), and loaded onto a 2.6 x 60 cm Superdex 200 column
(GE Healthcare), equilibrated with Gel Filtration buffer.
Elution was performed at a flow rate of 3 ml/min at 8°C,
with the SHP2 proteins behaving as apparent monomers.
Final protein samples were concentrated to 20—40 mg/ml,
divided into 1.5 mg aliquots, flash-frozen and stored
at -80°C.

SHP2 catalytic domain mutants were transformed into
Escherichia coli strain BL21(DE3). A 25 ml aliquot of an
overnight culture from a single colony was added to
500 ml of LB/ampicillin (50 pg/ml) and grown at 37°C
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to Aggo = 0.8. IPTG was added to a final concentration of
0.1 mM, and the bacteria were maintained for 16 h at
25°C with shaking, then centrifuged at 6,000 x g for
10 min. at 4°C. Pellets were resuspended in 12.5 ml of a
buffer containing 50 mM Tris—HCI, pH 7.5, 150 mM
NaCl, 5 mM MgCl2, 1% Triton X-100, 10% glycerol,
5 mM dithiothreitol, 2 pg/ml aprotinin, 10 pg/ml leupep-
tin, 1 pg/ml antipain, 1 pg/ml pepstatin A, 0.5 mg/ml lyso-
zyme and 1 mg/mL DNase 1. Suspensions were incubated
on ice for 30 minutes, and then sonicated for 10 seconds
on ice. Lysates were centrifuged at 14,000 x g for 30 min.
at 4°C, and supernatants were transferred to a fresh 15-ml
polypropylene tube containing 0.5 ml of glutathione-
Sepharose 4B (GE Healthcare Life Sciences). This suspen-
sion was rotated end-over-end overnight at 4°C, and then
centrifuged at 1000 x g for 1 min. at 4°C. The supernatants
were discarded, and the beads were washed 3 times for
5 min. each at 4°C with 10 ml of wash buffer (25 mM
Tris—HCI, pH 7.5, 150 mM NaCl, 5 mM MgCI2, 1% Tri-
ton X-100, 10% glycerol, 5 mM dithiothreitol), and then
once with PTP assay buffer (25 mM Hepes, pH 7.5,
100 mM NaCl, 2 mM EDTA and 5 mM dithiothreitol).
Bound GST fusion proteins were resuspended 1:1 in PTP
assay buffer. A 20 uL aliquot of slurry for each mutant
was separated on a 10% SDS-polyacrylamide gel, together
with different amounts of BSA. The gel was washed in
water for 10 minutes, and stained with Colloidal Coomas-
sie Blue for 1 hour at room temperature. Bands were
quantified using a LI-COR Odyssey.

PTP assays

To determine kinetic parameters, fixed amounts of purified
GST-WT or -mutant SHP2 catalytic domains (1.6 pmol of
WT and N308D, 115pmol of Y279C and 16.3 pmol of
Q506P) were incubated with variable concentrations of
substrate peptide (R-R-L-I-E-D-A-E-pY-A-A-R-G, Milli-
pore #12-217; Kit #12-217) in PTP assay buffer in a total
volume of 50 uL. Reactions were carried out for 10 minutes
at 25°C, and phosphate release was quantified by adding
Malachite Green (Millipore #17-125) to the supernatants,
measuring absorbance at 620 nm, and comparing values to
a standard curve generated with varying amounts of
KH,PO,. All reactions fell within the linear range. Phos-
phatase activity is expressed in pmol Pi released/min/pmol

enzyme.

Crystallization

Mutant SHP2 proteins were crystallized under condi-
tions similar to those reported previously [3]. In order to
obtain the best diffracting crystals, 0.1 M LiCl was added
to the literature crystallization conditions for D61G, 5%
glycerol for N308D, and 10% glycerol and 0.3 M
cycohexyl-methyl-pB-D-maltoside for Q506P. The other
two mutant proteins and the WT protein were crystallized
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under literature conditions with optimized precipitant
concentrations. Crystals appeared overnight, and reached
their full size of about 300 x 300 x 30 microns in one
week at room temperature. The stacked plate crystals
were separated and flash frozen in liquid nitrogen, using
paratone-N oil (Hampton Research Inc.) as a cryo-
protectant.

Data collection

Data were collected at 100 K with a wavelength of 1.0 A on
the Industrial Macromolecular Crystallography Association
(IMCA-CAT) beam line at the Advanced Photon Source
(Argonne National Laboratory, IL USA). The data were
indexed, integrated, and scaled with XDS and XSCALE [39].

Structure determination
The first mutant structure of N308D was determined by
molecular replacement, using the previously solved structure
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of SHP2 (PDB access code 2SHP) [3] as the search model.
The wild type SHP2 and D61G, E139D, Y279C and
Q506P mutant structures were determined by molecu-
lar replacement, using the structure of the N308D
SHP2 mutant as a search model. Following the initial
rigid body refinement, interactive cycles of model building
and refinement were performed by using COOT [40] and
Buster-TNT [41] software. Special attention was paid to
the mutation sites, which were initially replaced with ala-
nine to reduce model bias and later positioned based on
the 2mF,-DF, and difference Fourier electron density
maps after a few rounds of refinement to confirm that
those amino acids had, indeed, been mutated. Data collec-
tion and refinement statistics are shown in Table 1. The
atomic coordinates have been deposited in the RCSB Pro-
tein Data Bank under accession numbers 4NXD, 4H10,
ANWG, 4GWE ANWE, and 4H34. All figures were pro-
duced using PyMOL (http://www.pymol.org).

Table 1 Summary of crystallographic data and refinement statistics

Parameters Wild type D61G E139D Y279C N308D Q506P
Data collection:

Resolution, (A) 275 220 245 210 210 270
Outermost resolution shell, (&) (2.85-2.75) (2.30-2.20) (2.55-2.45) (2.20-2.10) (2.20-2.10) (2.80-2.70)
Space group P2, P2,2,2 P2,2:2; P2, P2:2,2, P2,2,2
Unit cell parameters

a, (&) 55.7 550 56.3 557 559 54.8

b, (A 2117 2203 2124 2120 211.2 2024
¢ &) 912 417 922 460 916 445

B O 89.97 9%.6

Molecules per asymmetric unit 4 1 2 2 2 1
Unique reflections 53,849 26,689 41,625 61,515 64,401 14,342
Multiplicity 31 (34 6.3 (6.1) 6.5 (6.3) 353)5) 70(7.2) 6.5 (6.3)
Average 1/o (1) 55(2) 11.127) 92 (23) 69 (1.9) 11.0 32) 120 (2.8)
Rmerger (%) 189 (46.0) 10.6 (52.0) 114 (57.1) 104 (49.7) 94 (43.0) 13.9 (56.0)
Completeness, (%) 95.9 (98.5) 99.3 (96.2) 99.7 (98.1) 99.9 (99.6) 99.9 (100) 99.9 (100)
Refinement and structure statistics

Ruorks (%) 256 21.1 21.3 211 24.2 22.7
Rieer (%) 285 233 254 24.3 28.7 24.2
RMSD from ideal geometry

Bond lengths, (A) 0.007 0.007 0.010 0.008 0.009 0.007
Bond angles, (%) 091 0.99 1.24 1.00 1.10 091
Numbers of atoms

Protein (non-hydrogen) 15,560 4,021 8214 8,013 8,100 3,951
Water oxygen atoms 784 134 365 261 679 54
Ligand's atoms 20 90 36
PDB ID 4NXD 4H10 ANWG 4GWF ANWF 4H34

Rimerge =% nidll = (D)/Zniil, where [ is the intensity of the individual reflections.

Ruwork = |Fobs — Feall/Z|Fobs: Where Fops and Feyic are the observed and the calculated structure factors, respectively.
Ree Was calculated using 5% of total reflections randomly chosen and excluded from the crystallographic refinement.
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Results and discussion

We determined the crystal structures of WT SHP2 (resi-
dues 1-539), as well as five mutants (D61G, E139D,
Y279C, N308D, and Q506P), chosen to represent the
spectrum of disease-associated PTPN1I mutations. Mu-
tants D61G, E139D, and N308D are found in NS, Y279C
is a canonical LS mutation [16,21,42], and Q506P has
been reported in both disorders [16], although it is un-
clear whether this reflects misdiagnosis or true bi-
potentiality of this allele. The D61G mutation affects the
N-SH2 domain, E139D lies within the C-SH2 domain
and the other three mutations alter the PTP domain
(Figure 1b). The enzymatic properties of the full-length
versions of these mutants (including the C-terminal
tail, which is missing in our crystallization constructs)
were characterized previously by our group [29,33]
(Additional file 3: Figure S1), and range from strongly
activated (D61G), to mildly activated (N308D), to catalyt-
ically impaired (Y279C). Q506P shows altered specificity
for some substrates [29].

The SHP2 structure published by Hof et al. (PDB ac-
cession code: 2SHP; hereafter termed “2SHP”) has three
mutations (T2K, F41L and F513S) and is in complex
with a detergent molecule (CTAB). We corrected these
mutations, and crystallized WT SHP2 under detergent-
free conditions. In our WT structure, the SH2 domains
and the PTP domain assume a “closed” conformation
with the N-SH2 domain locked into the PTP catalytic
site, similar to the 2SHP structure (Figure 2). Superim-
position of our bona fide WT structure with the earlier
“WT” SHP2 structure revealed an overall root mean

Figure 2 Comparison of “true” WT SHP2 structure (gray) with
previously determined “WT” structure (PDB accession code:
2SHP). Note that the earlier structure has three mutations (T2K, F41L
and F513S, presented in red sticks) and also contains a molecule of
the detergent CTAB, (presented as red sticks and transparent
sphere). The F513S mutation creates a cavity that binds the
detergent molecule, which alters the orientation of the aF helix.
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square deviation (rmsd) of 0.59 A over 487 aligned resi-
dues. The N-SH2 domain had a smaller rmsd of 0.35 A,
whereas the rmsd for the C-SH2 was larger (0.74 A), im-
plying that the C-SH2 domain might have a higher de-
gree of flexibility than the other two domains in the
closed conformation. The three mutations and the
CTAB binding site in the 2SHP structure are distant
from the C-SH2 domain, so we do not think it likely that
they affect C-SH2 domain flexibility directly. In the PTP
domain, the major deviations between the two structures
were seen in residues 425-436 of the oF helix (average
rmsd =1.33 A), corresponding to the CTAB binding site
in the 2SHP structure (Figure 2). Although the overall
structural difference between WT and 2SHP was small,
we used our WT structure as the reference for compari-
son with the mutant structures to exclude any potential
structural changes induced by the three mutations and
the detergent molecule (CTAB) in 2SHP.

D61G

In the WT structure, Asp61 was located on the surface
of the N-SH2 domain. The side chain of Asp61 formed
hydrogen bonds with Ser460 from the catalytic P-loop
(residues 458-464), a water-mediated hydrogen bond
with the catalytic cysteinyl residue, Cys459, two water-
mediated hydrogen bonds with Arg465, and another
water-mediated hydrogen bond with Asp425 (Figure 3a).
Consequently, Asp61 plays an important role in the N-
SH2 and PTP domain interaction. In the D61G mutant
structure, these hydrogen bonds were abolished. The
change from aspartate to glycine also altered the surface
charge from very negative to neutral (Figure 3b). Opposite
D61G on the interface surface, the PTP domain presents a
predominantly positively charged pocket (Figure 3c). Thus,
the D61G mutation greatly loosened the interactions be-
tween N-SH2 and PTP domains. These data are consistent
with previous publications that observed increased basal
activity for this mutant against artificial (e.g., pNPP) and
pTyr-peptide substrates [29,33].

E139D

Residue Glul39 was located on the surface of the C-SH2
domain. The overall crystal structure of the E139D mu-
tant was very similar to that of WT SHP2, with an rmsd
of 0.4 A (Figure 4a). Glu139 was about 40 A away from
the catalytic site, with the N-SH2 domain interposed be-
tween these domains. E139 is, however, located in the
vicinity of the phosphate group of the pTyr peptide-
binding site of the C-SH2 domain, and the E139D muta-
tion stabilizes the conformation of the 139-147 loop
that plays an essential role in pTyr peptide-binding. The
mutant structure has well defined electron density for
this loop, whereas this loop is disordered in the WT
structure. Compared with WT SHP2, there also were
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Figure 3 Crystal structure of the D61G mutant. a) In WT SHP2, the side chain of Asp61 (in the N-SH2 domain) forms a direct hydrogen bond with
Ser460, a water-mediated hydrogen bond with the catalytic cysteinyl residue Cys459 and two water-mediated hydrogen bonds with Arg465 in the
PTP domain. b) The D61G mutation alters the electrostatic surface charge on the N-SH2 domain along its interaction interface with the PTP domain
catalytic pocket. The N-SH2 domain is rendered in electrostatic surface representation, the C-SH2 domain is colored dark grey (WT structure; top panel)
or cyan (D61G mutant structure; bottom panel), and the PTP domain is shown in grey (WT) or green (D61G). The catalytic P-loop (458-464) is shown
in magenta. €) The N-SH2/PTP domain interface near the catalytic site. The PTP domain is rendered in electrostatic surface presentation, and shows a
mostly positively charged catalytic site opposite to Asp61. A conserved water molecule mediates a hydrogen bond between Asp61 and Cys459.

PTP domain
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7y c"\_ »
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Figure 4 Crystal structure of the E139D mutant. a) Crystal structure of the E139D mutant does not display any obvious conformational
changes in the C-SH2 (shown in cyan) or PTP domains (shown in green), superimposed on the WT SHP2 structure (colored in grey). Note that the
mutant residue E139D is far away from the catalytic cysteine, Cys459 (~40 A). The N-SH2 domain is shown in blue. b) In the E139D structure, the
side chain of Asp139 forms only two hydrogen bonds with the main chain atoms of G115 and His116 (cyan dash lines), whereas in the WT structure,
Glu139 forms three hydrogen bonds with His114 and His116 (grey dash lines). The mutation could loosen the connection between the A and 3B
strand in C-SH2 domain, thereby exposing the side chain of Arg138, a key residue for pTyr-peptide binding.
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some local structural rearrangements in the E139D mu-
tant, with the most noticeable difference being a con-
formational change of His116 (Figure 4b). The E139D
mutant shows a small increase in basal activity, but
when it is assayed with a pTyr peptide (pTyr1172 from
IRS-1) that can bind both SH2 domains and be dephos-
phorylated by the catalytic domain, the activity of this
mutant is more than 5 times higher than that of WT
SHP2 [29]. Although the side chain charge remained un-
changed when glutamic acid was changed to aspartic
acid, the size of the side chain was reduced. This change
could alter the surface of the adjacent residue, Argl38, a
key residue for pTyr binding [29]. As shown in Figure 4b,
aspartic acid 139 (located in the B strand) contributes
less hydrogen bonding to residues His114-His116 of the
BA strand than does glutamic acid. This subtle change
might loosen the connection between the BA and B
strands, helping to expose the side chain of Argl38, and
thus enhancing the affinity for pTyr-peptide binding.
The binding of pTyr -peptides to the C-SH2 domain also
could affect the interaction between the N-SH2 and C-SH2
that is critical for enzymatic activation [43]. The mutant
also could facilitate the binding of the C-SH2 domain
to certain physiologically important binding partners;
e.g., IRS-1, in which pTyr-1222 binds to the C-SH2 do-
main, while pTyr-1172 binds to the N-SH2 domain.
The E139D mutation could indirectly increase the
binding affinity of the N-SH2 domain for SHP2 sub-
strates (for the reasons discussed above), and therefore
increase catalytic activity. In concert, these effects likely
explain why E139D is activated by pTyr-peptide binding
more than WT SHP2.

Y279C

Y279C is a catalytically impaired mutant associated with
LS [16,21,42]. In the crystal structure of this mutant,
Tyr279 was located in the long pTyr loop (residues 277—
288) with two small a-helices, aC (residues 265-269)
and aD (residues 271-276), at its upstream end and one
small B-strand, BB (residues 289-292), at its downstream
end. In general, because the intervening region (resi-
dues 262-288) lacks a structurally stable long a-helix
or B-strand, it is likely to be flexible. It also contained
a large number of positively charged side chains point-
ing toward the surface of the PTP domain that might
interact with solvent molecules or other binding part-
ners and thus increase the mobility of the pTyr loop.
In the WT structure, the side chain of Tyr279 makes
van der Waals contacts with Ser460 and Ala461 of the
catalytic P-loop, as well as with Tyr62 and Lys70 from
the N-SH2 domain (Figure 5). The —OH group of Tyr62
interacts with the m-electrons of the Tyr279’s aromatic
ring. Together with Q506 in the Q-loop (residues 501—
507), Tyr279 is believed to play a key role in binding the
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Figure 5 Superimposition of the Y279C mutant and WT SHP2
(grey) structures. In WT SHP2, Tyr279 lies in proximity to Cys459
and also interacts with Tyr62 of the N-SH2 domain (shown in blue
and dark grey, respectively). Mutation from Tyr to Cys decreases
these interactions. The P-loop (458-464) and pTyr loop (277-288) are

highlighted in magenta and yellow, respectively.

tyrosine side chains of substrate proteins/peptides during
catalysis. In the PTP1B structure [44], Tyr46 is the residue
equivalent to Tyr279 in the SHP2 structure [3,45]. The
stacking interaction of three residues, Tyr46, the substrate
pTyr, and Phel82 from the “WPDF” loop, help to properly
position the substrate for catalysis. In the Y279C structure,
the interactions of Tyr279 with the P-loop and the N-SH2
domain were disrupted, due to the significantly shorter
side chain of cysteine compared with that of tyrosine.
SHP2 has a WPDH loop that corresponds to WPDF in
PTP1B. The Y279C mutation would have less stacking in-
teractions with Tyr279, a bound pTyr substrate, and
His426 (the equivalent of Phel82 in PTP1B). The muta-
tion also distorts the pTyr substrate/SHP2 interaction,
and thus would be expected to disrupt catalysis signifi-
cantly. At the same time, the Y279C mutation results in
loss of the Tyr279/Tyr62 interaction, diminishing the
strength of intramolecular binding between the PTP and
N-SH2 domains. This would be expected to facilitate the
“open” conformation, and can explain the enhanced inter-
action of this mutant with binding partners (e.g., GAB1)
observed previously [33,45,46]. While this manuscript was
in preparation, Yu et al. [46] reported a very similar model
of Y279C (PDB accession code: 4DGX), as well as WT
SHP2 (PDB accession code: 4DGP). The Ca carbon atom
comparison for these structures revealed RMSD of 0.42
and 047 A for the corresponding mutant and wild-type
crystal structure pairs correspondingly. Both published
crystal structures belong to the P2,2,2 space group, which
is different from the space group (P2;) for our Y279C mu-
tant and WT structures. Importantly, the residues sur-
rounding the mutant residue are in a similar conformation.
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Our WT structure has two disordered regions (perhaps
due to their flexibility) lacking electron density (88—95 and
156—164). From both Y279C structures, we can see that re-
placing tyrosine with cysteine at position 279 does not
block the accessibility to the PTP catalytic site; instead, it
could facilitate local conformational changes that lead to
the release of the N-SH2 domain, and thereby open the
conformation of the substrate-binding site.

To test the predictions of these structural studies, we
assayed the enzymatic activity of isolated SHP2 catalytic
domains (present as part of GST-fusion proteins). Com-
pared with WT GST-SHP2, the Y279C mutant had ~80
times lower k., and 7 times higher K, towards a pY
peptide (Figure 5, Table 2). These results are quite simi-
lar to those were reported by Yu et al. [46]. Yu et al. also
provided hydrogen/deuterium exchange mass spectrom-
etry experiments and molecular dynamics simulations
showing that the N-SH2 and PTP domain interaction
was decreased in the Y279C mutant. Moreover, they
found that the Y279C mutant displayed higher affinity
for, and was preferentially activated by, a non-hydrolyzable
N-SH2 ligand.

N308D

Residue 308 was located in the BC strand of the PTP do-
main, and was not involved in direct interactions with
the N-SH2 domain. However, the O81 atom from the
side chain of Asn308 formed a strong hydrogen bond
with the side chain of the conserved Arg501. Arg 501
also made direct hydrogen bonds with the main chains
of the P-loop residues Ala461 and Gly462 (Figure 6a).
The N&2 atom of Asn308 formed two hydrogen bonds
with the main chain of Phe285 from the pTyr-loop. In
the N308D mutant, the charge of the side chain changes
from neutral to negative, whereas the side chain polarity
changes from polar to acidic polar. Compared with the
WT Asn residue, Asp308 formed more hydrogen bonds
with pTyr-loop residues, and an especially strong one
(2.5 A) with Thr288 (Figure 6b). Consequently, this mu-
tation could make the pTyr- and P-loops less flexible,
locking the enzyme in a more favorable position for

Table 2 Catalytic activities of the indicated SHP2 catalytic
domain (221-524) GST fusion proteins were measured
using the Malachite Green assay in the presence of
different concentrations of PTP-1B peptide R-R-L-I-E-D-A-
E-pY-A-A-R-G. K, and k., calculated by: 1/V = (K;,/Vimay) /
[PY]+ 1/ Vinax

Keat (s7") Km (mM) Keat / K (57" mM™7)
WT 9.26 131 7.07
N308D 12.82 1.92 6.68
Y279C 0.12 9.14 0.01
Q506P 0.61 2.83 022
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Figure 6 N308D mutation alters the local hydrogen bond
network. a) In WT SHP2, the side chain of Asn308 forms two
hydrogen bonds with Phe285 in the pTyr-loop (colored in yellow). It
also forms a hydrogen bond with the conserved Arg501 which, in
turn, makes two direct hydrogen bonds with the main chains of
Alad461 and Gly462 in the catalytic P-loop (colored in magenta); b) In
the N308D mutant, besides the aforementioned hydrogen bonds,
Asp308 forms two additional hydrogen bonds with surrounding residues,
most notably, a strong hydrogen bond with Thr288 (2.5 A).

- J

catalysis. The greater rigidity of the pTyr and P loops
makes it more difficult for the N-SH2 domain to close
back on the PTP domain once it opens. Since the open
and closed forms are in equilibrium, this could mean
that the ability (i.e., rate constant) for closing back is
significantly diminished, hence favoring the open form,
leading to the increased activity (basally and in re-
sponse to pTyr peptide) of the N308D mutant as a
full-length enzyme. The residue Asn308 is a hot spot
for NS mutations, with N308D accounting for 25% of
NS cases. Previous studies showed that this mutant (as
a full length protein) has a 3-fold higher basal activity
than WT [29]. Our PTP assay showed that catalytic
domain of this mutation had slightly higher k., and
K., values when compared with the WT PTP domain
(Figure 1, Table 2).
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Figure 7 Q506 is necessary to position and activate a water
molecule for hydrolysis of the phospho-enzyme intermediate
(wild type). The Q506P mutant loses this functionality. Q506 also
forms two important hydrogen bonds with Asn58 and Ala72 from
the N-SH2 domain (colored in blue), which connect the N-SH2 domain
to the PTP domain (colored in green). In the Q506P structure, these
connections no longer are present. The P-loop (458-464) is highlighted
in magenta.

Q506P

Residue 506 was located in the interface between the
PTP and N-SH2 domains. In the WT structure, Q506
formed two important hydrogen bonds, with the main
chain of Ala72 and with the side chain of Asn58 in the
N-SH2 domain. Together with Tyr279, GIn506 also plays
an important role in PTP catalysis by binding the tyro-
sine side chain of the substrate [44] and by helping to
properly position a water molecule for hydrolysis of the
thiophosphate intermediate (Figure 7). In the Q506P
mutant structure, the proline mutation abolished the
two hydrogen bonds between the PTP and N-SH2 do-
main, which predicts that this mutant should be more
“open” than WT SHP2. However, this mutation also dis-
rupts the C459-H,O-Q506 interaction. As a result, the
water molecule needed in the second step of catalysis
probably cannot be positioned properly. Consistent with
this notion, basal PTP activity and PTP activity in the
presence of an N-SH2 domain binding pTyr peptide are
slightly lower (when measured against the artificial sub-
strate pNPP) than in WT SHP2 [29]. We also monitored
the activity of the isolated catalytic domain of the Q506P
mutant. In accord with our structural data, the k., of
Q506P was ~15—fold lower and the K, about 2x higher
than in WT SHP2 (Table 2).

Conclusion

SHP?2 is regulated by a molecular switch mechanism that
controls its catalytic activity. Upon binding to a tyrosine-
phosphorylated binding partner for its SH2 domains, the
N-terminal SH2 domain is released from the PTP
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domain, activating the enzyme. This elegant mechanism
ensures that PTP activity is delivered to the right place
in the cell at the right time. Remarkably, germ line mu-
tations that disrupt this regulatory machinery in differ-
ent ways result in distinct disease syndromes. The
crystal structures of “true” WT SHP2 and five NS/LS-
associated SHP2 mutants reported herein provide dir-
ect comparisons of the local conformational changes
caused by each mutation. Our structural observations
are in agreement with, and can provide mechanistic
insight into, the previously reported catalytic proper-
ties of these mutants. For example, mutation of D61G
in the N-SH2 domain significantly impacts SHP2 ac-
tivity because this residue is located at the N-SH2/PTP
domain interface and its alteration weakens key inter-
actions between the two domains. On the other hand,
our data suggest that the C-SH2 domain mutation
E139D might interfere with SHP2 binding to tryrosine-
phosphorylated ligands. The other three mutants, Y279C,
N308D and Q506P, are located in PTP domain, and the
local conformational changes induced by each mutation
provide insight into their abnormal catalytic properties.
The results of our research provide structural insights into
this medically important target and could aid in future
structure-based drug discovery programs.

Availability of supporting data

The coordinates and diffraction data for SHP2 wild type
and mutant crystal structures are available in Protein
Data Bank (http://www.rcsb.org/pdb).
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