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Abstract

Background: Predicting protein structure from sequence is one of the most significant and challenging problems
in bioinformatics. Numerous bioinformatics techniques and tools have been developed to tackle almost every
aspect of protein structure prediction ranging from structural feature prediction, template identification and query-
template alignment to structure sampling, model quality assessment, and model refinement. How to synergistically
select, integrate and improve the strengths of the complementary techniques at each prediction stage and build a
high-performance system is becoming a critical issue for constructing a successful, competitive protein structure
predictor.

Results: Over the past several years, we have constructed a standalone protein structure prediction system
MULTICOM that combines multiple sources of information and complementary methods at all five stages of the
protein structure prediction process including template identification, template combination, model generation,
model assessment, and model refinement. The system was blindly tested during the ninth Critical Assessment of
Techniques for Protein Structure Prediction (CASP9) in 2010 and yielded very good performance. In addition to
studying the overall performance on the CASP9 benchmark, we thoroughly investigated the performance and
contributions of each component at each stage of prediction.

Conclusions: Our comprehensive and comparative study not only provides useful and practical insights about how
to select, improve, and integrate complementary methods to build a cutting-edge protein structure prediction
system but also identifies a few new sources of information that may help improve the design of a protein
structure prediction system. Several components used in the MULTICOM system are available at: http://sysbio.rnet.
missouri.edu/multicom_toolbox/.

Keywords: Protein structure prediction, Template identification, Template combination, Model generation, Model
assessment, Model combination, Model refinement
Background
Predicting protein tertiary structure from sequence is an
important and challenging problem in bioinformatics
and computational biology [1,2]. Computational protein
structure prediction is useful for protein function study,
protein design, protein engineering, drug design, and
protein evolution analysis [3,4]. It is becoming increas-
ingly important in the post genomic era as millions of
new protein sequences are produced by numerous DNA
sequencing projects each year, leading to an enlarged
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reproduction in any medium, provided the or
knowledge gap between sequences and known experi-
mental structures [5].
During the last few decades, numerous techniques

were developed by scientists in multiple disciplines, such
as biophysics, computational chemistry, computer sci-
ence, and bioinformatics, to address different aspects of
protein structure prediction. These aspects include sec-
ondary structure prediction, solvent accessibility predic-
tion, disordered region prediction, domain boundary
prediction, template identification, query-template align-
ment, template-based model generation, template-free
model sampling, loop modeling, model/alignment qual-
ity assessment, and model refinement. Although not
perfect, many of these methods can produce complemen-
tary and useful information to inform the final tertiary
his is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

http://sysbio.rnet.missouri.edu/multicom_toolbox/
http://sysbio.rnet.missouri.edu/multicom_toolbox/
mailto:chengji@missouri.edu
http://creativecommons.org/licenses/by/2.0


Li et al. BMC Structural Biology 2013, 13:2 Page 2 of 14
http://www.biomedcentral.com/1472-6807/13/2
structure of a query protein [6,7]. In addition to techno-
logical advances, increasing amounts of protein structures
have been determined by experimental techniques and
provide a rich set of structural data for enhancing protein
structure prediction. Thus, it has become an important
task to systematically integrate these diverse and comple-
mentary methods into a state of the art protein structure
prediction system that can mine the enlarging protein se-
quence and structure databases to accurately and quickly
predict the tertiary structure of any query protein [5,8].
In order to integrate diverse protein structure pre-

diction methods and multiple sources of information into
one effective system, we have designed an open, five-layer,
component-based protein structure prediction pipeline [9]
that corresponds to the five major steps of protein structure
prediction: template identification, query-template align-
ment and combination, model generation, model quality
assessment, and model refinement. The components in the
pipeline are loosely linked through information flow from
one layer to next. The input to the pipeline is a query se-
quence and the output of the previous step is used as input
to next step until the final structural models are produced
from the pipeline. The interfaces between components
are flexible and well designed, so that different methods
developed for each step can be easily plugged into the sys-
tem. Once the system is constructed under the open archi-
tecture, the next challenge is to benchmark the system and
optimize a large number of parameters of the components.
This system then selectively integrates the sequence and
structural information produced by these components to
generate final protein conformations of good quality. We
blindly tested our current implementation of the system,
MULTICOM, during the ninth Critical Assessment of
Techniques for Protein Structure Prediction (CASP9,
http://predictioncenter.org/casp9/) in 2010. The open sys-
tem delivered very good performance. After the blind pre-
diction phase of CASP9 ended, we systematically analyzed
the intermediate data generated by each component in
each prediction step and gained a great deal of experience
about how to combine and configure components and
integrate multiple sources of information in order to build
a high-quality protein structure prediction system. In ad-
dition to presenting a comprehensive benchmark of the
components of the MULTICOM system as tested in
CASP9, this work describes a number of new methodo-
logical developments incorporated into our system since it
was first launched during the CASP8 experiment.

Methods
Overview of system architecture, design, and
implementation
Figure 1 illustrates the architecture of the MULTICOM
protein structure prediction system [9]. The system con-
sists of five major layers. The template identification layer
accepts an input query sequence and searches it against
a non-redundant protein sequence database to construct a
query sequence profile. This profile is searched against
a template library in order to identify a list of template
protein structures that may provide conformation infor-
mation about the structure of the query. A subset of top
ranked templates and their sequence alignments with the
query protein if available are fed into the template com-
bination layer, which combines the structurally similar
templates and the query into query-template alignments.
The query-template alignments may contain more than
one template which provides complementary information
about the query. Then the systematic combination of mul-
tiple templates generates a number of query-template
alignments. The query-template alignments and template
structures are fed into model generation tools (model gen-
erator) to sample conformations for the query. The re-
gions of the query that align with templates are sampled
by a template-based model generator (e.g. a comparative
modeling tool) and the large (>10 residues) unaligned
query regions are sampled by a template-free model
generator (e.g. a fragment-assembly tool). The model
generators usually produce a number of models, which
are then evaluated by the model quality assessment layer.
The model quality assessment tools assign a global quality
score to each model measuring its overall quality (e.g.
overall similarity between the model and the known native
structure) and a local quality score to each residue
predicting its deviation compared with the native struc-
ture. Finally, the models and their predicted quality scores
are fed into the last model refinement layer in order to
further improve their quality. In this layer, multiple mo-
dels with similar conformations may be combined (e.g.
averaged) and the low-quality regions of some models
may be refined by stochastic simulations. At the end, the
models with the best predicted qualities are released from
the system as the final predictions.
The open architecture of the protein structure predic-

tion system makes it easy to plug in complementary
methods as components and integrate multiple sources
of information (e.g. template conformations) drawn from
the template and sequence library / databases in order
to produce high quality models. The subsections below
present the implementation of the MULTICOM system
emphasizing the new developments occurred since its
first version [9] and the components that were thor-
oughly assessed in this work.

Template structure and sequence library
In order to support template-based structural prediction,
a template library is constructed from the known experi-
mental structures in the Protein Data Bank [10]. The
template library includes template sequence, template
structure (i.e. atom coordinates), secondary structure and
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Figure 1 The five-layer architecture of the MULTICOM protein structure prediction system. TBM stands for template-based modeling and
FM for template-free modeling.
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solvent accessibility derived from the structure by DSSP
[11,12], and template sequence profiles. The template pro-
files are constructed from the multiple sequence align-
ment of the template sequence and its homologous
sequences found by PSI-BLAST [13] when searching the
template sequence against the Non-Redundant protein se-
quence database. The e-value cut off and the number of
iterations of PSI-BLAST search range from 0.001 - 0.1 and
3–8, respectively, depending on the difficulty of the query.
Different profiles such as HHSearch [14] hidden Markov
model, COMPASS [15] profile, PRC [16] hidden Markov
model, and PSI-BLAST [13] PSSM are created in order
to facilitate a variety of profile-profile alignments. The
HHSearch profiles also include the secondary structure in-
formation of the template proteins. Two lists of template
sequences are created. The big list (LIB-A) essentially
includes all the proteins (~60,000) in the PDB before the
CASP9 experiment started excluding identical proteins
and short proteins (<30 residues). The small list (LIB-B) is
a redundancy reduced list filtered at 90% sequence iden-
tify, which includes ~20,000 proteins. In order to keep the
library updated, the new protein structures released by the
PDB are retrieved and incorporated into the library every
week. Similarly, the non-redundant sequence database is
updated weekly from the NCBI’s web site.

Template identification
A query sequence is first searched against the Non-
Redundant protein sequence database by PSI-BLAST [13]
in order to find its homologous sequences. Query profiles
(i.e., PSI-BLAST [13] PSSM, HHSearch [14] HMM, SAM
[17] HMM, HMMER [18] HMM, PRC [16] HMM, and
COMPASS [15] profile) are constructed from the query
and its homologous sequences. Because the template iden-
tification is often sensitive to profile content, three kinds
of HHSearch profiles are constructed for the query using
the small, large, and filtered NR database. One special
addition to the HHSearch profiles is that they include the
secondary structure of the query protein predicted by ei-
ther SCRATCH [19] or PSI-PRED [20]. In order to iden-
tify a list of template structures potentially relevant to the
structure of a query protein, the sequence and its profile
are searched against the template sequences and profiles.
Specifically, the query sequence is searched against LIB-A
using BLAST [13,21] and CSI-BLAST [22]. The query
PSSM, SAM, and HMMER profiles are searched against
LIB-A by PSI-BLAST, SAM, and HMMER. The query
HHSearch, PRC, and COMPASS profiles are searched a-
gainst the profiles in LIB-B by HHSearch, PRC, and
COMPASS. These searches are carried out by multi-
ple threads in parallel. Each search may return a list of
templates with e-values below a pre-defined threshold
(e.g., 1 for hard targets and 0.001 for easy targets) and the
local alignment between the query and templates is also
generated. The top ranked template hits ranked by the
e-values of the query-template alignments are retained for
each method and the query-template alignments from the
top hits identified by each method are stored in sepa-
rate lists for later combination. Furthermore, the system
counts the number of times a template was found by each
alignment method and generates a consensus list of the
top ranked (e.g. top 10) templates ranked solely by the fre-
quency counts. The consensus template selection is a new
addition to the MULTICOM system. CSI-BLAST, PRC,
HMMER, and SAM are new alignment methods added
into the system. It is worth noting that more sequence
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and profile alignment methods could be easily plugged
into this layer, which often improves the performance of
the system as multiple search tools often contribute com-
plementary information or reinforce weak signals.

Multiple template combination
A template structure directly suggests a conformation that
is supposed to be near the native conformation of the
query protein being searched. This drastically reduces the
search space. Multiple structurally similar templates may
provide an ensemble of conformations that better confine
the native structure of the query protein [23]. The mul-
tiple template combination layer is designed to integrate
the structural information from multiple templates at the
alignment level in order to reduce noise. Currently three
multiple template combination methods are implemented.
The first is the structure-alignment-guided, central-star,
top-down approach combination method to integrate
every list of query-template alignments directly gene-
rated by each search tool. The method first selects a
top ranked query-template as a seed. Using the common
query sequence as an anchor, it combines other template-
query alignments ranked lower in the list with the seed if
their e-values are close to the seed alignment and their
aligned regions are structurally consistent with previously
combined query-template alignments. The structural simi-
larity of two query-template alignments is checked by
comparing the structure of two templates which align
to the same regions of the query (as determined by TM-
align [24]). Two regions that could be structurally aligned
with a high structural similarity score (i.e. GDT-TS score
[25] > 0.75) are considered to be structurally conistent.
The structural consistency check ensures the struc-
tural consistency of combined templates and improved
model quality by avoiding or reducing atom clashes that
result from the combination of structurally inconsistent
templates. The second approach called “structure-align-
ment-driven profile alignment” is applied to the consensus
list of templates that do not include query-template align-
ment information. The method can also generate structur-
ally consistent alignments between a query and multiple
templates. For each template in the list, the method first
aligns its structure with that of each of the remaining
templates using TM-align [24]. Each pairwise template-
template structure alignment is converted into a pair-
wise sequence alignment by retaining only structurally
aligned residues in the template. These pairwise sequence
alignments between the common template and other tem-
plates in the list are combined into a multiple sequence
alignment using the common template as an anchor. Be-
cause only those regions of the other templates that
aligned well to the anchor template are kept, the multiple
sequence alignment involving multiple templates is struc-
turally consistent. The multiple sequence alignment (resp.
HHSearch [14] profile) of these templates is then aligned
with the multiple sequence alignment (resp. HHSearch
profile) of the query to generate an alignment between the
query and all the templates using the multiple sequence
alignment tool MUSCLE (resp. HHSearch). The third
approach is a hybrid alignment combination approach that
gradually combines the alignments of a query-template
pair generated by three different alignment methods: PSI-
BLAST [13], HHSearch [14], and SPEM [26]. More specif-
ically, this approach works by taking the PSI-BLAST
alignment method first and then adding the HHSearch
alignment for query regions not covered by PSI-BLAST
alignment if available. Finally the SPEM global alignments
are included for the rest of the uncovered query regions if
available. The hybrid approach tries to supplement the
shorter, but likely more confident local alignments (e.g.
PSI-BLAST) with longer, but perhaps less accurate global
alignments (e.g. SPEM). Through the second and third
methods, a list of combined query-template alignments
is generated for the consensus template list. The two
structure-alignment guided template combination me-
thods that ensure the structural consistency among mul-
tiple templates and the hybrid combination method are
new developments in the MULTICOM system.

Model generation
Each combined query-template alignment and the asso-
ciated template structures are fed into model generators
to sample conformations for the query protein. If one or
more templates are found to cover the entire query pro-
tein, leaving no unaligned region or very short unaligned
regions (< 10 residues), then the template-based mo-
deling tool (Modeller 9v7 [27]) is used to generate a
number of conformations (e.g. 10) for one set of input
alignment and template structures. The model best fit-
ting the restraints extracted from template structures is
selected as the output model for the set of inputs. As
such, a list of models will be generated for the list of in-
put alignments and template structures. About 30-40%
of the time, no homologous templates or only a template
covering a part of the query protein is found, so a recur-
sive protein modeling protocol [28] is used to integrate
template-based modeling method and template-free
modeling method to construct conformations that cover
the entire query protein. Under this protocol, the certain
regions of the query that align well with templates
are first constructed by a comparative modeling tool -
Modeller [27]. While keeping the conformations of
template-based regions fixed and as restraints, a variant
of a fragment-assembly tool (i.e. Rosetta [29]) is used to
sample the conformations for the uncertain/unaligned
regions. This method took the internal core region
modeled by template-based modeling into consideration
when calculating the energy while keeping the core rigid.
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This approach can integrate template-based and template-
free modeling at a percentage from 0% to 100% depending
on the amount of template information available. The
conformations of certain and uncertain regions are then
composed into a full model using Modeller. In the end,
the model generation layer will produce a pool of candi-
date models (e.g. a few hundred) for the query protein. In
this layer, the method of combining template-based and
template-free models is a new addition.

Model quality assessment
The model quality assessment layer evaluates the quality
of each model in the pool in order to select more accur-
ate models. There are two kinds of model quality assess-
ment (or model selection) methods, which can be referred
to as the white box approach and the black box approach.
The white box approach uses the information applied in
generating a model to evaluate its quality. A typical
method of the white box approach is an alignment-based
model selection method [30,31] which uses the level of
the similarity between query-template alignments (e.g. e-
value of alignment score, sequence identity) to rank
models generated from the alignments. The method of
the black box approach uses the features extracted from
the 3D shape of a model to assess its quality without
exploiting any specific information about how the model
is generated. In contrast to the scarcity of the white box
methods, a variety of the black box model selection
methods (e.g., energy-based methods [32-34], machine
learning methods [35-38], and consensus methods
[39-42]) have been developed. Note that white box
methods are not always applicable since the information
related to how a model is generated is often not available.
However, if there is such information, the white box ap-
proach tends to provide new insights into the quality of a
model that might not be captured by the black-box
methods.
Because there is no white-box model quality assessment

method publicly available, we developed a support vector
machine (SVM [43]) method to predict the quality score
of a model based on the features extracted from the
query-template pairwise sequence alignment employed to
generate the model. The input features provided to the
SVM predictor include the logarithm of e-value of the
given query-template alignment, the percent of identical
residue pairs in aligned positions, the percent of residues
of the query that are aligned with a residue in the tem-
plate, and the average of BLOSUM scores of all aligned
residue pairs. From the input feature of a query-template
alignment, the SVM predictor aims to predict the GDT-
TS score of the model generated from the alignment. The
input feature vectors in the training data set were
extracted from 245 pairwise protein sequence alignments
generated for 50 CASP9 targets by PSI-BLAST [13] and
the output score of each input feature vector was the real
GDT-TS score of its corresponding model calculated by
the TM-score program [44]. This data was used to train a
SVM regression predictor equipped with a Gaussian radial
basis kernel (RBF) to predict the GDT-TS scores of
models from the input features. The three parameters of
the Gaussian radial basis kernel (RBF) to be tuned were
the epsilon width of the regression tube (w), the margin-
error tradeoff parameter (c), and the gamma of the RBF
kernel (g). The root mean square error (RMSE) and the
absolute mean error (ABS) between predicted and real
GDT-TS scores were calculated for each set of parameter
values to evaluate its performance. A five-fold leave-one
-out cross validation (LOOCV) protocol was used to se-
lect the best parameter values of c from 2.0, 1.0, 0.5, 0.1,
0.05, 0.01, w from 0.5, 0.2, 0.1, 0.05, 0.02, and 0.01, and g
from 0.5, 0.3, 0.2, 0.1, 0.05, 0.01, 0.005, and 0.001
according to the ABS and RMSE on all the five folds. The
global average RMSE and ABS of the SVM trained with
the best parameter values on the five-fold training data set
were 0.083 and 0.061, respectively. The trained SVM pre-
dictor was applied to predict the GDT-TS scores of
models of 46 CASP9 targets not used in training from the
input features extracted from the corresponding PSI-
BLAST alignments.
As model assessment is very challenging and none of

the current methods can consistently select the best mo-
del, three model quality assessment methods (single-
model approach, model pairwise comparison approach
(APOLLO) [45], and a hybrid approach [9,46]) are
employed to assess the quality of the models in this layer.
The single-model method (i.e. ModelEvaluator [35])
assigns an absolute quality score (e.g. GDT-TS score, the
expected similarity between the model and the native
structure) to each model by comparing the secondary
structure, solvent accessibility, contact map, and beta-
sheet topology of the model with that predicted from the
query sequence [19,47,48]. This method is generally effect-
ive at discriminating good models from poor models. The
pairwise comparison method (APOLLO) compares a
model against all other models using a structure align-
ment tool (e.g. TM-score [44]) and calculates their similar-
ity in terms of GDT-TS score, TM-score, and MaxSub
score. The average similarity between a model and all
other models is used as the predicted quality of the model.
Note that the accuracy of the pairwise comparison
method is input dependent (i.e. it works well only if the
size of the model pool is large enough and the largest
group of similar models in the pool are of good quality).
The hybrid method is a compromise between the single-
model method and the pairwise-comparison method. It
first ranks the models by the quality scores predicted by
ModelEvaluator. The top several (e.g. 5) models are
selected as reference models, against which each model is
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compared. The average similarity between a model and
the reference models is used as the quality score of the
model. Furthermore, the average distance between a resi-
due in a model and its counterpart in the reference
models is used as the local quality of the residue (i.e. its
deviation from the native structure). In addition to the
three methods above, three simple scoring metrics were
also tested. These additional methods included secondary
structure scoring, secondary structure segment scoring,
and solvent accessibility scoring. The secondary structure
ranking method uses the percent of the secondary
structures predicted from the sequence of a target that
agree with those extracted from a model of the target to
rank models.. The idea of secondary structure segment
score ranking is similar to the secondary structure ranking
except the percent of agreement between secondary struc-
ture segments rather than between secondary structures
of individual residues is used. Similarly, the solvent acces-
sibility score ranking method uses the percent of the solv-
ent accessibilities predicted from the sequence of a target
that agree with those extracted from a model of the target
to rank models. With all three simple scoring metrics, a
higher score corresponded to a higher model ranking. At
the end of this layer, all models in the pool have been
ranked by the quality scores predicted by these three
scores. In this layer, the alignment-based model evaluation
and the pairwise model evaluation are new developments
in the system.

Model refinement
This last layer of the system uses a top-down local–
global model combination approach to combine the top
ranked models with other models that were globally very
similar to it (e.g., pairwise GDT-TS score > 0.7) or com-
bines very similar local regions of other models if no
globally similar models were found. The model combin-
ation is essentially a model averaging process which in
many cases can produce a model better than the top
ranked model or even the best model in the pool. In
addition to model combination, some regions of mo-
dels are also refined according to the local quality. The
poorly predicted local regions (e.g. tail regions) are
resampled by a modified fragment-assembly method
(a Rosetta variant), which keeps the other regions fixed
and uses them as restraints to constrain the free model-
ing of the local regions. However, since some poorly
predicted local regions are actually disordered regions,
refinement on these regions cannot improve the global
quality of the model. Finally the top refined models are
released from the system as the final predictions.
According to the description of the five steps above,

many database search/alignment tools are used in the
MULTICOM protein structure prediction system. BLAST
[13,21] (Basic Local Alignment Search Tool) is a tool for
finding local similarity between sequences. PSI-BLAST
[13] (Position-Specific Iterative Basic Local Alignment
Search Tool) is a tool for detecting distant relationships
between proteins. COMPASS [15] is a tool for comparison
of multiple protein alignments with assessment of statis-
tical significance. HHSearch (version 1.2 and 1.5) [14] is a
tool for detecting remote homologues of proteins and
generating high quality alignments for homology model-
ing and function prediction. HMMER [18] is a tool for
searching sequence databases for homologs of protein
sequences and for finding protein sequence alignments
using probabilistic models (profile HMMs). PRC [16] is a
stand-alone tool for aligning and scoring two profile hid-
den Markov models. CS-BLAST [22] is an extension to
standard NCBI BLAST that allows an increase in sensitiv-
ity by a factor of more than two at the same speed. CSI-
BLAST [22] is an extension of CS-BLAST for iterative
search with position-specific scoring matrices, two search
iterations of which are more sensitive than five search
iterations of PSI-BLAST. PSI-BLAST-multi is a top-down
PSI-BLAST alignment combination approach to protein
structure prediction and its assessments. SAM [17]
(Sequence Alignment and Modeling system) is a profile
HMM and sequence alignment tool. The alignments of all
these tools except for BLAST and PSI-BLAST were
combined into one-query and multiple-template align-
ment by the structure-alignment-guided, central-star, top-
down approach for model generation. Individual BLAST
and PSI-BLAST alignments were used for model gener-
ation. The consensus templates found by these alignment
tools were used to generate query-template alignments by
the structure-alignment-driven profile alignment ap-
proach. CENTER stands for one-query and multiple-
template alignment by MUSCLE, while STAR stands for
one-query and multiple-template alignment by HHSearch.
CONSTRUCT denotes the hybrid query-template align-
ment derived from the PSI-BLAST, HHSearch and SPEM.
The performance of these individual methods and their
combination are discussed in the results and discussions
section.

Results and discussions
System testing, integration, and environment
As shown above, a sophisticated protein structure pre-
diction system can be rather complicated and many
choices and decisions must be made in each layer of the
system. Thus integrating the components into one system
that performs better than the simple sum of all the com-
ponents is as critical as assembling computer components
into a high-performance computer system. In order to ob-
jectively measure the performance of our integrated sys-
tem, we blindly tested it in the 9th Critical Assessment
of Techniques for Protein Structure Prediction (CASP9,
http://predictioncenter.org/casp9/) in 2010. CASP9 releas-
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ed 129 protein targets whose structures were not available
to the community. After some of the targets were can-
celed due to prematurely leaked information or difficulties
in experimentally determining the structure, 107 official
targets are available to assess the performance of the sys-
tem. The set is sufficiently large and contained diverse types
of protein topologies at different levels of difficulty, ma-
king it an ideal dataset to objectively benchmark the
MULTICOM system. Four variants of the MULTICOM
system participated in the CASP9 as four automated server
predictors: MULTICOM-CLUSTER, MULTICOM-REFINE
, MULTICOM-NOVEL, and MULTICOM-CONSTRUCT.
The MULTICOM servers generated a large amount of
intermediate data in each step of predictions. The raw data
was analyzed in this work to study and compare the per-
formance of the components of each layer during the
CASP9 experiment. The analysis provided useful informa-
tion for tuning the parameters of the components and the
entire system.
The entire MULTICOM system was installed and run

on a workstation with 8 cores, 8 G of memory and a
1 TB hard disk during the CASP9 experiment. Essen-
tially, the system can be installed and run on a modern
PC. Generally, the system can make predictions for a query
protein within a timeframe ranging from half an hour to
several hours, depending on the length and the difficulty of
the target. Prediction times for average-length template-
based targets are shorter than average-length template-free
targets because template-based targets do not require
Figure 2 The highest TM-scores of the top 5 templates searched by H
represents TM-scores. X axis denotes the index of each target.
invoking the more time-consuming template-free modeling
tools.
In order to investigate its design and performance, we

evaluated the first four steps of the MULTICOM protein
structure prediction system by comparing the templates,
alignments, and models generated by all kinds of data-
base search/alignment tools, comparing different model
generation methods and comparing different model
quality assessment tools.

Comparison of template identification methods
In order to evaluate all database search/alignment tools
in the first step (i.e., template identification) we com-
pared these tools from different aspects based on the
templates identified by each of them. Firstly, the top 5
templates identified by two database search/alignment
tools HHSearch [14] and PSI-BLAST-single for 107
CASP9 targets were aligned with the query’s true struc-
ture, and their TM-scores were calculated using the
TM-align program [24] in order to assess the perform-
ance of these two tools in template identification. TM-
score [44] is a score in the range of 0 to 1, measuring the
similarity between two protein structures and is largely
independent of protein length. Here, HHSearch and PSI-
BLAST were compared because they are two typical
profile-profile and profile-sequence alignment methods.
Figure 2 illustrates the highest TM-scores of the top
5 templates identified by HHSearch and PSI-BLAST-
single for 107 targets. HHSearch and PSI-BLAST-single
HSearch and PSI-BLAST-single for 107 CASP9 targets. Y axis
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identified the templates of the same quality for 25 targets.
HHSearch obtained better templates for 60 targets, while
PSI-BLAST-single recognized 22 better templates. It is
consistent with previous observations that profile-profile
alignment methods are more sensitive in recognizing tem-
plates than profile-sequence alignment methods. However,
profile-sequence alignment can complement profile-
profile alignment methods by identifying better templates
in some cases.
Then we evaluated all of the tools from another aspect

by aligning the top 5 templates selected with the query’s
true structure for 107 CASP9 targets. Their similarities
(i.e. TM-scores) were calculated using the TM-align pro-
gram [24]. CONSTRUCT is a consensus template identi-
fication method that ranks templates based on the
frequency of their selection by the other methods. PSI-
BLAST-multi used PSI-BLAST to search a query against
the NR database to build a PSSM profile and then
searched the profile against the template library to select
template structures. One difference between PSI-BLAST
-multi and PSI-BLAST-single is that the latter searched
the NR database for more iterations to include more re-
mote homologous sequences into profile building. An-
other difference is that PSI-BLAST-multi combined the
alignments between one query and multiple templates
while PSI-BLAST-single only used one query-template
Figure 3 The total TM-scores of the top 1 template and the best tem
version 1.2 and SS is HHSearch version1.5. PSI-BLAST-multi is the multi-tem
GDT-TS score than the single-template PSI-BLAST alignment approach. Her
Scores of the no. 1 template identified for 107 CASP9 targets by a method
the TM-Scores of the best template identified for 107 CASP9 targets by a m
alignment for model building. Figure 3 illustrates the
total TM-scores (the addition of all TM-scores) of the
top 1 template and the best template with the highest
TM-score among the top 5 templates for each tool for
107 CASP9 targets. In both cases, two HHSearch-based
profile-profile alignment methods (HHSearch and SS)
delivered the best results, followed by the consensus
methods (Center, Star, and SAM). Figure 4 illustrates the
common and different sub-set of targets for which some
good templates (TM-score > 0.5) were identified when
using HHSearch, CENTER, BLAST, and PSI-BLAST-
single and demonstrated that these methods might iden-
tify a complementary set of templates.
Table 1 shows the specificity and sensitivity for the top 1

template and the best template among the top 5 templates
for each tool and the number of targets that have
templates identified for each tool. It shows that HHSearch,
SS, CONSTRUCT, CENTER, and STAR found at least
one template for each target of 107 targets. The templates
found for around two thirds of the targets were good
(TM-score > 0.5). Although it only identified templates for
71 targets, PSI-BLAST-multi got the best specificity for
the top 1 model and the best model, which means that the
templates searched by PSI-BLAST-multi for more than
80% targets were good templates (TM-score > 0.5) (see
Table 1).
plate of each tool for 107 CASP9 targets. HHSearch is HHSearch
plate combination of the PSI-BLAST alignment, which had higher total
e, the total TM-Score of the top-one templates is the sum of the TM-
/ tool. Similarly, the total TM-Score of the best templates is the sum of
ethod / tool.



Figure 4 The common and different sub-set of targets for
which some good templates (TM-score > 0.5) were identified.
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Impact of alternative templates and alignments,
alternative methods, structural consistency checking, and
multiple-template combination on model accuracy
In order to explore the impact of multiple-template
combination of all of the tools (BLAST [13,21], CS-
BLAST [22], CSI-BLAST [22], HHSearch [14] with dif-
ferent profiles, PRC [16], COMPASS [15], HMMER
[18], SAM [17], PSI-BLAST-single, PSI-BLAST-multi,
CONSTRUCT, CENTER, and STAR), the top 5 models
Table 1 The specificity and sensitivity for the top 1 template
each tool based on 107 CASP9 targets and the number of tar

Tool The top 1 model

Specificity Sensitivity

PSI-BLAST-multi 80.28% 53.27%

CS-BLAST 73.97% 50.47%

CENTER 67.29% 67.29%

STAR 67.29% 67.29%

HMMER 66.67% 56.07%

SS 66.04% 65.42%

HHSearch 65.42% 65.42%

BLAST 65.38% 47.66%

CSI-BLAST 62.63% 57.94%

COMPASS 62.50% 60.75%

PSI-BLAST-single 62.50% 56.07%

PRC 62.14% 59.81%

SAM 61.32% 60.75%

CONSTRUCT 60.75% 60.75%

The specificity is the fraction of the targets with at least one template identified by
good template is identified divided by the number of targets for which at least one
identification of a method. The sensitivity is the number of targets for which a goo
consideration in this experiment (i.e. 107), assuming that all the targets have at leas
are complementary.
generated by these tools for 107 CASP9 targets were
superimposed onto the query’s true structure and the
GDT-TS scores were calculated by the TM-score pro-
gram [44]. GDT-TS (Global Distance Test) score is the
average percent of residues in the model whose position
is within 1, 2, 4, 8 Angstrom with that of their
counterparts in the experiment structure after super-
position [25]. Figure 5 reports the total GDT-TS scores
of the top 1 models of each individual method and the
total GDT-TS score of the top 1 models among all the
models of all the methods. Figure 6 reports the total
GDT-TS scores of the best models with highest GDT-
TS score of each individual method and the total GDT-
TS score of the best model with the highest GDT-TS
score among all models of all the methods. As shown in
Figures 5 and 6, the score of HHSearch 1.5 (i.e. SS) on a
filterd profile is slightly higher than that of the other
tools, which reveals this method generated better
target-template alignments. However, the total score of
the method was still a few percent lower than the total
score of top ranked or the best models generated from
the target-template alignments of all the methods. This
suggests that pooling models generated from alternative
target-template alignments produced by the different
methods improved model quality.
Table 2 shows the total GDT-TS scores of PSI-BLAST

-multi and PSI-BLAST-single for the top 1 model and the
best model on the same set of 71 targets for which both
and the best template among the top 5 templates for
gets that have templates identified for each tool

The best model # targets
that have
templates
identified

Specificity Sensitivity

88.73% 58.88% 71

78.08% 53.27% 73

71.96% 71.96% 107

71.96% 71.96% 107

77.78% 65.42% 90

71.96% 71.96% 107

72.90% 72.90% 107

69.23% 50.47% 78

66.67% 61.68% 99

71.15% 69.16% 104

67.71% 60.75% 96

69.90% 67.29% 103

67.92% 67.29% 106

71.96% 71.96% 107

a method having a GDT-TS score > = 0.5, i.e. the number of targets for which a
template is identified. The specificity measures the precision of template

d template (i.e. its GDT-TS score >0.5) is identified divided by all the targets in
t one reasonable template. The two measures (i.e. sensitivity and specificity)



Figure 5 The total GDT-TS scores of the top 1 ranked model of each individual method and the top 1 ranked models of all of the
methods for 107 CASP9 targets. The vertical bars represent the total scores of individual methods. The blue line denotes the total score of top
1 model of all the methods.
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methods made predictions. The results show that PSI-
BLAST-multi has a slightly better performance than PSI-
BLAST-single. However, it was hard to quantify the
contributions of multiple template combination here be-
cause the templates used for each target by the two
methods may be different.
In order to investigate the impact of structural

consistency checking for HHSearch modeling, we assessed
and compared three kinds of HHSearch [14] models (i.e.
HH with structural consistency checking, SS with struc-
tural consistency checking, and HS without structural
consistency checking). All of the generated models of HH,
SS, and HS for 107 CASP9 targets were aligned with the
query’s true structure, and their GDT-TS scores were
calculated using the TM-score program [44]. The total
GDT-TS scores of the best models of HH and SS with
structural consistency checking are 57.77 and 59.2 re-
spectively, clearly higher than that of HS without the
consistency check which scores 52.44. In spite of some
difference in HHSearch versions, profiles, and other
parameters, this may still imply that methods with struc-
tural consistency checking have better performance than
methods without a structural consistency check.
STAR models (HMM), CENTER models (MUSCLE), and

CONSTRUCT models were compared in order to assess
the quality of the multiple sequence alignments generated.
All of the generated models of STAR, CENTER, and
CONSTRUCT for 107 CASP9 targets were aligned with
the query’s true structure and their GDT-TS scores were
calculated using the TM-score program [44]. The total
GDT-TS scores of the best models of STAR, CENTER, and
CONSTRUCT with highest GDT-TS score for 107 CASP9
targets are 57.67, 57.43, and 59.07 respectively (see Figure 6),
whereas the total GDT-TS scores of the top 1 ranked
models of these methods are similar (see Figure 5).

Comparison of model generation protocols
We compared the performance of the ab initio model
generation method and the template-based method on
hard targets by comparing HHSearch models, SS models
and ab initio models. Hard targets are template-free
targets that did not have a reasonable template in the
protein structure database. All of the generated models
of HHSearch, SS, and ab initio for 8 CASP9 hard targets
[49] were aligned with the query’s true structure and
their GDT-TS scores were calculated using the TM-
score program [44]. The total GDT-TS score of the best
models of ab initio with the highest GDT-TS score is
2.55, clearly higher than 1.88 of HHSearch and 1.79 of
SS. This suggests that the ab initio models generated by
the fragment assembly based ab initio method were bet-
ter than the models generated by the template-based
method with incorrect templates.



Figure 6 The total GDT-TS scores of the best model of each individual method and the best model of all the methods for 107 CASP9
targets. The vertical bars represent the total scores of individual methods. The blue line denotes the total score of the best model of all
the methods.
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We further compared four template-based model gener-
ation protocols (i.e. auto model, loop model, dope_loop
model, and dope_hr_loop model) of Modeller [27]. All of
the models generated by these four protocols using
HHSearch [14] alignments for 107 CASP9 targets were
aligned with the query’s true structures. Their GDT-TS
scores were calculated using the TM-score program [44].
Table 3 illustrates the total GDT-TS scores of the best
models with highest GDT-TS score generated by these
protocols. It was quite surprising that the total GDT-TS
score of the simplest auto model protocol is clearly higher
than the other, more advanced protocols.

Comparison of model selection methods
We evaluated two kinds of model quality assessment
methods (the white box approach and the black box ap-
proach) on the CASP9 targets. We applied the SVM
alignment-based predictor (the white box approach)
trained on alignments of 50 CASP9 targets to blindly
score the models generated from 225 PSI-BLAST-single
alignments on the other 46 CASP9 targets. The total real
Table 2 The total GDT-TS scores of PSI-BLAST-multi and
PSI-BLAST-single on the same set of 71 targets for which
both methods made predictions

Tool Total GDT-TS score

The top 1 model The best model

PSI-BLAST-multi 42.18 43.77

PSI-BLAST-single 41.51 43.33
GDT-TS score of the top 1 models selected by the SVM
predictor for these targets was compared with that of
the top 1 models simply ranked by the e-values of the
PSI-BLAST alignment. The total GDT-TS score of the
models selected by the SVM predictor is 20.95, higher
than 20.10 of the naïve e-value based model selection
method. Moreover, a t-test and a wilcox-test were
performed to check if the two scores are significantly
different (p-value < 0.05). The p-value of t-test is 0.044
and the p-value of wilcox-test 0.042. The results indicate
that incorporating multiple alignment features in a SVM
can significantly improve model selection over a naïve e-
value based method.
As for the black box model selection methods, we

evaluated a single-model absolute model quality predictor
(ModelEvaluator), the secondary structure score ranking
method, the solvent accessibility score ranking method, the
secondary structure segment (SOV) score ranking, a pair-
wise model comparison method (APOLLO), and an energy
ranking method (SELECTpro [32]). APOLLO generated
Table 3 The total GDT-TS scores of the best models
generated by four model generation protocols for 107
CASP9 targets

Method The total GDT-TS score

auto model 53.55

loop model 48.41

dope_loop model 47.95

dope_hr_loop model 48.04



Figure 7 The total GDT-TS scores of the top models selected by different model-ranking technologies for 107 CASP9 targets.
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three kinds of scores for a model, i.e. TM-score, GDT-TS
score, and Max-Sub score, and these were evaluated separ-
ately. All these methods were used to select one model with
the highest predicted score from all the models predicted
for each of the CASP9 targets. The total real GDT-TS
scores of the models selected by each method is reported in
Figure 7. The results show that ModelEvaluator yielded the
best performance, which is only slightly better than that of
SELECTpro and APOLLO. The performance of these three
comprehensive quality predictors was substantially better
than that of the ranking based methods on a single feature
(i.e., SS, SA, SOV).
In addition to evaluating the quality of a model based

on the coordinates of all of its residues, we investigated
if removing potentially disordered regions from full-
length models could improve model quality assessment.
In contrast to previous work that excluded potentially
disordered residues from model generation resulting in a
partially constructed model, our approach removes them
from a full-length model containing all the residues in
order to improve the accuracy of evaluating its quality.
We used PreDisorder [50] to predict the putative
disordered residues of each target and then filtered out
the coordinates of the N-/C-terminal disordered residues
from all the models. ModelEvaluator, APOLLO, and
SELECTpro were used to assess the filtered models and
to select one model with the highest score from all the
filtered models for each of the CASP9 targets. The
Table 4 The total GDT-TS scores of the best models without t
disorder regions for 107 CASP9 targets

Model

ModelEvaluator

The best model without the tail disorder regions 57.88

The best model with the tail disorder regions 57.85
performance of these methods applied to the filtered
models was compared with that of the same methods
when applied to the full-length models. The total real
GDT-TS scores of the best models selected by these
methods are reported in Table 4. The results show that
removing N/C-terminal disordered regions from full-
length models improves the performance of all the qual-
ity assessment methods. The improvement on the
pairwise quality assessment method (Apollo) and the
energy-based method (SELECTpro) was more pro-
nounced, indicating that these methods were more sen-
sitive to the noise caused by the disordered residues than
ModelEvaluator. Overall, our experiment suggests that
disorder prediction may help significantly improve
model ranking, which has been a long-standing and
challenging problem.

Impact of model combination and refinement on model
quality
In order to assess the impact of the simple model com-
bination and refinement method on model quality, we
compared the total GDT-TS score, TM-Score and
MolProbity score of the combined models with those of
the top ranked models of 107 CASP9 targets (see
Table 5). MolProbity differs from the GDT-TS and TM-
Score metrics in that MolProbity evaluates how realistic
a model is according to its all-atom conformation. GDT-
TS and TM-Score measure the accuracy of the backbone
he tail disorder regions and the best models with the tail

The total GDT-TS score

APOLLO tm APOLLO max APOLLO GDT-TS SELECTpro

61.12 60.92 61.01 59.94

57.36 57.10 57.37 57.04



Table 5 The total TM-score, GDT-TS score, and MolProbity
score of the combined, refined models and the top
selected models of 107 CASP9 targets

Models TM-
score

GDT-TS
score

MolProbity
score

The combined, refined
models

64.20 57.14 340.98

The top selected models 64.28 57.21 351.18
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of a model. The results show that the GDT-TS scores
and TM-Scores of the combined and refined models and
the top ranked models are almost the same while the
MolProbity score of the former is better (i.e. lower) than
that of the latter. This suggests that combining / refining
models may make models more protein-like.

Conclusion
Developing high-quality protein structure prediction
systems is critical for addressing the protein structure
challenges faced in the post genomic era. In this work,
we described how to construct a protein structure pre-
diction system (MULTICOM) under a five-layer open
architecture, which can integrate complementary com-
ponent methods and multiple sources of information to
reliably and accurately predict protein structure from se-
quence. We focused on investigating and validating the ef-
fectiveness and complementarity of different components
employed in each layer. The experiments provided insights
about how to select, use, and combine existing techniques
to improve protein tertiary structure prediction using an
open architecture. Additionally, the experiments provide a
direct, comprehensive and quantitative assessment of vari-
ous components of a single protein structure prediction
system in a blind prediction setting and lead to some
interesting findings such as the impact of protein disorder
prediction on protein model selection. These results shed
new light on designing and developing better protein struc-
ture prediction systems and algorithms.
However, despite the reasonable performance that the

MULTICOM protein structure prediction system
achieved on most protein targets, our benchmark
suggests there is still room for improvement in each step
of protein structure prediction process. In the future, we
plan to add more sensitive or complementary template
identification methods into the system to address the
failure of identifying good templates for some hard
targets. These improvements will include more comple-
mentary or even better alignment methods to generate
more accurate target-template alignments, improve
alignment-based model quality assessment methods
with more features and multiple-template information,
incorporate residue-residue contact information to
improve ab initio model generation (i.e., a major bottle-
neck of protein structure prediction), and explore the
usage of residue disorder prediction in both template-
based and ab initio model generation.
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