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Abstract
Background: Protease-activated receptors (PAR) are present in the urinary bladder, and their expression is altered in
response to inflammation. PARs are a unique class of G protein-coupled that carry their own ligands, which remain
cryptic until unmasked by proteolytic cleavage. Although the canonical signal transduction pathway downstream of PAR
activation and coupling with various G proteins is known and leads to the rapid transcription of genes involved in
inflammation, the effect of PAR activation on the downstream transcriptome is unknown.

We have shown that intravesical administration of PAR-activating peptides leads to an inflammatory reaction
characterized by edema and granulocyte infiltration. Moreover, the inflammatory response to intravesical instillation of
known pro-inflammatory stimuli such as E. coli lipopolysaccharide (LPS), substance P (SP), and antigen was strongly
attenuated by PAR1- and to a lesser extent by PAR2-deficiency.

Results: Here, cDNA array experiments determined inflammatory genes whose expression is dependent on PAR1
activation. For this purpose, we compared the alteration in gene expression in wild type and PAR1-/- mice induced by
classical pro-inflammatory stimuli (LPS, SP, and antigen). 75 transcripts were considered to be dependent on PAR-1
activation and further annotated in silico by Ingenuity Pathways Analysis (IPA) and gene ontology (GO). Selected
transcripts were target validated by quantitative PCR (Q-PCR). Among PAR1-dependent transcripts, the following have
been implicated in the inflammatory process: b2m, ccl7, cd200, cd63, cdbpd, cfl1, dusp1, fkbp1a, fth1, hspb1, marcksl1,
mmp2, myo5a, nfkbia, pax1, plaur, ppia, ptpn1, ptprcap, s100a10, sim2, and tnfaip2. However, a balanced response to signals
of injury requires a transient cellular activation of a panel of genes together with inhibitory systems that temper the
overwhelming inflammation. In this context, the activation of genes such as dusp1 and nfkbia seems to counter-balance
the inflammatory response to PAR activation by limiting prolonged activation of p38 MAPK and increased cytokine
production. In contrast, transcripts such as arf6 and dcnt1 that are involved in the mechanism of PAR re-sensitization
would tend to perpetuate the inflammatory reaction in response to common pro-inflammatory stimuli.
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Conclusion: The combination of cDNA array results and genomic networks reveals an overriding participation of PAR1
in bladder inflammation, provides a working model for the involvement of downstream signaling, and evokes testable
hypotheses regarding the transcriptome downstream of PAR1 activation.

It remains to be determined whether or not mechanisms targeting PAR1 gene silencing or PAR1 blockade will ameliorate 
the clinical manifestation of cystitis.

Background
In general, inflammation plays a role in most bladder
pathologies, including bladder cancer [1-4], and repre-
sents a defensive reaction to injury caused by physical
damage, chemical substances, micro-organisms, or other
agents [1,2]. In particular, neurogenic bladder inflamma-
tion involves the participation of mast cells and sensory
nerves. We previously presented evidence indicating a key
role for mast cells and their products in bladder inflam-
mation [5-7]. As a consequence of inflammation, prod-
ucts of mast cell degranulation such as tryptase can be
found in the urine of both bladder cancer and cystitis
patients [8]. In addition to tryptase, other serine proteases
such as thrombin and trypsin are produced during tissue
damage and make important contributions to tissue
responses to injury, repair, cell survival, inflammation [9-
12], and pain [13-17]. Tissue responses to these enzymes
are modulated by protease-activated receptors (PARs), a
unique class of G protein-coupled receptors that use a fas-
cinating mechanism to convert an extracellular proteo-
lytic cleavage event into a trans-membrane signal. These
receptors carry their own ligands, which remain cryptic
until unmasked by receptor cleavage (for a review, please
see references [13,16,18,19]).

In order to better understand the role of PARs in cystitis,
we used a well established mouse model [20-22] to deter-
mine the relative effect of PAR-specific peptide agonists.
Comparison of inflammatory responses in wild type,
PAR1- and PAR2-deficient mice, revealed a mandatory
role of PAR1 and, to a lesser extent, PAR2 in mediating
bladder responses to a variety of pro-inflammatory stim-
uli [23].

Four PARs have been cloned to date, and all four PARs are
co-expressed in the mouse bladder urothelium [24], with
PAR2 and PAR3 being the most abundant in the bladder
epithelial layer. In addition to the urothelium, PAR1 and
PAR2 are also expressed in mouse detrusor muscle, and
PAR4 is expressed in mouse peripheral nerves and plexus
cell bodies [24]. Similarly, in rats PAR2, 3, and 4 are
expressed in urothelium, detrusor muscle, and bladder
nerve fibers, and bladder afferent cells in dorsal root gan-
glia express PAR2 to 4 [25]. Confocal microscopy has
revealed the co-localization of PAR2, 3, and 4 with protein
gene products 9.5 and vanilloid receptor 1, suggesting that
PARs are distributed in C-fiber bladder nerves [25].

In addition, PARs are differentially modulated during
mouse bladder inflammation. Urothelial PAR2 and, to a
lesser extent, PAR1 are down-regulated in acute inflamma-
tion, whereas PAR3 and PAR4 are up-regulated [24]. Blad-
der fibroblasts were found to present a clear demarcation
in PAR expression in response to acute and chronic
inflammation [24]. Additional evidence for the participa-
tion of PARs in the bladder inflammatory response was
the finding that known pro-inflammatory stimuli such as
LPS, substance P, and antigen challenge induce an
increase in PAR4 RNA within four hours [20]. Upregula-
tion of PAR protein levels has been shown to be part of rat
bladder responses to cyclophosphamide [25]. Since PAR1
is well represented in the urinary bladder [24] and its
expression is altered in bladder inflammation [24], we set
forth to determine the molecular pathways downstream
of PAR1 activation. For this purpose, we used a combina-
tion of gene-array technology, data mining using Ingenu-
ity Pathways Analysis (IPA), and gene ontology (GO)
annotation.

The signal transduction pathway downstream of PAR acti-
vation and coupling with various G proteins is known and
leads to the rapid transcription of genes involved in
inflammation [13,26]. However, the exact composition of
the transcriptome downstream of PAR activation remains
to be determined. Our approach revealed a cascade of
PAR1-dependent transcripts involved in apoptosis, cell
death, cell cycle, cell growth and proliferation, cell motil-
ity, cell-cell interaction, gene expression, immune
response, inflammation, renal and urologic development
and disease, hematological disease, and cancer.

The combination of cDNA arrays and in silico genomics
network analysis reveals an overriding participation of
PAR1 receptors in bladder inflammation, provides a
working model for the involvement of downstream tran-
scripts, and evokes testable hypotheses regarding the tran-
scriptome downstream of PAR1 activation.

Results
Genes downstream of PAR1 activation
Seventy five genes fulfilled both the criteria of being
expressed 3-fold higher after stimulation with SP or LPS
and of not changing expression in response to the same
stimuli of PAR1-/- mice, and were considered to be PAR1-
dependent (Additional files 1 and 2, Table 1A and 1B). To
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further annotate this set of genes, we used a web-based
entry tool developed by Ingenuity Pathways Analysis
[IPA] [27]to query their knowledge database [27-29]. The
resulting networks contain: A- Sub-cellular layout indicat-
ing the predominant location for the expression of
encoded proteins (Figure 1); B-Analysis of canonical path-
ways significantly associated with this group of genes (Fig-
ure 2), and C-D- Biological functions across the entire
dataset most significantly associated with this set of genes
(Figure 3 and 4).

Sub cellular location (Figure 1)
Genes (green) were associated with function (magenta)
and localized to each compartment according to IPA and
gene ontology. Dotted lines further group the genes by
activity or function such as signal transduction, cytoskele-
ton re-organization and cell motility, carbohydrate
metabolism, proteins and enzymes, transcription, and
RNA editing. Of note, a particular set of genes such as
dctn1 and arf6 are involved in PAR trafficking, and their
function is associated with other PAR1-dependent tran-
scripts with function in the cytoskeleton reorganization.

Participation of PAR1-dependent genes in canonical 
pathways (Figure 2)
Overall, PAR1-dependent transcripts belong to several
canonical pathways (Figure 2). This type of IPA also
revealed key genes that are significantly associated with
more than one canonical pathway. This is the case of elk1,
nfkbia, hspb1, dusp1, and akt2. In addition, this analysis
indicates pathways such as VEGF and integrins which
share common genes, as is the case of those encoding
cytoskeleton proteins actg1 and actb.

Primary functions associated with PAR1-dependent genes 
(Figure 3 and 4)
Figures 3 and 4 represent biological functions signifi-
cantly (p < 0.01) associated with PAR1-specific genes.
Those included: apoptosis (n = 26 genes); cell death (n =
29); cell survival (n = 10); cancer (n = 29); cellular growth
and proliferation (n = 29); cell-to-cell signaling (n = 15);
hematological disease (n = 9); cellular movement (n =
16); gene expression (n = 18); immune and lymphatic sys-
tem development and function (n = 9); immune
response/disease (n = 19); and inflammation and inflam-
matory disease (n = 22). This type of analysis also revealed
PAR-1 dependent genes (upk2, jundD, ptprc, and nfkbp1a)
encoding proteins associated with renal and urological
diseases. Figure 1D also indicates common pathways of
PAR1-dependent transcripts shared by inflammation
(red) and cancer (green) and revealed possible targets
uniquely associated with some of the biological functions.

Target validation by Q-PCR of Chromatin 
Immunoprecipitation (CHIP)-based assays
Of the 19 genes tested by Q-PCR analysis of CHIP isolated
from wild type mice challenged with control peptide,
PAR1- and PAR2-AP, 4 genes (adam-3, dctn1, elk1, and
mmp2) had their control levels 1.5 times below back-
ground (un-transcribed region) and, therefore, their
results are not being presented. Results are presented in
figure 5 as averaged Transcription Events Detected Per
1000 Cells for each gene tested and their standard devia-
tions. With the exception of pla2G1b, these results indicate
that treatment of wild type mice with PAR1- and PAR2-AP
induced up-regulation of the following PAR1-dependent
genes: actb, akt2, arf6, ccl7, cd63, dusp1, fkbp1a, nfkbia,
phlda1, plaur, s100a10, tnfaip3, ube2h, and upk2.

PAR-activation of calcium independent PLA2 (figures 6 and 
7)
Our cDNA array results indicate that pla2G1b encoding a
calcium-dependent PLA2 was a PAR1-dependent tran-
script. However, this particular transcript was not vali-
dated by Q-PCR of actively-transcribed DNA (Figure 5).
Because of the prominent role of the calcium-independ-
ent phospholipase A2 (iPLA2) in mediating tryptase-acti-
vated PAR in bladder microvascular endothelial cells [30],
bladder urothelial cells [31,32], and PAR2-AP in bladder
contractions [33], we decided to determine whether blad-
der instillation with PAR-APs also induced up-regulation
of iPLA2 in the mouse bladder mucosa. The rationale for
using only the mucosa was to decrease the complexity of
the bladder system, getting closer to the urothelial cell in
culture used by the other authors [31,32]. For this pur-
pose, cytoplasmic extracts from the bladder mucosa of WT
mice instilled with PAR-APs- or control peptide- were sub-
jected to Western Blot analysis to measure relative concen-
tration of iPLA2. Results are representative of 4 separate
experiments (Figure 6). The bar graph shows the average
densitometric values (Figure 7). When data was normal-
ized with beta-actin used as loading control, the same
relationship was observed (data not shown). These data
indicate that in the mouse urinary bladder, all PAR-APs
induced up-regulation of iPLA2.

Discussion
Serine proteases that originate from the circulation (coag-
ulation factors), inflammatory cells (mast cell tryptase,
neutrophil granzyme A, and proteinase 3), and epithelial
and neuronal tissues (trypsins) can specifically regulate
cells by cleaving PARs [34]. Proteases cleave PARs to reveal
tethered ligand domains that bind to and activate the
cleaved receptors. The proteases that activate PARs are
often generated and secreted during injury and inflamma-
tion, and PARs orchestrate tissue responses to these
insults, including hemostasis, inflammation, nociception,
and repair mechanisms [34].
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The present results indicated fundamental alterations elic-
ited by pro-inflammatory substances (LPS and SP) in
bladder gene-regulation that are mediated by activation of
PAR1. The possible mechanisms by which LPS and SP
induce PAR activation include degranulation of mast cells
with a concomitant release of tryptase and plasma extrava-
sation leading to accumulation of products of the coagu-
lation cascade that activate PARs. However, the activation
of PAR in the physiological state is more complex.
Although thrombin is a recognized physiological activator
of PAR1 and PAR4, the endogenous enzymes responsible
for activating PAR2 in urinary bladder are not known.
Recently, it was demonstrated that tissue kallikrein family
of proteinases are able to regulate PAR signaling and may
represent important endogenous regulators PAR1, PAR2,

and PAR4 [35]. Interestingly, the kallikrein family plays a
fundamental role in bladder physiology [36].

Transcriptional alteration downstream PAR activation
In terms of mechanism of action, it is well established that
after stimulation, PARs couple to various G proteins and
activate signal transduction pathways resulting in the
rapid transcription of genes that are involved in inflam-
mation [13,26,34,37]. However, the response of the tran-
scriptome downstream of PAR activation is not known.
Here, we used an approach involving the combination of
cDNA arrays, CHIP assay, and in silico querying of knowl-
edge databases in order to identify functions dependent of
PAR1 activation that are modified during bladder inflam-
mation. Although we clearly defined the criterion for a

A. PAR1-dependent genesFigure 1
A. PAR1-dependent genes. Inflammation was induced by intravesical instillation of substance P or LPS into the bladder of 
WT and PAR1-/- mice and compared to control (saline-treated); see methods for details. Twenty-four hours after, bladders 
were removed and the RNA was isolated for cDNA array experiments. Genes that were upregulated in response to inflamma-
tion in wild type mice and failed to be up-regulated in PAR1-/- mice were considered to be PAR-1 dependent transcripts. PAR-
1 dependent transcripts were used to query the Ingenuity Pathways Analysis [IPA] and based on EntrezGene and Gene Ontol-
ogy annotations were distributed into relevant biological compartments and biological interactions.
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gene to be named PAR1-dependent (see Methods sec-
tion), the expression of some/many of these genes may
only be indirectly dependent on PAR-1, due to the nature
of the downstream cascades and interacting pathways.

The use of cDNA arrays has contributed immensely to the
understanding of inflammation, in general, and the blad-
der inflammatory transcriptome, in particular
[7,20,21,38-41]. In addition, the use of curated networks
such as the Ingenuity Pathways Analysis leads to a com-
prehensive integration of how PAR1-dependent tran-
scripts correlate with canonical pathways and known
biological functions. Because our results were obtained
with whole bladders, it is not clear whether any single net-
work may be operative in a particular cell type. However,
this approach can potentially identify previously unrecog-

nized connections among pathways and, therefore, sug-
gests new hypotheses for the mechanisms of bladder
inflammation. Therefore, the value of our approach is to
raise testable hypotheses that can be tested in isolated
cells or in individual bladder layers. Aberrant expression
of protease-activated receptors (PARs) has been associated
not only with inflammation but with increased angiogen-
esis, tumor growth, and metastasis of various cancers [42-
47]. Therefore, our approach outlined a global visualiza-
tion of PAR-dependent transcripts (Figure 1) as well as
their interaction with several pathways (Figures 2, 3, 4).

Our results indicated that several genes known to be part
of the inflammatory response were found downstream of
PAR1 activation (b2m, ccl7, cd200, cd63, cdbpd, cfl1, dusp1,
fkbp1a, fth1, hspb1, marcksl1, mmp2, myo5a, nfkbia, pax1,

Participation of PAR1-dependent genes in canonical pathwaysFigure 2
Participation of PAR1-dependent genes in canonical pathways. The experimental datasets of PAR1-dependent genes 
was used to query the Ingenuity Pathways Analysis [IPA] and overlaid to canonical pathways.
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plaur, ppia, ptpn1, ptprcap, s100a10, sim2, and tnfaip2). The
present work adds to this list pro-inflammatory genes
such as wnt6, wisp2, and dvl3 that belong to the WNT fam-
ily known to be altered in human interstitial cystitis
[48,49]. In contrast, some of the proteins encoded by
PAR1-dependent transcripts play a role in shutting down
the inflammatory cascade. This is the case with type-1
membrane glycoprotein encoded by Cd200, which deliv-
ers an inhibitory signal cancelling the inflammation-
induced macrophage activation [50]. Within this group,
we also highlight nfkbia, which encodes IkappaB-alpha,
an inhibitor of the NF-kappaB cascade [51,52].

In addition to genes involved in inflammation, we found
upregulation of members of the tetraspanin family (cd63,
and adam3) and upk2 that dimerises with the tetraspanin

uroplakin 1a. Cd63 encodes a protein localized in the
membrane of mast cells [53], and anti-CD63 antibodies
inhibit mast cell adhesion to fibronectin and vitronectin
[53]. Adam-3 may have a role in inflammation by regulat-
ing the expression of allograft inflammatory factor-1 and
iNOS [54]. Uroplakin 2 is a major component of the sur-
face plaques of the urothelium [55], is found exclusively
in differentiated mammalian urothelium [56], and is a
product of terminally-differentiated apical cell layer
[57,58]. In addition to differentiation, uroplakins play a
fundamental role in the bladder permeability barrier [59],
wound healing [60], bacterial adherence and infection
[61], and possibility bladder inflammation [62]. The
present results are the first direct evidence indicating that
inflammation per se alters the message for uroplakin 2.

Primary functions associated with PAR1-dependent genesFigure 3
Primary functions associated with PAR1-dependent genes. The experimental datasets of PAR1-dependent genes was 
used to query the Ingenuity Pathways Analysis [IPA] and overlaid with primary functions and diseases.
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Among the secreted enzymes regulated by PAR1-depend-
ent transcripts is the calcium-dependent phospholipase
A2, group IB that was up-regulated by LPS- and SP-
induced bladder inflammation in wild type mice. Our Q-
PCR results did not confirm an up-regulation of transcrip-
tion in response to PAR1-AP and PAR2-AP. There are sev-
eral explanations for this discrepancy. One possibility is
that the differential expression of RNA was not due to
active transcription and therefore, reflects RNA process-
ing. As others have shown that the calcium independent
phospholipase A2 (iPLA2) mediates bladder urothelial
[31], microvascular [30], and smooth muscle [33]
responses to PAR activation, and has a role in promoting
mmp-2-induced cell migration via the phosphatidylinosi-
tol 3-kinase – Akt pathway [63], we went further to test
whether this calcium-independent PLA is also up-regu-
lated in response to PAR-APs. Our results confirmed
upregulation of iPLA2 protein in the bladder mucosa of
mice instilled with PAR-APs, supporting the upregulation
of message levels.

Another group of genes encodes proteins with roles in sig-
nal transduction pathways. Those include: plaur, actR-IIb,
dusp1, and akt2. Plaur encodes the receptor for urokinase
plasminogen activator (u-PA receptor) and promotes plas-
min formation [64]. Plaur is most closely associated with
cancer invasion [65]. A strong correlation exists between
PAR mediating the response of thrombin and u-PAR-
mediated cancer cell migration/invasion [42]. Dusp1
encodes a dual specificity phosphatase 1 or mitogen-acti-
vated protein kinase [MAPK] phosphatase 1, which
dephosphorylates and inactivates MAPKs [66,67].Dusp1
regulates a subset of LPS-induced genes [68] and modu-
lates the anti-inflammatory effects of dexamethasone in
macrophages [66]. Akt2 is a putative oncogene encoding a
protein belonging to a subfamily of serine/threonine
kinases containing SH2-like (Src homology 2-like)
domains. Others have shown that thrombin and PAR- APs
induce Akt2 phosphorylation [69,70]. Akt2 is a general
protein kinase capable of phosphorylating several known
proteins and, therefore, occupies a central position in sev-
eral signal transduction pathways (Figures 1B and 1C).
Moreover, PAR activation in platelets leads to Akt2 phos-
phorylation by a mechanism involving either G(12/13)
[69] or Gi [71] and Src kinase activation [69].

The process of desensitization and re-sensitization of PA
receptors is being elucidated [72]. Agonists of PARs
induce an irreversible activation by proteolytic cleavage of
the tethered ligand peptides and rapid receptor endocyto-
sis that are targeted to lysosomes [73,74]. Interestingly,
among the PAR1-dependent transcripts, the following
encode proteins of the ubiquitin pathway: mid2, ubr1,
pxmp3, ube2h, cul3, and skp1a. Little is known regarding
the alteration of expression of this set of genes during

Functions and disease shared by PAR1-depend transcriptsFigure 4
Functions and disease shared by PAR1-depend transcripts.
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inflammation. However, it has been reported that TNFα
stimulates ube2h expression by a mechanism involving
NF-kappaB [75]. Together these results raised the intrigu-
ing hypothesis that inflammation can induce an increase
in the ubiquitin pathway that also modulates the fate of
PARs [76].

The Rab family of proteins play a fundamental role in PAR
re-sensitization [77]. Here, we show that dcnt1 and arf6
also involved in PAR trafficking and are increased during
inflammation. Dcnt1 is a subunit of the dynein/dynactin
complex and an effector for rab6 [78]. This protein is
required for the retrograde movement of vesicles and
organelles along microtubules [79]. Arf6 is a member of
the human ADP-ribosylation factor (ARF) family of pro-
teins belonging to the Ras superfamily of small GTPase
implicated in vesicle trafficking [80-82]. Arf6 participates
in the endosomal pathway that regulates endocytosis of
several receptors [83]. Post-internalization, arf6 and other

membrane components are recycled back to the cell sur-
face [80]. In addition to membrane trafficking, arf6 cellu-
lar functions include: actin remodeling, cell adhesion,
redistribution of β1 integrins, phagocytosis, cell division,
and tumor-cell invasion (for a review, see [80]).

As alterations in PAR density itself [25] or in the mecha-
nisms involved in re-sensitization of these receptors can
have strong consequences in the shift between homeosta-
sis and inflammation, our results raise the intriguing
hypothesis that, in contrast to PAR endocytosis and cessa-
tion of the stimulus that occurs during normal physiolog-
ical responses, inflammation may lead to increased re-
cycling of PARs back to the plasma membrane and, there-
fore, perpetuation of the signal transduction downstream
of PAR activation.

Although the classification by biological function permits
a visual association of genes and cellular processes (Figure

Target validation by Q-PCR of Chromatin Immunoprecipitation (CHIP)-Based AssaysFigure 5
Target validation by Q-PCR of Chromatin Immunoprecipitation (CHIP)-Based Assays. For target validation, 
female C57BL/6J mice (n = 20 per group) were instilled with 200 μl of one of the following substances: control inactive peptide 
(LRGILS [94]) or PAR-activating peptides (PAR1-AP = SFFLRN [94]; PAR2-AP = SLIGRL [94]). Twenty-four hours after instil-
lation, bladders were removed and frozen. Bladders were exposed briefly to formaldehyde for cross-linking of the proteins and 
DNA together, followed by sonication to fragment the DNA. An antibody against RNA polymerase II (Abcam) was then used 
to precipitate the DNA transcriptome that was isolated and then purified using phenol extraction and EtOH precipitation. The 
final CHIP DNAs were then used as templates for Q-PCR reactions using primer pairs specific for each gene of interest, addi-
tional material 2 (Table 2). Q-PCRs were run in triplicate and the averaged Ct values were transferred into copy numbers of 
DNA using a standard curve of genomic DNA with known copy numbers. The resulting transcription values for each gene 
were also normalized for primer pair amplification efficiency using the Q-PCR values obtained with Input DNA (un-precipitated 
genomic DNA). Results are presented as "transcription events detected per 1000 cells" for each gene tested. Error bars corre-
spond to standard deviations from the triplicate Q-PCR reactions. Control represents an un-transcribed region of the genome. 
Asterisks indicate a statistical significant difference (p < 0.05).
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1), it has the disadvantage of over simplification because
several genes may belong to more than one group. This is
the case of mmp2 (gelatinase A) that is involved in the
breakdown of extracellular matrix in normal physiologi-
cal processes, such as embryonic development, reproduc-
tion, and tissue remodeling, as well as in disease processes
such as inflammation and cancer. Therefore, we con-
structed figures 2, 3, and 4 in order to illustrate common
pathways involving PAR1-dependent transcripts. This
type of association analyses permits the identification of
new pathways such as the interaction of PAR1-dependent
transcripts with the VEGF-family of growth factors, and
suggests explanations of an active role of PAR in angiogen-
esis [45,84-86]. Together, the pathway analysis revealed
relevant target for therapeutic interventions to control or
to prevent disease progression and bladder inflammation.

Other cDNA array analysis
We are aware of a single publication investigating genes
downstream of PAR1 activation. This work was performed
in a human endothelial cell line challenged with
thrombin with the aim of identifying early genes and
comparing to those up-regulated in response to leukot-
riene D4 [87]. Unfortunately, the referred work did not
provide GenBank accession numbers for the PAR1 acti-
vated transcripts, which makes comparisons of the results
to the current study difficult. Nevertheless, some similari-
ties could be found between their work and the present

one. This is the case of dusp1 that was found upregulated
in both manuscripts. In addition we found adam3,
whereas Uzonyi, et al. found another disintegrin-like met-
alloprotease (adamts1) [87].

Conclusion
This work indicates an overriding participation of PAR1
receptors in bladder inflammation, provides a working
model for the involvement of a network of transcripts
downstream of PAR1 activation, and evokes testable
hypotheses regarding the regulation of PAR. In this con-
text, the activation of genes such as dusp1 and nfkbia seems
to counter balance the inflammatory response to PAR acti-
vation by avoiding prolonged activation of p38 MAPK
and increased cytokine production [68]. In contrast, tran-
scripts such as arf6 and dcnt1 that are involved in the
mechanism of receptor re-sensitization would tend to per-
petuate the inflammatory reaction. It remains to be deter-
mined whether PAR1 receptor blockade or selective gene
silencing transcripts downstream of PAR activation will
ameliorate the clinical manifestation of cystitis. Inhibiting
of PAR up-regulation using small interfering RNA technol-
ogy, as confirmed by immunoblotting, should substan-
tially reduced bladder inflammatory response as it has
been shown in other systems [88].

Methods
Animals
All animal experimentation described here was performed
in conformity with the "Guiding Principles for Research
Involving Animals and Human Beings" (OUHSC Animal
Care & Use Committee protocol #05-088I). PAR1-/-[89]
and C57BL/6J mice were used in this research. C57BL/6J
mice were used as wild type since PAR1-/- was enriched in
this background.

Induction of cystitis
Acute cystitis was induced in groups of mice, as we
described previously [20-22,24,40]. Briefly, female wild
type (C57BL/6J), and PAR-1-/- mice were anesthetized
(ketamine 200 mg/kg and xylazine 2.5 mg/kg, i.p.), then
transurethrally catheterized (24 Ga.; 3/4 in; Angiocath,
Becton Dickson, Sandy, Utah), and the urine was drained
by applying slight digital pressure to the lower abdomen.
The urinary bladders were instilled with 200 μl of one of
the following substances: pyrogen-free saline, SP (10 μM),
or Escherichia coli LPS strain 055:B5 (Sigma, St. Louis, MO;
100 μg/ml). Substances were infused at a slow rate to
avoid trauma and vesicoureteral reflux (18). To ensure
consistent contact of substances with the bladder, infu-
sion was repeated twice within a 30-min interval, and a 1-
ml tuberculin syringe was maintained on the catheter to
retain the intravesical solution for 1 hour. After that the
catheter was removed and mice were allowed to void nor-
mally. Twenty-four hours after instillation, mice were

PAR-APs induce up-regulation of iPLA2 in the mouse urinary bladderFigure 6
PAR-APs induce up-regulation of iPLA2 in the mouse 
urinary bladder. Cytoplasmic extract from the bladder 
mucosa of wild type mice instilled with PAR-APs- or control 
peptide were subjected to Western Blot analysis to measure 
relative concentration of iPLA2. Results are representative of 
four separate experiments.
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euthanized with pentobarbital (200 mg/kg, i.p.) and
bladders removed rapidly.

Minimum information about microarray experiments – 
MIAME [90]
Objective
To determine the time course of gene-expression in uri-
nary bladders in response to saline, SP, or LPS, challenge
of wild type control and PAR1-/- mice.

Array design
Mouse plastic 5 K Arrays (Clontech, Palo Alto, CA, Cat.
#634809). For a complete list of genes present in this
array see reference [91].

Animal numbers
Female WT and PAR1-/- mice were instilled with saline, SP
(10 μM), or Escherichia coli LPS strain 055:B5 (Sigma, St.
Louis, MO; 100 μg/ml). One group of mice was eutha-
nized at 4 and another at 24 hours following stimulation,
the urinary bladders were removed from all groups (n = 8)
for RNA extraction.

Sample preparation for cDNA expression arrays
We used the same technology as we described before
[6,20,21,39,40]. Briefly, eight bladders from each group
were homogenized together in Ultraspec RNA solution
(Biotecx Laboratories Inc. Houston, TX) for isolation and
purification of total RNA. Mouse bladders were pooled to
ensure enough RNA for gene array analysis. The justifica-
tion for this approach is that there is not enough RNA in
a single mouse bladder for performing cDNA array exper-
iments and the step of purification reduces the amount of
total RNA. RNA was DNase-treated according to manufac-
turer's instructions (Clontech Laboratories, Palo Alto,
CA), and the quality of 10 μg was evaluated by denaturing
formaldehyde/agarose gel electrophoresis.

Mouse cDNA expression arrays
cDNA probes were prepared from DNase-treated RNAs
obtained from each of the experimental groups. Five μg of
DNase-treated RNA was reverse-transcribed to cDNA and
labeled with [α-33P]dATP, according to the manufacturer's
protocol (Clontech, Palo Alto, CA). The radioactively
labeled complex cDNA probes were hybridized overnight

Average densitometric values of PAR-APs induce up-regulation of iPLA2 in the mouse urinary bladder (Figure 6)Figure 7
Average densitometric values of PAR-APs induce up-regulation of iPLA2 in the mouse urinary bladder (Figure 6).
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to Atlas™ mouse plastic 5 K arrays (Clontech, Palo Alto,
CA) using ExpressHyb™ hybridization solution with con-
tinuous agitation at 68 °C. After two high-stringency
washes, the hybridized membranes were exposed (at
room temperature) to a ST Cyclone phosphor screen over-
night. Spots on the arrays were quantified by BD AtlasIm-
age™ 2.7 software (Clontech, Palo Alto, CA).

PAR1-dependent genes. Both the 4 hour and 24 hour time points 
after inflammation were used to define PAR1-dependent genes
Data was normalized by a robust linear regression analy-
sis using only genes expressed above background, as
described [7,20,39,40], and the ratio of gene-expression
between LPS- and SP-, and saline-challenge was obtained
at 4 and 24 hours post-challenge. PAR1-/- dependent genes
were selected according to the following criterion: A. In
tissues isolated from WT mice, the expression of particular
gene should be up-regulated (ratio between LPS- or SP-
and saline-treated > 3.0) in at least one of the time points
(4 and 24 hours post-challenge); B. in tissues isolated
from PAR1-/- mice, the expression of same gene should not
be altered in response to LPS or SP in any of the time
points.

Database submission of microarray data
The microarray data have been deposited in the Gene
Expression Omnibus (GEO) database [92]. The samples
can be retrieved with GEO accession numbers:
GSM144550, GSM144551, GSM144552, GSM144553,
GSM144554, GSM144555, GSM144556, GSM144557,
GSM144558, GSM144559 that are included in a series
(accession number GSE6286).

Development of the observed interactome of PAR1-
specific genes
Ingenuity Pathways Analysis [IPA], (Ingenuity Systems,
Mountain View, CA) is a robust and expertly curated data-
base containing up-to-date information on over 20,000
mammalian genes and proteins, 1.4 million biological
interactions, and one hundred canonical pathways incor-
porating over 6,000 discreet gene concepts. This informa-
tion is integrated with other relevant databases such as
EntrezGene and Gene Ontology [29]. IPA computes a
score for each network according to the fit of the set of
supplied focus genes (here, PAR1-dependent genes).
These scores, derived from p values, indicate the likeli-
hood of focus genes to belong to a network versus those
obtained by chance. A score > 2 indicates a ≤ 99% confi-
dence that a focus gene network was not generated by
chance alone [93]. The experimental datasets of PAR1-
dependent genes was used to query the IPA and to com-
pose a set of interactive networks taking into considera-
tion canonical pathways, the relevant biological
interactions, and the cellular and disease processes.

Target validation by Q-PCR of Chromatin 
Immunoprecipitation (CHIP)-based assays
Target validation was sought for 19 of the genes identified
from the microarray data as being PAR1-dependent.
Female C57BL/6J mice (n = 20 per group) were anesthe-
tized (ketamine 200 mg/kg and xylazine 2.5 mg/kg, i.p.),
then transurethrally catheterized (24 Ga.; 3/4 in; Angi-
ocath, Becton Dickson, Sandy, Utah), and the urine was
drained by applying slight digital pressure to the lower
abdomen. The urinary bladders were instilled with 200 μl
of one of the following substances: control inactive pep-
tide (LRGILS [94]) or PAR-activating peptides (PAR1-AP =
SFFLRN [94]; PAR2-AP = SLIGRL [94]). Substances were
infused at a slow rate to avoid trauma and vesicoureteral
reflux (18). To ensure consistent contact of substances
with the bladder, infusion was repeated twice within a 30-
min interval, and a 1-ml tuberculin syringe was main-
tained on the catheter end to retain the intravesical solu-
tion for 1 hour. After that the catheter was removed and
mice were allowed to void normally. Twenty-four hours
after instillation, mice were euthanized with pentobarbi-
tal (200 mg/kg, i.p.) and bladders removed rapidly and
frozen.

Frozen bladders were shipped to Genpathway [95] for
querying the chromatin for transcription of specific genes
(Genpathway's TranscriptionPath Query assay) [96].
Bladders were exposed briefly to formaldehyde for cross-
linking of the proteins and DNA together, followed by
sonication to fragment the DNA into pieces of approxi-
mately 300–500 bp. An antibody against RNA polymerase
II (Abcam) was then used to precipitate the DNA tran-
scriptome. The Ab-protein-DNA complexes were purified
using beads coupled to protein A. The DNA was isolated
from the complexes using a combination of heat to
reverse cross-linking, RNase and proteases, and then puri-
fied using phenol extraction and EtOH precipitation. The
final CHIP DNAs were then used as templates for Q-PCR
reactions using primer pairs specific for each gene of inter-
est. Q-PCR was carried out using Taq polymerase (iQ
SYBR Green Supermix, Bio-Rad). Primer pairs were
designed using Primer 3 [97]. Details of the primer
sequences and the Genebank accession numbers are given
in additional material 2 (Table 2). The designed primers
shared 100% homology with the target sequence but no
significant homology with other sequences.

Q-PCRs were run in triplicate and the averaged Ct values
were transferred into copy numbers of DNA using a stand-
ard curve of genomic DNA with known copy numbers.
The resulting transcription values for each gene were also
normalized for primer pair amplification efficiency using
the Q-PCR values obtained with Input DNA (unprecipi-
tated genomic DNA). Results are presented as Transcrip-
tion Events Detected Per 1000 Cells for each gene tested.
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Tissues for Western Blotting
Twenty-four hours post-instillation, bladders were rapidly
removed and placed in ice cold PBS with protease inhibi-
tors (Complete Protease Inhibitor, Roche, Indianapolis,
IN) on ice where the mucosa was dissected away from the
detrusor smooth muscle, as described [32]. Tissues were
flash frozen and stored at -80 C until processing. Tissues
were pulverized in a spring-loaded tissue pulverizer (Bio-
Pulverizer, Biospec Products, Bartlesville, OK) and chilled
with liquid nitrogen. Cytosolic extracts were prepared
using the Pierce NE-PER Kit that enables stepwise separa-
tion and preparation of cytoplasmic and nuclear extracts
from bladder tissue. Addition of the first two reagents
(Pierce's proprietary information) to the pulverized tissue
causes disruption of cell membranes and release of cyto-
plasmic contents. After recovering the intact nuclei from
the cytoplasmic extract by centrifugation at 16,000 × g for
5 minutes, the nuclei are lysed with a third reagent
(Pierce's proprietary information) to yield the nuclear
extract. Extracts obtained with this product generally have
less than 10% contamination between nuclear and cyto-
plasmic fractions–sufficient purity for most experiments
involving nuclear extracts. A western blot was prepared
using the nuclear and cytosolic extracts and probed for the
nuclear proteins histone H3 and lamin A/C. No nuclear
contamination was shown in the cytosolic fractions (data
not shown). Protein concentrations were determined with
a Micro BCA Kit (Pierce, Rockford, IL) per manufacturer's
instructions.

Western Blot
Immunoblot analyses were performed using 15 μg
cytosolic extract loaded onto a 10% tris-glycine SDS gel
and run at 125 V for 1.5 hours in tris-glycine SDS running
buffer (BioRad, Hercules, CA). The proteins were then
transferred to a 0.45 μm nitrocellulose membrane in 1/2
× tris-glycine SDS running buffer with 20% methanol
using a BioRad Mini-TransBlot Cell. After blocking in 2%
BSA, blots were incubated with rabbit anti-iPLA2 (Cayman
Chemical, Ann Arbor, MI) at 1:500 overnight at 4°C. An
HRP-conjugated anti-rabbit secondary antibody was used
for detection at 1:10,000 (Santa Cruz Biotechnology,
Santa Cruz, CA) and an enhanced chemiluminescent
detection kit (Chemiglow West, Alpha Innotech, San
Leandro, CA) was used to visualize. Images were taken
using the FluorChem HD digital darkroom (Alpha
Innotech, San Leandro, CA) and quantified using ImageJ
[98].

Materials
PAR-AP – PAR1-, PAR2-, and PAR4-AP were synthesized at
Molecular Biology Resource Facility, William K. Warren
Medical Research Institute, OUHSC, as carboxyl-terminal
amides, purified by high-pressure liquid chromatography,
and characterized by mass spectroscopy. Peptide solu-

tions were made fresh from powder for most experiments.
PAR3-AP was not used in this research because of lack of
specificity.
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