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Abstract
Background: Iron deficiency (ID) results in ventricular hypertrophy, believed to involve
sympathetic stimulation. We hypothesized that with ID 1) intravenous norepinephrine would alter
heart rate (HR) and contractility, 2) abdominal aorta would be larger and more distensible, and 3)
the beta-blocker propanolol would reduce hypertrophy.

Methods: 1) 30 CD rats were fed an ID or replete diet for 1 week or 1 month. Norepinephrine
was infused via jugular vein; pressure was monitored at carotid artery. Saline infusions were used
as a control. The pressure trace was analyzed for HR, contractility, systolic and diastolic pressures.
2) Abdominal aorta catheters inflated the aorta, while digital microscopic images were recorded at
stepwise pressures to measure arterial diameter and distensibility. 3) An additional 10 rats (5 ID,
5 control) were given a daily injection of propanolol or saline. After 1 month, the hearts were
excised and weighed.

Results: Enhanced contractility, but not HR, was associated with ID hypertrophic hearts. Systolic
and diastolic blood pressures were consistent with an increase in arterial diameter associated with
ID. Aortic diameter at 100 mmHg and distensibility were increased with ID. Propanolol was
associated with an increase in heart to body mass ratio.

Conclusions: ID cardiac hypertrophy results in an increased inotropic, but not chronotropic
response to the sympathetic neurotransmitter, norepinephrine. Increased aortic diameter is
consistent with a flow-dependent vascular remodeling; increased distensibility may reflect
decreased vascular collagen content. The failure of propanolol to prevent hypertrophy suggests
that ID hypertrophy is not mediated via beta-adrenergic neurotransmission.
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Background
The iron status of an individual may play an important
role in cardiovascular health, with either an excess of iron
(mainly the storage form ferritin) or iron deficiency lead-
ing to significant problems. Sullivan [1] has proposed that
excess iron (i.e., any iron in the ferritin form) leads to for-
mation of free radicals that can worsen ischemic myocar-
dial injury and contribute to atherogenesis. This
hypothesis has considerable experimental [2,3] and epi-
demiological [4,5] support. However, the "iron hypothe-
sis" has not been universally accepted [6], and
considerable debate on the role of iron overload on cardi-
ovascular disease continues [7–10].

Iron deficiency has also been shown to lead to ventricular
hypertrophy in developing rats [11–17]. While the mech-
anisms responsible for this hypertrophy have received lit-
tle research attention, studies have documented an
eccentric hypertrophic pattern [15–17] which has led in-
vestigators to suspect a ventricular volume overload at end
diastole as a primary hypertrophic stimulus. The hypoth-
esized volume load, if it occurs, does not result from a
change in blood volume [18]. It has also been hypothe-
sized that a chronic elevation in sympathetic nervous sys-
tem activity is involved in iron deficiency-induced
hypertrophy. Evidence to support this view includes the
observations of increased levels of norepinephrine in
plasma and urine, and decreased norepinephrine content
in the iron deficient heart [19–22]. Rossi [23], after find-
ing that reserpine administration prevented the develop-
ment of this hypertrophy, even suggested that
norepinephrine is the causal agent in the pathology.
While little published research has subsequently focused
on iron deficiency hypertrophy, there have been numer-
ous studies investigating the role of sympathetic neuro-
transmission with cardiac hypertrophy induced via
various methods (coronary artery ligation, chronic pres-
sure overload, transgenic models, etc.). Most have demon-
strated alterations in either plasma or heart
norepinephrine content, and a de-sensitization of the
beta-adrenergic receptors of the heart [24–33]. Recently,
the alpha-adrenergic receptor has been shown in vitro to
be an important modulator of ventricular hypertrophy.
However, even in transgenic animal models overexpress-
ing alpha receptors, the beta-adrenergic receptor appears
to play an important role in hypertrophy development
and the transition to heart failure [34,35]. Regardless of
which receptors are involved in the various forms of
hypertrophy, the sympathetic nervous system does appear
to play a role in most, if not all, forms of cardiac hypertro-
phy, and much remains to be done in this area [36].

Almost no attention has been paid to the peripheral vas-
cular consequences of iron deficiency [37]. With iron de-
ficiency, the poor oxygen-carrying capacity of the blood

must be offset in order for the animal to develop to full
maturity. Therefore, the chronic sympathetic activation
associated with iron deficiency should result in increased
cardiac output. In turn, flow through the major arterial
network would be enhanced in an attempt to maintain
near normal oxygen delivery. Kamiya and Togawa [38]
have found that increased flow stimulates remodeling of
an artery to a larger diameter through an endothelial de-
pendent mechanism. It has yet to be demonstrated wheth-
er iron deficiency will stimulate a similar arterial
remodeling.

Collagen is an integral component of the arterial wall,
providing rigidity and support. Iron is necessary in the
synthesis of collagen [39], and collagen content has been
shown to be reduced in iron deficient hearts [40]. If this is
similarly true for arteries in iron deficient animals, a sig-
nificant increase in distensibility would result, altering the
normal pressure-volume relationship.

We investigated three hypotheses using anesthetized rats.
First, we hypothesized that in iron deficient rats, intrave-
nous norepinephrine would cause an altered cardiovascu-
lar response, either in heart rate or rate of arterial pressure
generation (contractility, dp•dt-1). Second, we hypothe-
sized that iron deficient arteries would be larger and more
distensible than in iron replete controls. Finally, we hy-
pothesized that a daily injection of the beta-adrenergic an-
tagonist propanolol would significantly reduce the
development of ventricular hypertrophy.

Our results suggest that iron deficient, hypertrophic hearts
display a hyper-sensitive inotropic, but not chronotropic,
response to norepinephrine. Second, abdominal aortas
from iron deficient rats display not only increased diame-
ters, but also significant increases in distensibility. Finally,
propanolol injections do not prevent the development of
iron deficient cardiac hypertrophy, drawing into question
the potential causal relationship between beta-adrenergic
neurotransmission and this form of hypertrophy.

Results and Discussion
Body weight, heart weight, and hematocrit (Experiments 1 
and 2)
Rat growth rate is shown in figure 1. There were no differ-
ences between any of the experimental groups (see Mate-
rials and Methods) until the animals reached 45 days of
age, after which, iron deficient rats are of less mass than
controls (*, p < 0.05). Figure 1 also shows the final mean
body mass of the four experimental groups. Iron deficient
and control groups more than doubled their body mass
from 1 week to 1 month on the respective diets (†, p <
0.0001). The control rats also had a significantly greater
mass than the iron deficient rats (p = 0.0004) in the one
month group (*, p = 0.0006), but not at one week (p =
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0.1530). The control rats in this study increased mass at a
rate similar to that published for the ad libitum fed CD rat
[41,42], suggesting growth was inhibited by iron deficien-
cy. It is likely that growth inhibition is attributable to met-
abolic causes arising from both oxygen delivery and
mitochondrial insufficiencies associated with iron defi-
ciency [14]. The growth data for both the control and iron
deficient groups are also similar to that reported for male
Wistar rats fed an iron and copper deficient diet [15], but
the iron deficient rats at 52 days of age were larger than re-
ports of 10 week old Harlan Sprague-Dawley rats fed an
AIN-76 iron deficient diet [17].

Heart mass increased significantly from 1 week to 1
month of the diets (figure 2, †, p < 0.0001). Diet group
differences were not apparent at 1 week (p = 0.8674), but
the hearts of iron deficient rats were of greater mass at 1
month (*, p = 0.0357), indicating that the heart has un-
dergone hypertrophy by this time. These differences re-
mained significant after normalization of heart weight to
body weight (data not shown). This time frame for devel-
opment of hypertrophy is similar to previous findings
with iron or copper deficiency [14–17,40,43].

Mean hematocrit levels (figure 2 bottom) of iron deficient

animals were significantly less than controls after 1 month
(*, p < 0.0001), but not 1 week (p = 0.3102), of the re-
spective diets. Many studies have documented significant
hematocrit decreases after one month of an iron deficient
diet [14–17,40,43]. However, few of these report data for
1 week, though one published study indicated a small but
significant difference [15], and we have observed a group
difference after 1 week of iron deficiency in another study
(Mullendore, et. al., manuscript in progress). We specu-
late that the ability to create significant iron deficiency in
this short time is dependent upon the purity of the iron
deficient diet as well as individual animal differences.
Nonetheless, examination of several time points during
the progression of iron deficiency can potentially provide
important insights into the development of resulting
physiological alterations.

Experiment 1: Cardiodynamics
In these experiments, an infusion of intravenous saline
was used to ensure that the delivery method employed did
not evoke a cardiovascular response. In all variables meas-
ured, which include heart rate and ventricular contractility
(figure 3), systolic and diastolic pressures (figure 4), there

Figure 1
Rat Growth Rate and Final Body Mass Figure 2

Heart mass and Hematocrit
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were no differences between pre-infusion and peak re-
sponses to saline. Therefore, any differences seen with in-
travenous norepinephrine were attributable to the
catecholamine and not the infusion per sé. Prior to the in-
fusion of saline, group differences were already apparent
between iron deficient and control rats at 1 month in
heart rate (*, p = 0.0025), systolic (*, p = 0.0041) and di-
astolic pressure (*, p = 0.0020), but not contractility (p =
0.6373). We believe these pressure changes are associated
with vascular remodeling, as discussed below.

Figure 3 also shows heart rate and contractility immedi-
ately prior to, and at peak response to, intravenous nore-
pinephrine infusions. Prior to norepinephrine infusion,
there were no differences between iron deficient and con-
trol groups within each duration in either heart rate or
contractility (p > 0.05). Heart rate was unchanged from
pre-norepinephrine infusion to peak response (p =
0.3905). The only difference in peak heart rate response to
norepinephrine was the iron deficient group at 1 month
(#, p = 0.0272), which showed a significant decrease.

Contractility was significantly increased for both control
(#, p = 0.0259) and iron deficient (#, p = 0.0008) groups
from pre-infusion to peak response. At one month, con-
tractility for iron deficient rats increased 43.71% upon
norepinephrine infusion, while the control group at 1
month increased only 10.0%.

Figure 3 demonstrates a unique response pattern to the
sympathetic nervous system neurotransmitter, norepine-
phrine. For both control and iron deficient groups, the re-
sponse to norepinephrine is to increase contractility in the
absence of chronotropic increases. Cardiac output, there-
fore, would be expected to increase due to enhanced
stroke volume, with an uncompromised filling time and a
more powerful ventricular contraction. In fact, this pat-
tern is even more exaggerated in the iron deficient animals
at 1 month. Heart rate in this group was decreased, which
allows the animal two potential advantages. First, ven-
tricular filling time would be increased, potentially allow-
ing for greater end diastolic and stroke volumes. This
would be expected chronically to result in a eccentric
hypertrophic pattern, a condition that we and others
[15,17] have found in iron deficient rat hearts. Second,

Figure 3
Heart Rate and Contractility and Response to Norepine-
phrine

Figure 4
Systolic and Diastolic Pressures and Response to Norepine-
phrine
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the decrease in heart rate in iron deficient hearts when
norepinephrine was infused would allow for longer myo-
cardial perfusion time, which would compensate for the
decreased oxygen carrying capacity of the blood and im-
paired mitochondrial function [14]. The iron deficient
norepinephrine response compliments the finding of an
increase in capillary lumenal volume in iron deficient
hearts [15], which should also allow for better myocardial
perfusion during diastole. Norepinephrine infusion re-
sulted in a dramatic enhancement of contractility
(43.71%) in 1 month iron deficient rats when compared
to 1 month control rats (10.0%). By utilizing a hyper-sen-
sitive response to sympathetic stimulation, coupled with
an unchanged or lower heart rate, the iron deficient heart
can potentially offset some of the oxygen delivery defi-
ciencies of anemic blood without risking myocardial
ischemia. These appear to be positive adaptations, at least
short term, in response to a serious nutritional challenge.
Iron deficient cardiac hypertrophy is not unique in this re-
gard, as Lin has recently documented enhanced contractil-
ity without increased heart rate in hyper-sympathetic
transgenic mice [34]. In contrast, there is a large body of
evidence which suggests that cardiac hypertrophy which
has progressed to the point of pathology, ultimately re-
sults in a decrease in contractility [25–
27,29,30,32,33,44,45]. We have not yet investigated
whether the iron deficient heart will similarly lose the aug-
mented contractility response in time.

It has been suggested in several papers that changes in
sympathetic nervous system responsiveness may begin as
a positive adaptation, but ultimately results in pathologic
failure of the myocardium. For example, Engelhardt [46],
in a study of mice genetically bred with an increase in
beta-adrenergic receptor density, showed that increased
contractility was an initial response, but by 35 weeks con-
tractility was reduced by 50% and ejection fraction by
20%. The genetically altered, hyper-adrenergic heart ulti-
mately failed after initial enhancement of cardiac func-
tion.

Mukherjee and Spinale [47], in a recent review, concluded
that with hypertrophy comes a decrease in cardiac con-
tractility as a result of changes to the L-type Ca2+ channel.
However, the authors noted that this adaptation, while
generally present in a failing hypertrophied myocardium,
is not necessarily present in less serious cardiac hypertro-
phies. Similarly, Tse [48] found that in compensated
hypertrophy the population of beta-adrenergic receptors
is relatively normal, but in heart failure, the beta receptors
have both down-regulated and de-sensitized. Sheridan
[49] and Iaccarino [35] came to a similar conclusion re-
garding heart failure and adrenergic down-regulation.

Figures 4 shows systolic and diastolic pressures before and
after the norepinephrine infusion. There was a significant
increase in systolic pressure for both the control (*, p =
0.0020) and the iron deficient (*, p = 0.0001) groups
from pre-infusion to peak response. Diastolic pressure
similarly increased from pre-infusion to peak response for
both control (#, p = 0.0040) and iron deficient (#, p <
0.0001) groups when norepinephrine was infused. These
observations are consistent with the vasoconstrictive ef-
fect of norepinephrine. Also, increased heart contractility
is expected to increase peak systolic pressure. The diastolic
pressure of iron deficient rats was significantly lower than
controls both before (*, p = 0.0131) and after (*, p =
0.0004) norepinephrine infusion. This is consistent with
the idea of vascular remodeling to a larger arterial diame-
ter with iron deficiency (discussed below), which could
reduce the afterload against which the heart must work to
eject blood.

Experiment 2
Representative aortas from control and iron deficient rats
after one month on the respective diets are shown in fig-
ure 5, and mean aorta external diameter at 100 mmHg
pressure is illustrated in figure 6. There was a significant
duration effect (†, p < 0.0001), likely due to body growth.
Overall, the diameter of aortas from iron deficient rats was
greater than from control rats (*, p = 0.0280). The regula-
tion of lumenal diameter in large arteries is accomplished
through the maintenance of shear stress along the arterial
wall [38,50–54]. As blood flow through an artery increas-
es, shear is also increased, and the endothelium releases
nitric oxide for vasodilation [55]. Chronically, the arterial
wall will remodel to a larger diameter to accommodate
the increased flow [38]. While we did not measure arterial
flow through these iron deficient arteries, the enhanced
inotropic compensation to iron deficiency, combined
with the enlarged aortic diameter, leads us to suspect a
flow dependent mechanism for remodeling. Future inves-
tigations will be necessary to confirm this assertion.

Aortic distensibility, the increase in external diameter dur-
ing stepwise internal pressure increases, is also shown in
figure 6. There is a significant group difference (*, p =
0.0101) with the iron deficient aortas more compliant
than the controls overall. A decrease in collagen produc-
tion with iron deficiency could account for this enhanced
distensibility. It has been reported that collagen produc-
tion is reduced in iron deficient hearts [40], but we are
aware of no studies that have specifically examined alter-
ations in collagen production in iron deficient arteries.
Further research regarding this issue is warranted.

Experiment 3
Figure 7 shows the heart weight to body weight ratio for
rats that received a daily intra-peritoneal injection of ei-
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ther the beta-blocker propanolol or saline for 1 month.
This ratio was significantly greater in rats fed the iron de-
ficient diet than controls (*, p = 0.0002). Clearly, iron de-
ficient cardiac hypertrophy is not caused by chronic
stimulation of beta-adrenergic receptors in the heart.

Many studies have shown that chronic intravenous infu-
sion of norepinephrine is sufficient to cause hypertrophy,
and that various forms of hypertrophy are linked to a de-
crease in either beta-adrenergic receptor density or a de-
creased responsiveness to beta-adrenergic stimulation
[46,48,49,56–63]. Barth, for example, showed that nore-
pinephrine infusion induced left ventricular hypertrophy
that could be prevented by an adrenergic-receptor blocker
[58]. It has been suggested that ornithine decarboxylase is
a link between beta-adrenoreceptors and stimulation of
tissue growth factor, which results in hypertrophy [64].
However, recent studies have focused on alpha-adrenergic
reception as a mediator of cardiac hypertrophy [35], al-
though some question the role of the alpha-adrenergic re-
ceptor as a hypertrophic mediator in vivo [34]. To date, no
published studies of which we are aware have examined
alpha-adrenergic reception and the development of cardi-
ac hypertrophy with iron deficiency.

The literature surrounding norepinephrine and its role in
the development of iron deficient hypertrophy docu-
ments the following facts: 1) prolonged iron deficiency

causes cardiac hypertrophy [11–17,23], 2) the pool of
stored norepinephrine in the heart is decreased with iron
deficiency [17,21], 3) plasma and urine concentrations of
norepinephrine are increased with iron deficiency [19–
22,68], and 4) chronic administration of reserpine (which
depletes norepinephrine) prevents the development of
iron deficient hypertrophy [12], but not hypertrophy that
results from aortic banding [23]. This, combined with

Figure 5
Control and Iron Deficient Aorta Images

Figure 6
Aorta External Diameter and Distensibility

Figure 7
Heart Mass/Body Mass After Beta-blocker Treatment
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other studies that relate chronic adrenergic stimulation to
hypertrophy, led Rossi to the conclusion that iron defi-
ciency hypertrophy was caused by chronic sympathetic
stimulation. However, our finding that a daily injection of
the beta-blocker propanolol does not prevent the devel-
opment of iron deficient cardiac hypertrophy suggests
that beta-adrenergic sympathetic stimulation may not be
a causal agent in the development of hypertrophy. Future
investigation is warranted into the potential alpha-adren-
ergic role in this hypertrophy.

Conclusions
The purpose of this study was to investigate cardiac and
vascular responses associated with the development of
iron deficiency. In our first experiment, we tested the hy-
pothesis that the iron deficient heart would display an al-
tered response to norepinephrine, the sympathetic
nervous system neurotransmitter. In contrast to what has
been seen with most cardiac disease states, we found that
the iron deficient heart is hyper-sensitive to norepine-
phrine. This suggests an adaptive compensation to the de-
pletion of the neurotransmitter stores in the heart
sympathetic nerve terminals. Further, we found that con-
tractility was enhanced, but heart rate was not. This would
allow for the iron deficient animal to increase cardiac out-
put through enhanced stroke volume, while maintaining
the amount of time available for cardiomyocyte per-
fusion.

Our second experiment was designed to investigate
whether vascular morphology would be altered with iron
deficiency. Our results show an increase in abdominal
aorta diameter, suggesting that a flow-dependent remode-
ling of the arterial wall occurred. Also, distensibility was
significantly increased, which we suggest may be due to a
reduction in arterial collagen. These morphological ad-
justments can be seen as a positive adaptation to simulta-
neously reduce afterload on the heart and improve blood
flow to peripheral tissues.

Our final experiment was a simple test to determine if the
beta-adrenergic antagonist propanolol would prevent
hypertrophy. The failure of the beta-blocker to prevent
hypertrophy suggests that, if the sympathetic nervous sys-
tem is a causal agent in the development of this form of
hypertrophy, the signaling mechanism is not mediated by
the beta-adrenergic receptor.

In summary, much remains to be learned about this form
of hypertrophy. Further experimentation may serve to elu-
cidate not only the pathology of iron deficient cardiac
hypertrophy, but other forms of this pathology as well.

Materials and methods
All procedures conducted in this experiment were consist-
ent with "The American Physiological Society Guiding
Principles for the Care and Use of Animals"  [http://
www.the-aps.org/pub%5Faffairs/humane/
pa_aps_guiding.htm] . 40 male CD (Sprague Dawley) rats
(Charles River Laboratories, Raleigh, NC,  [http://
www.criver.com]  were randomly divided into two groups
and placed on either a control (iron-replete) or iron-defi-
cient diet (Dyets Inc., Bethlehem, PA,  [http://
www.dyets.com] ) at 24 days of age. The control diet was
a pelleted AIN-93G purified rodent diet [69]. The iron de-
ficient diet was based on the AIN-93G standard, but with
microcrystalline cellulose and a reagent grade mineral
mixture free of ferric citrate. This diet provides < 5 ppm
iron. All rats were given constant access to the respective
diets and distilled water, kept on a 12 h light cycle, and
weighed weekly and just before each was sacrificed.

A total of 40 animals (20 iron deficient and 20 control)
were utilized for three experiments. Experiments #1 and 2
used 30 rats after either 1 week or 1 month of the dietary
manipulations, while experiment #3 used the remaining
10 rats after 1 month on the diets.

Experiment 1: cardiovascular response to norepinephrine
The purpose of this experiment was to determine whether
iron deficient rats exhibit altered cardiac and vascular
pressure responses to intravenous infusions of the sympa-
thetic nervous system neurotransmitter norepinephrine.
Intravenous infusions of physiological saline solution
were used as a control. This experiment was a 2 × 2 facto-
rial design, with diet (iron deficient vs. control) and dura-
tion (1 week vs. 1 month on the diets) as variables.

Experimental procedure
Rats were sedated by intra-muscular injection (right ham-
string) of 65 mg· kg-1 body mass ketamine hydrochlo-
ride. Three minutes later, they were anesthetized with 6.5
mg· kg-1 body mass xylazine. Adequate anesthesia was
demonstrated by little or no withdrawal reflex to a toe
pinch. Once anesthetized, one PE-50 (Becton-Dickinson)
catheter filled with heparinized saline solution (131.9
mM NaCl, 4.7 mM KCl, 2.0 mM CaCl2, 1.17 mM MgSO4,
17.4 mM NaHCO3, 50 IU heparin sodium) was surgically
implanted into the right carotid artery, and another into
the left jugular vein.

Following catheterization and closure of the incision, the
carotid catheter was connected to a pressure transducer
(Cobe Model CDX III) and analog to digital conversion
system (ETH-250 bridge/bio-amplifier used in bridge
mode with an input gain of 100× and a 50 Hz filter, C.B.
Sciences, Inc. and MacLab/4E analog to digital converter,
A.D. Instruments, Inc.). The converter was connected via
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SCSI interface to an accelerated Power Mac 6100/66 com-
puter (Apple Computer, Inc., Cupertino, CA); Chart soft-
ware (Version 3.4.2, sampling every 0.01 s and set to
accept a maximum input of 1 V, A.D. Instruments, Inc.)
was used to visualize the output. The pressure transducer
system was calibrated by mercury manometer at the be-
ginning of each experiment, and was found to be linear
and consistent throughout the range of pressures meas-
ured.

One hundred microliters of saline solution was infused
into the jugular vein catheter, and the cardiovascular re-
sponse was recorded via the carotid pressure transducer
until pressure stabilized near its baseline value. This pro-
cedure was repeated using 100 µL of 1.52 mM norepine-
phrine (in saline solution), and the arterial trace recorded.

Data Treatment and Statistical Analysis
Cardiovascular variables were analyzed immediately prior
to infusion (pre-infusion) and at the maximal pressor re-
sponse (peak response), 20 s after jugular infusion. Chart
software was used to determine minimal (diastolic) and
maximal (systolic) pressures and heart rate. Contractility
(dP•dt-1) was measured as the average slope between each
pair of data points within the systolic pulse. Pulse pressure
was calculated as the difference between systolic and di-
astolic pressures.

Analysis of Variance was performed using StatView soft-
ware (Version 5.0.1, SAS Institute, Cary, NC), to deter-
mine diet (iron deficient vs. control) and duration (1
week vs. 1 month) effects. Paired t-tests were employed to
determine significant changes from pre-infusion to peak
response. Dependent variables were heart rate, contractil-
ity, systolic pressure, and diastolic pressure. Probabilities
below 0.05 were accepted as significant for all statistical
procedures throughout all experiments in this study.

Experiment 2: remodeling of abdominal aorta
The purpose of this experiment was to explore alterations
in vascular morphology of iron deficient rats, using the
abdominal aorta as a representative artery. This experi-
ment used the same rats as in experiment #1, and was also
2 × 2 design with diet and duration factors.

Experimental Procedures
After experiment 1, the rats were decapitated. The abdom-
inal aorta was carefully exposed, and two catheters were
surgically implanted. The first was inserted just caudal to
the superior mesenteric artery, and the other just cranial to
the inferior mesenteric artery. The superior catheter was
used for stepwise saline infusions at a range of pressures
from 0 – 120 mmHg. Exact pressures were measured via a
pressure transducer attached to the inferior catheter. Dig-
ital images of the abdominal aorta were taken at each

pressure with a Kodak DC120 digital camera coupled to a
dissecting microscope (Leica MZ6). The external diameter
of the abdominal aorta was measured using NIH image
software (Version 1.62, National Institutes of Health,
Bethesda, MD) on an accelerated Power Mac 7500/100
(Apple Computer, Cupertino, Ca). The system was cali-
brated by using the digital image of a ruler at the same
magnification.

Data Treatment and Statistical Analysis:
Regression analysis was performed using aorta external di-
ameter and inflation pressure as dependent and inde-
pendent variables, respectively. Distensibility was
estimated as the slope of the regression line for each indi-
vidual animal. The external diameter of the abdominal
aorta at 100 mmHg pressure was also estimated from the
individual regression equations. Analysis of Variance was
then performed on distensibility and 100 mmHg external
diameter.

Experiment 3: propanolol effects on heart morphology
The purpose of this experiment was to see if a daily injec-
tion of the beta-blocker propanolol inhibits the cardiac
hypertrophy that is associated with iron deficiency in
weanling rats. This experiment was a 2 × 2 design, using
diet and drug (saline vs. propanolol) as factors.

Experimental procedures
Ten rats (5 iron deficient and 5 control) were given a daily
intra-peritoneal injection of either propanolol (50 mg•kg-

1 body mass per day) or saline solution. After 1 month,
the rats were sacrificed by decapitation and the hearts
were carefully extracted and weighed.

Data treatment and statistical analysis
The heart mass to body mass ratio was calculated, and
Analysis of Variance was performed as above.
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