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Abstract

Background: There are two predominant hypotheses as to why animals ingest plastic: 1) they are opportunistic
feeders, eating plastic when they encounter it, and 2) they eat plastic because it resembles prey items. To assess
which hypothesis is most likely, we created a model sea turtle visual system and used it to analyse debris samples
from beach surveys and from necropsied turtles. We investigated colour, contrast, and luminance of the debris
items as they would appear to the turtle. We also incorporated measures of texture and translucency to determine
which of the two hypotheses is more plausible as a driver of selectivity in green sea turtles.

Results: Turtles preferred more flexible and translucent items to what was available in the environment, lending
support to the hypothesis that they prefer debris that resembles prey, particularly jellyfish. They also ate fewer blue
items, suggesting that such items may be less conspicuous against the background of open water where they forage.

Conclusions: Using visual modelling we determined the characteristics that drive ingestion of marine debris by sea
turtles, from the point of view of the turtles themselves. This technique can be utilized to determine debris preferences
of other visual predators, and help to more effectively focus management or remediation actions.
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Background

Sea turtles, like many other marine taxa, are increasingly
prone to marine debris ingestion and associated problems
[1]. Despite many studies recording instances of debris
ingestion e.g. [2,3], little is known about the cues that
attract turtles to eat plastic debris. The predominant
hypotheses are that 1) turtles, as opportunistic feeders,
simply consume items in proportion to what they encounter
in the environment, including plastics; and 2) that turtles
feed on plastic because of its similarity to prey; particularly
jellyfish [4,5]. Though the proportion of gelatinous prey
in a turtle’s diet varies depending on the life stage and
the species of the turtle, all species do target these prey
at some stage of their lives [6,7].

Turtles are primarily visual predators. Research indicates
that loggerhead turtles have limited ability to find food
based on chemical stimuli alone [8], which may explain
why they are primarily caught during the day on longline
fishing lines, and rarely at night [9]. Similarly, when pre-
sented with both chemical and visual cues, leatherback
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turtles responded exclusively to visual cues [10]. There-
fore, the visual similarity between plastic bags and jellyfish
can cause confusion even in the absence of chemical
stimuli associated with food sources. Loggerhead sea
turtles have been shown to approach plastic bags in a
similar manner to gelatinous prey, indicating that they
use visual characteristics to select their food [11].

The spectral sensitivity of an animal depends not only
on its photopigments, but also on the transmissivity of the
ocular media and, in the case of turtles, of the oil droplets
associated with the cones. Turtles have a well-developed
visual system with at least three different photopigments,
indicating the ability to see colour [12]. The visual sys-
tem of sea turtles is similar to that of fresh water turtles;
however, the sea turtles’ visual pigments are slightly shifted
towards the shorter wavelengths, due to the differences
in spectral characteristics of the waters in which the
different animals live [13]. Sea turtles generally inhabit
clearer, oceanic waters, whereas fresh water contains
many dissolved organics and sediments, shifting the
maximum light transmission to longer wavelengths
[13-15]. The bulk of sea turtle vision studies to date
have been conducted on green (Chelonia mydas) and
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loggerhead (Caretta caretta) sea turtles e.g. [16,17].
Liebman and Granda found 3 photopigments in the
green turtle retina absorbing maximally at 440 nm (SWS),
502 nm (MWS), and 562 nm (LWS) [18]. Recent evidence
indicates that green turtles are also likely to have a fourth,
ultraviolet sensitive (UVS) photo-pigment, like their fresh-
water relatives [17]. Turtles possess at least four different
types of oil droplets, again indicating they have four spectral
sensitivities, like birds [17]. Each type of oil droplet may be
associated with a specific photopigment, or may combine
with different photopigments to produce multiple cone
receptor types [14,19].

Turtles, like many other vertebrates, also possess double
cones, a specialized structure consisting of two cones joined
together [20]. The function of the double cone is still un-
known; however it has been hypothesized in both birds and
reptiles to play a role in discriminating between levels of lu-
minosity or brightness [20-23]. Although the exact compos-
ition of the double cone structure is unknown, in fresh
water turtles both of the members that make up the double
cone have LWS photoreceptors [19].

We created a chromatic space model of the green turtle
visual system (sensu [24]) to investigate the following ques-
tions: Are green, hawksbill, and flatback turtles selectively
ingesting particular types of debris over others, and if so,
what characteristics of that debris (colour, texture, translu-
cency, luminance, or background contrast) are most
relevant to turtles’ foraging choices?

Results

Our visual model resulted in peak sensitivities of 365, 440,
515, and 560-565 (Figure 1). The mixed effects modelling
results indicate that sea turtles select the debris they ingest
based on a variety of physical properties. In fact, debris
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ingested by turtles was significantly different from beach
debris for all environmental variables investigated with
the exception of background contrast and the contribu-
tion of the UV cone (Table 1). Turtles differentiated
items most strongly based on their luminance (p < 0.001,
selectivity ratio = 0.640), flexibility (p < 0.001, selectivity
ratio = 0.437), and translucency (p =0.001, selectivity
ratio = 0.290). Items ingested by turtles tend to be less
bright (i.e. lower luminance value), more flexible, and
more translucent than items found in the environment.
With respect to wavelengths, items ingested by turtles
had significantly lower short wavelength spectrum values
(p <0.001, selectivity ratio = 0.215).

A simple inspection of the turtle visual space models
(Figure 2) shows the difference in the wavelengths of
ingested debris and beach debris. The average value of
debris ingested by turtles is lower in the short wave-
length spectrum than that of beach debris, indicating
that the items turtles eat are less blue than what is avail-
able to them in the environment.

There were no significant differences observed between
plastics ingested by sea turtles of different life history
stages (new recruits and juvenile turtles) with respect to the
factors tested (colour, texture, translucency, luminance,
and background contrast). However, hawksbill and flatback
turtles did exhibit some significant differences compared to
green turtles. Because we only had a small sample size for
hawksbills (n = 2) and flatbacks (n = 1), we omitted them
from analyses.

Discussion

The spectral sensitivities we calculated (365, 440, 515
and 560-565) are well matched with previously published
electroretinography (ERG) data of C. mydas spectral
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Figure 1 Modelled spectral sensitivity of C. mydas. Each peak represents the photopigment multiplied by the transmissivity of its associated
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Table 1 Model coefficients for physical factors influencing the selectivity of debris ingestion by sea turtles

Intercept SE of intercept Turtle effect SD of turtle effect p-value Selectivity ratio®
Flexibility 1.755 0.088 0.767 0.133 <0.001* 0437
Translucency 1.295 0.069 0.375 0.104 0.001* 0.290
SWS 0.268 0.006 —-0.058 0.010 <0.001* 0215
MWS 0.291 0.005 0.028 0.008 0.002* 0.096
LWS 0311 0.008 0.040 0.012 0.002* 0.127
Uvs 0.130 0.007 -0010 0.010 0345 0.075
Contrast 25981 1.551 —1.468 2.356 0573 0.057
Luminance (sum of cones) 239.27 16.225 —153.144 24.569 <0.001* 0.640
Luminance (double cone) 74978 4930 —43.441 747 <0.001* 0.579

Note that the selectivity ratio indicates the relative strength of the turtles’ selectivity based on each factor. *indicate p values that are significant at the 0.05 level.
®Calculated as the absolute value of the ratio of the size of the turtle effect to the size of the intercept.

sensitivities. Levenson and colleagues [25] observed well-
defined peaks at 515 and 570, with a relatively constant
sensitivity below 500 nm; an earlier study found peaks
at 450, 520, and 600 [18]. The technique of high frequency
flicker ERG used by Levenson et al. [25] is likely more
accurate in the longer wavelengths, as it more success-
fully isolates the cone response from the rod response.
However, the turtles in this study were older than those
used by Liebman and Granda and may have experienced
a decline in short wavelength vision similar to elderly
humans, explaining the lack of a defined short wavelength
peak [25]. Our model, therefore, matches observed sensi-
tivities based on ERG.

We assumed that beach debris was a reasonable proxy
for ocean-borne debris in the nearshore area inhabited by
these turtles, and therefore represents the debris “available”
to the turtles. Although there are limitations of using beach
debris as a proxy for ocean debris, it has been widely
used in previous studies [26]. Thiel et al. [27] conducted
a multi-year comparison of anthropogenic marine debris
on beaches and in nearshore waters, finding the propor-
tions of different items to be similar. Locally, an analysis
of beach debris and nearshore trawl debris for locations
around North Stradbroke Island found similar proportions
of different colors of debris in both beach and trawl surveys
(unpublished observations, Q. Schuyler). We are therefore
confident that local beach debris is representative of near-
shore ocean debris available to turtles analysed here.

It is clear from the statistical results, as well as from
inspection of the turtle visual space data that turtles are
selective in what they eat (Table 1, Figure 2). Turtles do
not tend to ingest debris that is reflective in the short
wavelengths; i.e. blue items. When turtle preferences
were analysed based on a human categorical description of
colour rather than a turtle visual space model, blue was
similarly found to be less prevalent in turtle samples than
in beach surveys [28]. Also in support of our findings, a
laboratory-based study of loggerhead and Kemp’s ridley tur-
tles indicated that both species avoided blue dyed bait [29].

Colour is not the only visual factor employed in food
selection. In other animal species, contrast has been found
to be as important or even more influential than colour in
selecting food sources [30,31]. The fact that turtles are
selecting against blue items could indicate that blue plastics
are less readily visible against the blue background of the
open ocean. We measured this contrast value by calculat-
ing the tetrachromatic distance between each debris item
and a background measurement of open ocean water, but
found that turtles did not selectively ingest items based on
contrast. However, this may be partially due to limitations
of the model. Similar models calculating colour space
distances have reliably predicted honeybee behaviour
when visiting orchid mimics. Bees were more likely to
visit an orchid mimic when there was a small colour
distance between the orchid and its preferred food source
than when the colour space distance was large; in other
words, when the mimic was a similar colour to their
preferred food choice [32]. However, the honeybee model
was only successful when incorporating second order visual
processing, assuming interactions between photoreceptor
types [33]. Our model did not incorporate these interac-
tions, which may explain why turtles did not appear to
select for high contrast items.

Turtles selected debris with significantly lower luminance
values than those of beach debris, possibly because dark ob-
jects stand out better against the bright ocean background
[34]. However, we cannot completely exclude the possibility
that the prevalence of darker objects in the turtles is
partially an artefact of our study design, as the debris
in the turtles’ gastrointestinal system is exposed to di-
gestive fluids and other waste, which may result in a
reduction of luminance. Further work on clarifying the
differences in selectivity between contrast and colour
would help to elucidate these results.

The visual space model investigates colour and lumi-
nance, but other characteristics influence ingestion se-
lectivity in turtles even more than colour. Turtles select
plastics most strongly based on their flexibility and



Schuyler et al. BVIC Ecology 2014,

14:14

http://www.biomedcentral.com/1472-6785/14/14

Page 4 of 7

A

B

s
M‘UV
L

Flinders 01 Flinders 02 Flinders 03 Flinders 04 Flinders 05
.
. )
iy o™
25 . ]
Flinders 06 Flinders 07 Flinders 09 Flinders 10
' . .
o
FyN 3
('] . *
Main 01 Main 02 Main 05
Al
= A
s
2 |

C

Figure 2 (See legend on next page.)

Main 06 Main 07 Main 08 Main 09 Main 10
4 n
A,
A, ﬁ" “hop A %
Aty -
ata A
COL 01 KAT 021 KAT 054 KAT 060 KAT 061
A
. 4 L L -
KAT 063 KAT 088 QAS 018 UwWw 209 UWW 242
.
A o
X L 4 ¥ #
UWW 247 UWW 251 UWW 253 UWW 270 UWW 302
N a
A
3 fl =
2 ¥ '3 #
UWW 350 UWW 385 UwWw 387 UWW Zorro
3
A
ry
“4e
. » #) /

LWS Cone

Species
* Flatback
4 Green
= Hawksbill

LWS Cone




Schuyler et al. BVIC Ecology 2014, 14:14
http://www.biomedcentral.com/1472-6785/14/14

Page 5 of 7

( (See figure on previous page.)

UWW 350 (n=9).

Figure 2 Colour space triangles. The visual space of a tetrachromatic sea turtle can be represented as a tetrahedron (2A). Each vertex
represents the contribution from a different cone. The lower left corner is the medium wavelength cone, the lower right corner is the UV
wavelength cone, and the top vertex is the short wavelength cone. In order to portray a 3 dimensional image in a 2 dimensional space, we use
colour to represent the contribution from the fourth vertex, the LWS cone (red is a strong contribution from the long wavelength, black is not).
We plot the plastic from each beach sample (2B) and turtle sample (2C) on a separate triangle. Every dot is a single piece of plastic, and the
closer the dot to the vertex, the greater the contribution from that cone. n= 20 for all samples except KAT 88 (n=13), UWW 242 (n = 19), and

translucency. Our model suggests that turtles prefer
highly flexible and translucent objects, both of which
are key characteristics of one of their preferred natural
prey items: jellyfish. This work demonstrates that turtles
are indeed selective, and it also provides support for the
widely postulated “jellyfish hypothesis”. Proper waste
disposal, particularly for common end user items such
as plastic bags and other soft, translucent items which
are preferentially ingested by marine turtles, may help
to reduce the rapidly increasing debris ingestion rates in
threatened sea turtles. We hope this research can inform
conservation efforts not only for endangered sea turtles,
but we also suggest applying similar analyses for other
visual predators to investigate the key factors that drive
ingestion rates and anthropogenic debris selectivity.

Conclusions

Using models to visualize how turtles “see” the plastic they
ingest, we find strong support for the hypothesis that they
ingest plastic because of its resemblance to a typical prey
item, jellyfish. Our model can be extended to other species
to better understand why wildlife consume plastic and to
effectively focus conservation and remediation efforts.

Methods
Visual system model
We modelled the spectral sensitivity of the green sea turtle
by incorporating measurements of the photopigments,
oil droplets, and ocular media. We generated generic spec-
tral photopigment curves [35-37] based on the peak absor-
bances for the three known green turtle photopigments:
440 nm, 502 nm, and 562 nm [18]. Since measurements of
the green turtle UVS pigment have not been conducted, we
simulated a UVS curve based on the UVS pigment of the
freshwater turtle Pseudomys scripta. As freshwater turtles
tend to have pigment maxima at longer wavelengths
than sea turtles, we shifted the peak absorbance for the
Pseudomys UVS curve 7 nm shorter to 365 nm [19].
For oil droplet measurements, we assumed that the
orange oil droplets were associated only with photore-
ceptors containing the LWS visual pigments, yellow with
the MWS, clear (UV-reflective) with the SWS pigments,
and colourless (UV-transmissive) with the UVS photore-
ceptors. We used published curves for yellow and orange
oil droplets from green turtles [18], and clear oil droplets

from Pseudomys scripta [19]. We shifted the clear oil droplet
spectrum shorter by 15 nm, corresponding to the difference
in peak wavelength between the SWS pigments of P. scripta
and of C. mydas [19]. We were unable to find published
spectra for the UV-transmissive oil droplet in turtles, but as
it has no significant absorbance above 325 nm, it would not
affect the shape of the UV photopigment curve.

We applied the Hart correction to each oil droplet
[38], converted to transmissivity, and multiplied the
photopigment curve by the transmissivity of its associated
oil droplet. We then multiplied the four resulting curves
by the transmissivity of the ocular media [17] and nor-
malized the result for each cone to an absorbance max-
imum of 1 to create a modelled spectral sensitivity curve
for green sea turtles.

Debris collection and measurement

We conducted necropsies on sea turtles stranded in
southeast Queensland, Australia, between 2006 and 2013,
and collected all pieces of debris that had been ingested
by the animals (Table 2). For more details see [28]. Of
115 necropsied animals, nineteen had ingested sufficient
quantities of debris for our analysis (16 green turtles, 2
hawksbill turtles, and 1 flatback turtle). To estimate the
debris to which animals would have been exposed we
conducted ten beach surveys on each of two different
ocean-facing beaches on North Stradbroke Island
(Flinders Beach and Main Beach) between 2011-2013 (for
detailed methodology see [28]). All items of anthropogenic
debris over 5 mm in length between the water line and
the dominant vegetation line were collected in a 100 m
transect. We selected 20 random debris subsamples from

Table 2 Characteristics of necropsied turtles

All turtles necropsied Turtles with debris

Species
Green 88 16
Hawksbill 24 2
Flatback 1 1
Loggerhead 2 0
Size class
Pelagic (CCL<35cm) 22 12
Benthic (CCL > 35) 93 27
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each beach and each turtle sample. Three of the turtles
had ingested fewer than 20 items of debris, so for these
turtles, all pieces were analysed.

We assigned each piece of debris a measurement of
flexibility between 1 (impossible to bend without breaking)
and 3 (easily malleable). We also assigned a measure
of translucency between 1 (completely opaque) and 3
(possible to read text through the item). We chose
translucency and flexibility because they are visual charac-
teristics in addition to colour which might be used for
prey selection. Using an Ocean Optics JAZ spectro-
photometer we measured the reflectance of each item
between 300-800 nm wavelength. In 49 of the plastic
samples we did not dark-calibrate the spectra, so some
of the reflectances were slightly below zero. To each of the
measurements for these samples we added a constant value
(equal to the largest negative value for the sample) in order
to ensure that the minimum value was non-negative.
Because the negative values were quite small with re-
spect to the maximum reflectances, and represent only
a linear shift, this correction factor did not affect the
outcome of our modelling.

We used our calculated green turtle spectral sensitivities
to model how each item of debris would appear in the tur-
tles’ visual space [39]. Because there are virtually no studies
on the visual systems of hawksbill and flatback turtles (but
see [40]), we used the green turtle spectral sensitivity
curves (as modelled above) for all species. The visual space
for a tetrachromatic animal can be represented as a three
dimensional tetrahedron with one vertex for each cone.
Plotting the relative excitation of each photoreceptor
within this space generates a representation of the colour
of an object as it would appear to a turtle’s visual system.

Using the Vorobyev-Osorio noise-limited chromatic
space model [41] we also calculated the three-dimensional
distances between each piece of debris and a measurement
of background colour that turtles would be likely to en-
counter; open ocean water. This gives an indication of the
contrast of each item to the background colour. This
calculation relies on an estimate of the proportions of
cones present in the retina. Although these data are not
known for sea turtles, the proportions of oil droplets are
[17], so we assumed the proportions of cones in the re-
tina to be equal to the proportions of oil droplets
associated with them. Finally, we calculated two different
measures of luminance. For the first we added the total
reflectance values for all four cones. Since the double
cone may be responsible for luminance discrimination, we
calculated a second measurement using the total reflec-
tance of the LWS cone only [19].

In order to determine whether turtles exhibited a se-
lectivity for debris based on the physical characteristics
measured (colour, texture, translucency, luminance, and
background contrast), we used linear mixed effects models
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(R version 3.0.1, package lme4) [42] with the physical fac-
tors as response variables, and the location the plastic was
found (turtle or beach) as the predictor variable. In order
to control for autocorrelation among plastic items within
a beach or stomach sample, we incorporated a random ef-
fect for each beach or turtle sample. We also investigated
the differences between species and life history stages of
turtles with respect to each physical characteristic. Because
of the complex nature of the data set, we analysed each fac-
tor separately. In order to obtain a relative measurement of
the strength of each term, we calculated the absolute value
of the ratio of the effect size to the intercept term. Note
that the larger the ratio, the more highly selective the turtles
are for the variable.
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