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Fighting parasites and predators: How to deal
with multiple threats?
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Abstract

Background: Although inducible defences have been studied extensively, only little is known about how the
presence of parasites might interfere with these anti-predator adaptations. Both parasites and predators are
important factors shaping community structure and species composition of ecosystems. Here, we simultaneously
exposed Daphnia magna to predator cues (released by the tadpole shrimp, Triops, or by a fish) and spores of the
yeast parasite Metschnikowia sp. to determine how life history and morphological inducible defences against these
two contrasting types of predators are affected by infection.

Results: The parasite suppressed some Triops-induced defences: Daphnia lost the ability to produce a greater
number of larger offspring, a life-history adaptation to Triops predation. In contrast, the parasite did not suppress
inducible defences against fish: induction (resulting in smaller body length of the mothers as well as of their
offspring) and infection acted additively on the measured traits. Thus, fish-induced defences may be less costly than
inducible defences against small invertebrate predators like Triops; the latter defences could no longer be expressed
when the host had already invested in fighting off the parasite.

Conclusions: In summary, our study suggests that as specific inducible defences differ in their costs, some might
be suppressed if a target prey is additionally infected. Therefore, adding parasite pressure to predator–prey systems
can help to elucidate the costs of inducible defences.

Keywords: Daphnia, Host-parasite, Inducible defences, Metschnikowia sp., Multiple stressors, Phenotypic plasticity,
Predator–prey
Background
Inducible defences, which are found among various
groups of organisms, can evolve when there is spatial or
temporal heterogeneity in predation risk [e.g. [1,2]].
Often, such defences are triggered by predator-released
chemical cues, so called kairomones [3] and may be add-
itionally altered in response to hetero- and conspecific
alarm cues [4,5]. Although beneficial when predation is
high, inducible defences are assumed to come at a cost
which could potentially be saved in predator free envir-
onments. If no costs exist, defences should be expressed
permanently [e.g. [6,7]]. The costs to sustain such an
adaptive defence system have been classified as different
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types: First, there might be costs related to the mainten-
ance of sensory or regulatory systems needed to detect
environmental conditions. Secondly, energy and resource
investment might be needed for constructing, maintaining
and operating the defensive traits. Further costs can arise
from self damage (e.g. autotoxicity), opportunity costs like
the long-term consequences of allocation or developmen-
tal constraints and finally, environmental costs (expressing
a suboptimal phenotype in a given environment) [1,8].
Still, the existence, modality and extent of these costs are
debated and many empirical studies have found only neg-
ligible to weak costs [e.g. [9,10]]; reviewed in 8. However,
while costs may not be apparent under optimal condi-
tions, there may be a reduction in fitness under conditions
of stress [11].
Parasites are a common threat across ecosystems [12].

Thus, many organisms are simultaneously prey for pre-
dators and hosts for parasites [13]. Often the response
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to one stressor has further implications regarding an
individual’s defence towards another stressor. For ex-
ample, parasite-mediated alterations of anti-predator be-
havior have been shown in amphibians infected by fungi
[14] and crickets parasitized with nematodes [15]. Fresh-
water snails respond to the presence of predatory cray-
fish with predator avoidance behavior but, at the same
time, suffer a reduced ability to defend against potential
pathogens [16]. Similarly, the long-term exposure of
hamsters to an overdose of weasel odor can suppress the
immune system [17] and likewise the immune defense
of damselflies is suppressed under presence of fish pre-
dators [18]. Interestingly, another study in damselflies
showed an increased investment into some components
of the immune system in the presence of predatory
dragonflies [19] suggesting that induction of the immune
defence is differently affected depending on the type of
predator the host is exposed to.
A suitable model organism to investigate the effects of

parasites on inducible defences is the “water flea” Daph-
nia, a small planktonic crustacean. Daphnia is known to
change its morphology, life history and behavior in re-
sponse to predators (reviewed in [20]) and is also com-
monly studied in host – parasite interactions [e.g.
[21,22]]. Although Daphnia are often exposed to preda-
tors and parasites simultaneously, there are few studies
that have investigated the effects of infection on indu-
cible defences. It has been shown that Daphnia galeata
can still express inducible defences against fish, regard-
less of infection with protozoan or yeast parasites
[23,24]. The same was true for D. magna infected with a
bacterial parasite [25]. In contrast, simultaneous expos-
ure of D. magna to the same bacterial parasite but to an
invertebrate predator (phantom midge larvae), resulted
in antagonistic or additive effects on some host life his-
tory traits [26]. The different outcome of the two latter
studies may have resulted from the different predator
types involved.
In general, large predators prefer to hunt larger prey

and thus exert a selective pressure for the prey to ma-
ture earlier at a smaller size, whereas small predators are
limited to small prey and select for delayed prey matur-
ity at larger size [e.g. [27,28]]. The dominant large preda-
tors on Daphnia are planktivorous fish. In response to
fish kairomone, D. magna mature earlier at a smaller
body size, develop elongated tail spines and produce
more but smaller offspring e.g. [29,30]. Among the in-
vertebrate predators of D. magna are the tadpole
shrimps, Triops [31,32], which are limited to smaller
prey by the size of their food groove and the opening
width of the mandibles. D. magna respond to Triops by
getting ’bulky’ (i.e. they increase in body length and
width) and by developing elongated tail spines [31,33].
Since the Triops-induced defence contrasts the induced
response of Daphnia towards fish, the influence of para-
sites on these two types of inducible defences might not
be the same. Given the variability in Daphnia’s response
to parasites and predators, it is difficult to elucidate gen-
eral costs imposed by simultaneous exposure to both
threats.
Our study aims to analyze the influence of parasites

on the expression of the two contrasting anti-predator
defence strategies and to compare potential costs of
these defences. To investigate this question we infected
D. magna with the parasite Metschnikowia sp. (family
Hemiascomycetes, [34]), which causes major reductions
in host life span and fecundity [35-37], and exposed them
to two contrasting types of predators, fish and Triops.

Methods
Origin and care of host, parasite and predators
We tested a single Daphnia magna clone isolated from
a temporary pond in Oxford, England. Daphnia were
kept in climate chambers at 20 ± 0.5 °C with a constant
photoperiod (15 h light and 9 h dark) in artificial
medium (ultrapure water, phosphate buffer and trace
elements) and were fed three times per week with green
unicellular algae (Scenedesmus obliquus). For three gen-
erations prior to the experiment, Daphnia were kept in-
dividually in 100 ml of medium which was exchanged
every third day and fed daily with 2 mg Cl-1 of S. obli-
quus. The Metschnikowia sp. strain was isolated from
lake Ammersee in Germany, and cultured on the same
D. magna clone as used in the experiment. Two preda-
tors were tested: the tadpole shrimp, Triops cancriformis,
and the fish, Rhodeus amarus (hereafter referred to as
‘Triops’ and ‘fish’, respectively). A clonal line of Triops
was provided by Dr. E. Eder (Zoological Institute,
University of Vienna). Different size classes were raised
separately in 8 l aquaria filled with semiarticifial
medium (wellwater and aqua bidest. 1:1) and fed with
Chironomidae and commercial fish food (Grana Discus,
JBL GmbH & Co. KG, Germany) ad libitum. The fish
were obtained from a commercial store; 20 individuals
were kept in a 100 l aquarium and fed with commercial
fish food. The experimental research on animals fol-
lowed internationally recognized guidelines.

Preparation of kairomone media
Three types of media were prepared daily: 1) Triops
kairomone (a 2 l beaker was stocked with two Triops
for 24 h; Triops size: 2–3 cm), 2) fish kairomone
(a 5 l beaker was stocked with one fish for 24 h; fish
size: 6–7 cm), and 3) control medium (no kairomone).
The fish density was similar to that used in previous
studies [e.g. [23,24]]. The applied Triops density is
lower to that found in natural concentrations of this
predator (up to 2500 Triops/m² in natural ponds, [38])



Hesse et al. BMC Ecology 2012, 12:12 Page 3 of 8
http://www.biomedcentral.com/1472-6785/12/12
and adequate for defence induction in D. magna [31].
The predators were fed with a commercial fish food
(preliminary experiments showed no effect of the fish
food on the defence expression in Daphnia, CL, un-
published data); the same amount of fish food was
added daily to the kairomone-free treatments. Addition-
ally, predators were fed adult D. magna of the same
clone as the experimental units: each Triops obtained
approximately 15–20 Daphnia and each fish 30–40
Daphnia per day. Hence, the term ‘kairomone’ refers
not only to cues released by the predators but also to
alarm substances released from prey during their con-
sumption by the predator [4]. Prior to use all media
were filtered (0.22 μm).

Experimental set-up
D. magna were individually exposed to predator kairo-
mones and/or parasite spores. This resulted in six treat-
ments, with 20 replicates each: one treatment without
kairomones and without infection (‘control− no para-
site’), one without kairomones but with infection
(‘control− parasite’), two kairomone treatments without
infection (‘Triops − no parasite’ and ‘fish− no parasite’)
and two double-stressed treatments (‘Triops− parasite’
and ‘fish− parasite’). On day 1, third clutch newborns
(< 24 h) from age-synchronized mothers were placed
individually in 5 ml of Triops-, fish- or control-medium
on a random basis. On days 1 and 3 a parasite spore
solution (obtained by homogenization of the infected D.
magna) was added at a concentration of 2200 (day 1)
and 2800 (day 3) spores ml-1. A placebo solution was
analogously prepared from the same number of unin-
fected Daphnia and given to the non-infected treat-
ments. On day 2, 5 ml of medium was added and on
day 3 the Daphnia were transferred into 10 ml of new
medium. On day 4, an additional 10 ml of medium was
added to all jars. From day 5 onwards, all individuals
were kept in 40 ml of medium, which was exchanged
daily (before, the medium was kept at a small volume
to increase the probability of spore ingestion by Daphnia).
The Daphnia were fed daily with 2 mg Cl-1 S. obliquus
(except days 2 and 4, when only 1 mg Cl-1 was added).
The experiment lasted 24 days, at which point all
infected animals had died.

Recorded parameters
We collected the following life history and morpho-
logical data: 1) age at maturity (i.e. the day of 1st clutch
release), 2) life span, 3) number of offspring in the first
three clutches, 4) body length (distance between the
upper edge of the compound eye and the base of the tail
spine) after the release of each of three clutches, and 5)
body length of five randomly selected offspring per
mother from each of the first three clutches (average per
clutch was used for statistical analyses). For the morpho-
logical measurements we used a digital image-analysis
system (Cell^P, Olympus, Hamburg, Germany). Finally,
when the Daphnia died the body length was measured
and the concentration of mature parasite spores [39] was
counted using a Neubauer Improved counting chamber.

Statistical analyses
All analyses were performed with PASW Statistics
(version 18.0). We used a two-way ANOVA with three
levels of kairomone treatment (fish, Triops and control)
and two levels of infection (parasite and no-parasite).
Age at maturity and life span were transformed prior
to analysis (Rankit transformation, [40]). A Tukey’s
PostHoc Test was run to distinguish between the
effects of the different kairomone treatments. Parasite
spore load was analysed by ANCOVA (with Daphnia
body length at death as a covariate) and the inter-
action of kairomone × body length was included in the
model. Individuals from the parasite treatments which
did not become infected (n = 4) were excluded from all
analyses. Similarly, individuals which died before day
10 (i.e. day when infection was first detectable) were
also excluded (n = 5).

Results
Age at maturity and life span
Infected Daphnia matured significantly later than non-
infected Daphnia whereas Triops and fish exposure led
to earlier maturation regardless of infection status
(Figure 1, Table 1). In addition, infection led to signifi-
cant reductions in life span (Figure 1, Table 1).

Number of offspring
Infected Daphnia produced significantly less offspring
than uninfected Daphnia (in the 3rd clutch: ~ three
times less; Figure 2a, Table 1). Moreover, none of the
infected individuals produced more than three clutches,
whereas the uninfected Daphnia produced five clutches
by the end of the experiment. Regarding the kairomones,
exposure to fish had no effect on the number of off-
spring, but Triops-exposed Daphnia produced more off-
spring than controls in the 2nd and 3rd clutch
(Figure 2a). However, this effect was suppressed by in-
fection (see infection × kairomone interaction in the 2nd

clutch, Table 1).

Body length
Infection as well as fish kairomone exposure led to a sig-
nificant decrease in body length across all three clutches
(Figure 2b, Table 1). Daphnia exposed to Triops kairo-
mones were smaller in size, but only when additionally
infected (see significant interaction in the 1st clutch,
Table 1). The offspring of infected mothers were



Figure 1 Means (± SE) of (a) age at maturity and (b) life span across three types of medium (Triops kairomone, control, fish
kairomone), and for both infected (filled symbols) and non-infected (open symbols) Daphnia magna.
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significantly larger in the 1st clutch, but smaller in the
3rd clutch (Figure 2c, Table 1). Although Triops-exposed
mothers had larger offspring in their 1st and 3rd clutches,
infection suppressed this effect in the 3rd clutch (see sig-
nificant interaction, Table 1). In contrast, fish-exposed
Daphnia produced significantly smaller offspring in all
clutches, independent of infection (Figure 2c, Table 1).

Spore load
Larger Daphnia contained significantly more parasite
spores (F1,53 = 14.2; p< 0.001). However, kairomones had
no effect on the amount of spores (F2,53 = 0.3; p = 0.708)
and there was no significant kairomone × body length
interaction (F2,53 = 0.2; p = 0.783; Figure 3).

Discussion
Both tested predator cues had significant effects on the
life history and morphology of Daphnia magna. When
exposed to fish kairomones, Daphnia matured earlier, at
Table 1 The effects of infection and kairomone treatments on
(two-way ANOVAs)

Dependent
variable

Clutch Infection (df = 1)

F p F

Age at maturity 7.7 0.006 14.

Life span 124.1 < 0.001 3

Number of 1 17.6 < 0.001 0.

offspring 2 38.3 < 0.001 1.

3 101 < 0.001 3.

Body length 1 63.6 < 0.001 19

2 124.8 < 0.001 18.

3 130 < 0.001 17.

Offspring 1 14.7 < 0.001 12.

body length 2 1,7 0.197 11.

3 70.9 < 0.001 18.

Significant values are given in bold. The exact occurrence of significant differences
the fish and Triops treatment, respectively.
a smaller body size and produced smaller offspring (as
in [29,30]). Triops-induced D. magna also matured earl-
ier (as in [31]) but at a similar size than the control
Daphnia. In addition, their offspring were larger than
control offspring. Previous studies on Triops-exposed D.
magna reported an increase in body width and body
length for induced individuals (i.e. “bulkiness”) [31]. The
lack of such an effect in adult Daphnia in the present
study might be caused by clonal differences in response
to kairomones, such as have been reported from this
[33] and other predator–prey systems [e.g. [41,42]]. In
addition, the Daphnia were exposed to the kairomone
only after they were released from their mothers’ brood
pouch. This may account for the less pronounced indu-
cible defences. Previous studies using other Daphnia
species have shown that the sensitive phase for induc-
tion starts already during embryonic stages, resulting in
the offspring from predator-exposed individuals being
better defended (i.e. “maternally induced defence”) than
Daphnia magna life history and morphological traits

Kairomone (df = 2) Infection×Kairomone (df = 2)

p F p

3 < 0.001 (F, T) 0.01 0.993

0.053 0.4 0.657

9 0.425 0.3 0.766

9 0.156 3.5 0.034

7 0.029 0.04 0.961

< 0.001 (F, T) 4.2 0.017

7 < 0.001 (F, T) 1.4 0.261

7 < 0.001 (F, T) 0.3 0.706

3 < 0.001 (F, T) 0.9 0.411

8 < 0.001 (F) 1.2 0.307

8 < 0.001 (F) 3.7 0.030

between the kairomone treatments and the control are given as “F” or “T” for



Figure 2 Means (± SE) of (a) number of offspring, (b) body length and (c) offspring body length for 1st, 2ndand 3rdclutch, across three
types of medium (Triops kairomone, control, fish kairomone), and for both infected (filled symbols) and non-infected (open symbols)
Daphnia magna. The scale of the y-axis is the same across the three presented clutches.
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offspring from unthreatened parents [43,44]. This seems
to be concordant with the observation that the Triops-
induced adult Daphnia did not show an increase in body
length while their offspring were significantly larger
compared to control individuals.
Regarding the effect of infection, similar to findings

from other studies, Metschnikowia-infected Daphnia
showed delayed maturity, produced fewer offspring,
were smaller in size and died earlier [e.g. [35-37]]. It
seems that the parasite consumes resources that could
otherwise be invested into host reproduction and growth
[36]. Surprisingly, the first-brood offspring of infected
mothers were significantly larger than offspring of non-
infected individuals. As the parasite shortens the host’s
life span and its ability to reproduce, a larger investment
into first-brood offspring may be a strategy to maximize
the fitness of infected hosts; at least in the presence of
invertebrate predators or at low predation risk. This cor-
responds to the observation that larger offspring are pro-
duced in response to unfavourable environmental
conditions in Daphnia [e.g. [45,46]], as well as in other
organisms [e.g. [47-49]].



Figure 3 Number of parasite spores counted for each infected Daphnia magna in relation to its body length at death. Trend lines are
drawn for each type of medium (Triops kairomone, control, fish kairomone).
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It has been reported that exposure to fish kairomones
can cause higher susceptibility to infection in another
Daphnia species [24], and that D. magna have an
increased risk of infection when they sink to lower depth
to escape fish predation [50]. Conversely, other studies
found that Daphnia resistance and/or parasite virulence
remain unaffected by simultaneous exposure of the
Daphnia host to fish kairmones [23,25]. In our study
parasite spore load did not differ between predator-
exposed and predator-naive Daphnia. Instead, we show
that simultaneous exposure of Daphnia to parasites and
predator kairomones can result in synergistic effects; this
was most pronounced by the reduction in body length:
double-stressed individuals were smallest (in all three
clutches) and produced the smallest offspring (in the
third clutch). The most interesting pattern in our experi-
ment was the offspring body length, where the Triops-
induced response (but not the fish-response) was sup-
pressed by infection. A reduced body length may impose
particularly high costs for Triops-exposed Daphnia as
they need to grow large to be successfully protected
against this invertebrate predator [31,33]. Moreover,
there might be some other costly defences against Triops
that have not been assessed in our study. It has been
shown that Daphnia strengthen their carapace by devel-
oping a thicker armour as protection against this inver-
tebrate predator [51], a response also observed for
Triops-exposed D. magna (Rabus et al., in preparation).
These aspects might explain why only the defences
against Triops, but not against fish, were suppressed by
additional parasite stress. The Triops-induced response
seems to require more resources which might have
already been invested into parasite defence. Indeed, rais-
ing the immune defence is considered costly for inverte-
brates [52]. In contrast, a reduction in body length
results in an even stronger defence against fish predation
[23-25] and for fish-induced Daphnia, remaining small
and producing smaller offspring does not require add-
itional resources. However, smaller Daphnia have a
lower feeding rate and thus take up fewer resources than
bigger individuals [53]. Moreover, smaller Daphnia are
also morphologically limited by the size of their brood
pouch and therefore produce smaller eggs [54]. Hence,
the latter aspects may therefore account for a lower fit-
ness also in the case of fish- and parasite-exposed
Daphnia.
There might be costs involved in other traits that were

not tested in this study. For instance, diel vertical migra-
tion, a behavioral defence response of Daphnia under
fish predation [e.g. [55,56]], has been shown to be
altered by parasite infection [57]. Moreover, since im-
mune systems are highly plastic we cannot rule out that
the investment into fighting off the parasite differed be-
tween the two predators the Daphnia were exposed to.
In damselflies, for instance, it has been shown that risk
of water mite parasitism and predation by dragonflies
can increase investment into immunity [19]. However,
since our study did not aim to measure the immune
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response it remains speculative if fighting off the parasite
under different predator regimes results in a variable
amount of resources available for the expression of de-
fensive traits.

Conclusions
In nature, the result of combined predator and parasite
stress seems to be variable as has been shown solely for
multipredator scenarios e.g. [58,59]. Here the develop-
ment of each trait is assumed to depend on its benefits
and costs in the current environment since investment
into a specific defence in the context of varying stressors
is always a trade-off [60]. The presence and extent of the
costs of inducible defences are still being debated. The-
oretical models assume that inducible defences should
be costly, as organisms would otherwise be constitutively
defended [e.g. [6,7]]. However, many empirical studies
find only negligible or weak costs (reviewed in [8]). We
think that adding parasite pressure to studies of preda-
tor–prey systems can be a useful tool to elucidate the
nature and extent of these costs. Our results suggest that
Daphnia which express inducible defences against smaller
invertebrate predators suffer more from an additional
stressor, here parasites, than Daphnia expressing indu-
cible defences against large vertebrate predators, at least
for the traits measured in this study. Further research on
the interactions between parasites and inducible
defences, including other levels of defence and also
traits of the immune system is required in order to re-
veal general patterns. The simultaneous impact of differ-
ent threats may have important effects on species
interactions in natural ecosystems.
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