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Abstract
Background: Systemic administration of chemotherapeutic agents, in addition to its anti-tumor
benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be
overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting
exposure to non-target tissues and organs.

Results: We present a new form of targeted anti-cancer therapy in the form of targeted drug-
carrying phage nanoparticles. Our approach is based on genetically-modified and chemically
manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the
ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of
a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti
ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent
amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the
phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on
cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting
in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the
corresponding free drugs.

Conclusion: The results of the proof-of concept study presented here reveal important features
regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of
drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug
release mechanism on the potency of the platform. These results define targeted drug-carrying
filamentous phage nanoparticles as a unique type of antibody-drug conjugates.

Background
Since the introduction of monoclonal antibodies (mAbs),
and the initial clinical trials of antibody therapy in cancer
patients, there has been progress in antibody based thera-
peutics, particularly in oncology. The usage of naked
monoclonal antibodies has gradually evolved into drug
immunoconjugates. In general drug immunoconjugates
are composed of targeting entities (mainly mAbs) chemi-

cally conjugated to a cytotoxic drug. The outcome is
improved drug efficacy with reduced systemic toxicity. To
date, the most clinically-advanced forms of armed anti-
bodies are antibody-isotope and antibody-drug conju-
gates [1-3]. Key issues in designing and testing
immunoconjugates include: 1. the nature of the target
molecule, its abundance at the target, whether it is inter-
nalizing and at what rate, and its specificity to the target,
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cells or tissues. 2. the linkers used to attach the drug to the
targeting moiety [4]. 3. the drug carrying capacity of the
carrier is also a key issue in its potency, thus conjugation
schemes, such as the use of branched linkers were devised
to maximize the drug payload per target site [5].

A second class of targeted drug delivery platforms are the
drug-carrying nanomedicines, such as liposomes, nano-
particles, drug-loaded polymers and dendrimers [6-10].
With a few exception such as targeted liposomes, and anti-
body-targeted polymeric carriers [11-14], nanomedicines
do not utilize a targeting moiety to gain target specificity.
Rather, they rely on the "enhanced permeability and
retention" (EPR) effect that results from the rapid deploy-
ment of blood vessels within rapidly growing tumors
resulting in blood vessels in the tumor being irregular in
shape, dilated, leaky or defective. As a result, large drug-
carrying platforms may gain selective access to the tumor
while their exit at non-target sites is limited [10,15,16].
While the immunoconjugates are limited in drug-carrying
capacity, usually less than 10 drug molecules per targeting
moiety [17], nanomedicines by nature deliver a much
larger payload to the target cells. Recently, a novel
approach for combining antibody-mediated targeting to
cell-surface receptors with a large drug-carrying payload
was provided in the description of minicells; enucleated
bacteria that are loaded with cytotoxic drugs and targeted
using bi-specific antibodies [18].

Filamentous bacteriophages (phages) are the workhorse
of antibody engineering and are gaining increasing impor-
tance in nanobiotechnology [19-23]. Phage-mediated
gene delivery into mammalian cells was developed fol-
lowing studies that identified "internalizing phages" from
libraries of phage-displayed antibodies or peptides. [24-
31]. Recently, an efficient integrated phage/virus system
was developed where tumor targeting and molecular-
genetic imaging were merged into an integrated platform
[32,33].

Recently we exploited the potential of phages for targeted
delivery by applying them as anti bacterial nanomedi-
cines. The phages were genetically engineered to display a
target-cell specificity-conferring molecule, up to 5 target-
ing molecules/phage if displayed on all copies of the
phage g3p coat protein. The targeted phages were chemi-
cally conjugated, via a cleavable bond to a large payload
of an antibiotic, with a maximal loading capacity of more
than 10,000 drug molecules/phage [34,35]. The anti-bac-
terial system was based on drug release at (and not
within) the target site. Here we present an evaluation of
targeted phage nanomedicines to be applied against can-
cer cells, with target-mediated internalization followed by
intracellular drug release. We show that the growth of tar-
get cells can be specifically inhibited when the drug is con-

jugated either be a covalent bond or through an
engineered cathepsin-B cleavage site to the phage coat.
Due to the modular nature of the platform, this new class
of targeted, drug-carrying viral particles may enable a wide
range of applications in biology and medicine.

Results
Binding analysis with monoclonal antibodies complexed 
phage nanoparticles using whole cell ELISA
The comparative binding analysis was done by whole-cell
ELISA as described in Materials and Methods. In order to
asses the affect the binding abilities of the different target-
ing moieties the fUSE5-ZZ, phage vector that polyvalently
displays the ZZ domain which enables the phages to form
a stable complex with target-specific antibodies was used.
The results of this assay are shown in Fig. 1. As shown, the
antibody-complexed phages exhibited cell specific bind-
ing which corresponded to the level of ErbB2 expression
on the target cells, a weak binding to the control MDA-
MB231 cell line (that expresses ErbB2 at a low level) was
apparent and a much higher binding signal with ErbB2
overexpressing SKBR3 cell line indicating specific binding.
No significant signal was obtained when control phages
fUSE5-ZZ complexed with normal human IgG were used.

Evaluation of phage internalization using confocal 
microscopy
To function as a targeted drug carrying platform, the anti-
body complexed phages should be efficiently internalized
into the target cells. To address this issue, we analyzed the
capability of fUSE5-ZZ-chFRP5 complex to internalize
into ErbB2 overexpressing human breast adenocarcinoma
SKBR3 cells and human epidermoid carcinoma cell line
A431 cells using confocal microscopy. A positive internal-
ization signal is typically characterized by bright fluores-
cence vesicles within the cell cytoplasm together with a
decrease in membranous fluorescence. As shown in Fig.
2A, antibody-complexed fUSE5-ZZ-chFRP5 phages where
internalized into both types of cells. The orange colour
dots that appeared within the cells are possibly the out-
come of a combination between the red dyed membrane
and the phage marked with green colour generated by the
secondary FITC conjugated antibody, which may suggest
a lysosomal incorporation of the internalized phages.

Evaluation of internalization of drug conjugated phage 
using confocal microscopy
The internalization of antibody complexed phages fol-
lowing drug conjugation was evaluated also following
drug conjugation (described below). In this experiment,
hygromycin conjugated fUSE5-ZZ complexed with
chFRP5 was tested with SKBR3 cells. As opposed to detec-
tion with anti phage antibodies as shown in Fig. 2A, here
the visualization of hygromycin carrying phages was
obtained by conjugating FITC to the phage through a free
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primary amine found in hygromycin, resulting in green
fluorescent labelled fUSE5-ZZ-chFRP5 as previously
described [34]. The assay was done in different time
points: 2, 12, 24 h, in order to evaluate phage internaliza-
tion rate. As shown in Fig. 2B, hygromycin carrying phages
were internalized into the cells, which could be observed
2 h after adding phages to the cells. In fact, internalization
seemed to be maximal when observed at 2 h, and the flu-
orescent signal diminished during later time point (not

shown). In contrast, hygromycin conjugated phages that
were complexed with human IgG did not internalize.
These results suggested that conjugating a large payload of
drug to the phage coat does not seen to inhibit internali-
zation of the antibody-complexed phages, probably
occurring through receptor-mediated endocytosis.

Chemical conjugation of hygromycin and doxorubicin to 
phage nanoparticles
Conjugation of the two drugs to the phage nanoparticles
was done by using EDC chemistry, forming an amide
bond between the exposed carboxyl side chains on the
phage coat, mostly the ones exposed on g8p, and a free
primary amine on the drugs. The drugs we used were
hygromycin (an aminoglycoside antibiotics) or doxoru-
bicin (an anthracycline antibiotic). Approximately 10000
molecules of hygromycin were conjugated to each phage
by using EDC chemistry as we recently described [34].
EDC reaction causes the formation of a covalent bond
between the phage major coat protein, g8p and the drug
which does not facilitates a controlled release form of the
drug at the target site. However, as shown in Fig. 2, the tar-
geted phage nanoparticles are internalized into the cells
possibly entering the lysosomal compartment where they
are susceptible to digestion by lysosomal proteases. This
led us to the assumption that lysosomal deconstruction of
the phage may mediate drug release within the cell.

To obtain controlled release of the conjugated drug,
fUSE5-ZZ-(g8p)DFK phage was designed. fUSE5-ZZ-
(g8p)DFK phages display the lysosomal cysteine protease
cathepsin-B cleavage site on the phage major coat protein,
g8p. In this phage almost all other carboxyl groups on g8p
which were susceptible to EDC conjugation were elimi-
nated by site-directed mutagenesis enabling the drug to be
released mainly through cathepsin-B activity, a single car-
boxyl group was left as an internal control for the in-vitro
drug release experiments. The sequence of native g8p in
comparison with the g8p coat protein of phage fUSE5-ZZ-
DFK is shown in Fig. 3A and the scheme of the doxoru-
bicin-loaded phage is shown in Fig. 3B.

In vitro release of doxorubicin from fUSE5-ZZ(g8p)DFK 
phages
Following doxorubicin conjugation to the phages we eval-
uated drug release mediated by the lysosomal hydrolase
cathepsin-B. As shown in Fig. 3C, drug release could be
observed by the red colour of the phage-free supernatant
following PEG/NaCl precipitation of cathepsin-B-treated,
doxorubicin conjugated fUSE5-ZZ(g8p)DFK phages. In
contrast, no drug was released from similarly-treated, dox-
orubicin conjugated fUSE5-ZZ phages (that do not carry
the DFK sequence).

Comparative binding analysis of antibody displaying phages using whole cell ELISAFigure 1
Comparative binding analysis of antibody displaying 
phages using whole cell ELISA. fUSE5-ZZ-chFRP5, 
fUSE5-ZZ-trastuzumab and control phages fUSE5-ZZ-human 
IgG were added into wells that contain ErbB2 over-express-
ing SKBR3 cell line (black bars) or human mammary carci-
noma MDA-MB231 cells as control cell line (gray bars) that 
express a low level of ErbB2. Binding was evaluated by the 
addition of HRP-conjugated rabbit anti M13 antibodies fol-
lowed by addition chromogenic HRP substrate TMB. The 
results were plotted as absorbance at 450 nm. Data repre-
sent mean values ± SD of quadruplicate phage samples taking 
from one of three independent experiments.
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Evaluation of phage internalization into A431 and SKBR3 cells using confocal microscopyFigure 2
Evaluation of phage internalization into A431 and SKBR3 cells using confocal microscopy. A. Immunofluores-
cence Staining: (a) control fUSE5-ZZ-human IgG phages (b), no phage, only antibodies (c-l) serial cuts of A431 cells that 
were treated with fUSE5-ZZ-chFRP5 phages. Membranes were labelled by using red fluorescent CM-Dil cell tracker (MoBiTec, 
Göttingen, Germany). Phages were detected by monoclonal mouse anti-M13 followed by incubation with FITC conjugated goat 
anti-mouse IgG (green fluorescence). B. Evaluation of internalization of FITC labelled, drug conjugated phages into 
SKBR3 cells using confocal microscopy. a and b fUSE5-ZZ-chFRP5 phages, c and d control fUSE5-ZZ complexed with 
normal human IgG. As a reference, actin filaments with the cells were labelled by using red fluorescent dye Phalloidin (Sigma, 
Israel). Phages were labelled directly by FITC. Phages were added to the cells for 2 hr before analysis by confocal microscopy. 
Panels a and c show the green fluorescence of Fluorescein while in panels b and d the green fluorescence is overlaid on the red 
fluorescence.
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The red supernatant that was recovered from the cathep-
sin-B-treated, doxorubicin conjugated fUSE5-
ZZ(g8p)DFK phages was further analyzed by HPLC at the
specific adsorption wavelength of doxorubicin (480 nm).
As shown in Fig. 4A, a specific peak corresponding to dox-
orubicin could be detected. Such a peak could not be
observed when fUSE5-ZZ(g8p)DFK phages that do not
carry doxorubicin were analyzed under identical condi-
tions. In addition the MALDI-TOF MS analysis of this red
supernatant revealed a specific peak corresponding the
weight of aspartic acid-doxorubicin adduct, which is the
N-terminal amino acid of the displayed DFK peptide Fig.
4B.

Specific cytotoxicity of targeted hygromycin conjugated 
phages towards target cells
Evaluation of the cell cytotoxicity of hygromycin carrying
fUSE5-ZZ phages complexed with chFRP5 was done by in
vitro cell-killing experiments. ErbB2-expressing SKBR3
cells were incubated for 48 h with 5 × 1011 of hygromycin
carrying phages, and the relative number of viable cells in
comparison with cells grown in the absence of the phage
was determined using an enzymatic MTT assay. As shown
in Fig. 5A, hygromycin carrying fUSE5-ZZ-chFRP5 phages
inhibited target cell growth by 50%, (Fig. 5A treatment a),
a >1000 fold improvement in hygromycin potency (in
comparison to the free drug). No killing was observed
when the cells were treated with, hygromycin conjugated
fUSE5-ZZ-phages in complex with human IgG (non-tar-
geted) (Fig. 5A treatment b) or to targeted fUSE5-ZZ-
chFRP5 that were not conjugated to the drug (Fig. 5A
treatment c). In contrast, the viability of HEK293 cells that
were treated with the same dose of hygromycin carrying
phages was not affected at all (Fig. 5B).

Specific cytotoxicity of doxorubicin conjugated fUSE5-
ZZ(p8)DFK phages towards ErbB2-expressing cells
Evaluation of the cell cytotoxicity of doxorubicin conju-
gated fUSE5-ZZ(p8)DFK in complex with the anti ErbB2
antibodies trastuzumab (Herceptin®) (Fig. 5C) or anti
EGFR cetuximab (Erbitux®) (Fig. 5D) was done with in
vitro cell-killing experiments with A431 and SKBR3 cells.
Here the drug was designed to be released in a controlled
manner. Doxorubicin was conjugated to the phage using
the EDC chemistry, through the engineered DFK tri-pep-
tide where the drugs release is mediated through the
cathepsin-B activity in the endosomal-lysosomal com-
partments. As shown in Fig. 5C, and 5D, doxorubicin car-
rying fUSE5-ZZ(g8p)DFK in complex with each of the
targeting IgGs, but also with the non-targeting human IgG
caused efficient killing of the target cells, in a dose-
dependent manner. When doxorubicin was conjugated to
fUSE5-ZZ phages in complex with trastuzumab (without
the DFK sequence), growth inhibition was minimal.

Discussion
This study presents targeted, drug carrying filamentous
bacteriophages (phages) as a drug delivery platform for
targeting cancer cells. Our phages represent a modular tar-
geted drug-carrying platform of nanometric dimensions
(particle diameter 8 nm, length of a few hundred nm)
where targeting moieties, conjugated drugs and drug
release mechanisms may be exchanged at will. Specifi-
cally, we have generated engineered phages that carried
either the drug hygromycin covalently linked to the phage
coat, or the drug doxorubicin linked through a cathepsin-
B cleavable peptide that was engineered into the major
coat protein of the phage. As targeting moieties we used
three IgG antibodies; trastuzumab and chFRP5 that target
ErbB2 and cetuximab that target the EGFR. When target
cells were treated with the targeted drug-carrying phages,
selective cell killing could be demonstrated with a poten-
tiation factor of up to several thousand over the free drug.

In our study we used EGFR and ErbB2 as targets; both are
very well characterized in the field of targeted anti cancer
therapy. In fact, two of the three antibodies we used as tar-
geting moieties are used clinically to treat cancer patients
(trastuzumab and cetuximab). All three antibodies we
used were shown before to facilitate the delivery of cyto-
toxic payloads to target cells and tumor models [36-41].
In addition, antibody-displaying filamentous phages have
been shown to undergo internalization into target cells,
which laid the foundation for proposing to use such
"internalizing phages" as gene delivery vehicles
[26,29,32,33,42,43].

The drug carrying capacity of the platform is a key issue in
its potency. With antibody-drug conjugates, the amount
of cytotoxic drug that can be conjugated to the antibody is
usually limited by the conjugation chemistry that, if
pushed to the upper limit, may reduce its capacity to bind
antigen. As a result, such conjugates carry no more than 8
drug molecules per mAb [17]. Recently more elaborate
drug conjugation schemes, such as the use of dendrimers
and branched linkers to increase carrying capacity were
devised to maximize the drug payload per targeting mole-
cule that binds a target site [44-46]. Our phages carry as
much as 104 drug molecules/phage which maximizes the
intracellular drug load upon internalization of the plat-
form into the target cells.

Considering the linkers used to attach the drug to the tar-
geting moiety, an ideal linker should be stable in the
serum and readily degraded within the intracellular
milieu. Some examples from the field of antibody-drug
conjugates are acid-labile linkers and enzyme-cleavable
linkers [4]. We chose to evaluate two approaches; direct
covalent conjugation of the drug to the carrier and conju-
gation of the drug through an engineered cathepsin-B
Page 5 of 14
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Controlled release of doxorubicin release from drug-carrying phagesFigure 3
Controlled release of doxorubicin release from drug-carrying phages. A. The sequence amino-acid sequence (single-
letter code) of the g8p coat protein of fUSE5-ZZ-(p8)DFK phages (top) and native fUSE5 (bottom). The mutated residues are 
marked by black arrows. B. Drawing (not to scale) of a single fUSE5-ZZ-(p8)DFK phage; In the phage scheme on the right, 
small turquoise spheres represent major coat protein g8p monomers. Purple spheres and sticks represent the 5 copies of 
minor coat protein g3p, which is fused to a three-color helix representing the IgG binding ZZ domain. The Y shaped structure 
represents complexed IgG. An engineered g8p monomer is shown on the left. The helix represents a partial structure of a sin-
gle major coat protein p8, conjugated through an amino terminal aspartate (D) of the sequence DFK carboxyl side chains a 
molecule of doxorubicin (red). C. A Photograph of the cathepsin-B release experiment tubes, on the right, doxorubicin carry-
ing fUSE5-ZZ-(p8)DFK phages that was incubated with cathepsin-B, followed by PEG/NaCl precipitation, a reddish soluble D-
DOX (verified by HPLC and MS in Fig. 5) is seen as well as a reddish pellet representing the drug conjugated through the inter-
nal glutamate residue. On the left is a tube containing fUSE5-ZZ phages that was incubated with cathepsin-B, followed by PEG/
NaCl precipitation, the transparent colorless solution indicate no drug release.
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analysis of the Cathepsin-B released materialFigure 4
analysis of the Cathepsin-B released material. A. The crude cathepsin-B released material from re-suspended, PEG-pre-
cipitated, cathepsin-B treated, doxorubicin-carrying fUSE5-ZZ-(p8)DFK phages was analysed using a gradient of acetonitrile in 
water on a Waters HPLC machine (RP; C-18 column) following the doxorubicin specific emission wavelength 480 nm. Cathep-
sin-B released material eluted at 24–25 minutes post injection. B. The crude cathepsin-B released material was analyzed by 
MALDI TOF MS. The theoretical mass of the aspartate-doxorubicin (shown in the insert) was observed by the mass spec-
trometry Analysis as a major peak 656.04 (marked by arrow – corresponding to the weight of aspartate-doxorubicin.
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cleavage site. Our results (Fig. 5) show that both
approaches are viable, but the results may vary with differ-
ent drugs and/or targeting antibodies. Phages that were
used to deliver covalently linked hygromycin to ErbB2

expressing cells (chFRP5 IgG as the targeting moiety, Fig.
5A) could cause specific cell growth inhibition. When
phages were used to deliver doxorubicin to either erbB2
expressing cells (trastuzumab as the targeting moiety, Fig.

Toxicity analysis of targeted drug carrying phages by in vitro cell-killing assaysFigure 5
Toxicity analysis of targeted drug carrying phages by in vitro cell-killing assays. A) Hygromycin carrying phages on 
SKBR3 target cells SKBR3 cells were incubated with 5 × 1011 of hygromycin carrying fUSE5-ZZ-chFRP5 phages (a), hygromycin 
carrying fUSE5-ZZ-human IgG (b), hygromycin carrying fUSE5-ZZ-human IgG (c), 2 mg free hygromycin/well (d), 0.2 mg free 
hygromycin/well (e), 0.02 mg free hygromycin/well (f) 0.002 mg free hygromycin/well (g). B) Hygromycin carrying phages on 
HEK293 non-target cells HEK293 cells were incubated with 5 × 1011 of hygromycin carrying fUSE5-ZZ-human IgG phages (a), 
hygromycin carrying fUSE5-ZZ-trastuzumab phages (b), hygromycin carrying fUSE5-ZZ-cetuximab phages (c), 1 mg/ml free 
hygromycin (d), 0.1 mg/ml free hygromycin (e), 0.01 mg/ml free hygromycin (f). C) Trastuzumab-targeted, doxorubicin carrying 
phages on SKBR3 target cells SKBR cells were incubated with serial dilutions of doxorubicin carrying phages; Grey bars, doxo-
rubicin carrying fUSE5-ZZ-trastuzumab, Black bars fUSE5-ZZ-(p8)DFK-human IgG, white bars, doxorubicin carrying fUSE5-
ZZ-(p8)DFK-trastuzumab. D) Cetuximab-targeted, doxorubicin carrying phages on A431 target cells A431 cells were incu-
bated with serial dilutions of doxorubicin carrying phages; Grey bars, doxorubicin carrying fUSE5-ZZ-cetuximab, Black bars 
fUSE5-ZZ-(p8)DFK-human IgG White bars, doxorubicin carrying fUSE5-ZZ-(p8)DFK-cetuximab. The relative number of viable 
cells was determined using an enzymatic MTT assay and is indicated as the absorption at 570 nm. The results are expressed as 
percentage of living cells respect to untreated controls. Data represent mean values ± SD of three independent experiments.
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5C) or EGFR expressing cells (cetuximab as the targeting
moiety, Fig. 5D), phages to which the drug was linked
covalently were inefficient in inhibiting cell growth, while
phages that carried the cathepsin-B releasable drug were
more efficient, suggesting that with this particular phage-
drug combination, an engineered drug release mechanism
is necessary to maximized potency. We could not link
hygromycin to DFK-displaying phages, since we found
that hygromycin with a single amino-acid adduct (as is
the product of cathepsin-B release drug in our system) is
inactive as a drug (data not shown).

Early antibody-drug conjugates were comprised of a mon-
oclonal antibody covalently linked to several molecules of
a clinically used anti-cancer drug. The linker connecting
the antibody and the drug was either non-cleavable or
cleavable upon entry into the cell. In the early develop-
ment phase of antibody-drug conjugates, it was believed
that the tumor specificity of anti-cancer drugs could be
improved merely by linking these drugs directly to anti-
bodies via amide bonds [17]. In most cases, the conju-
gates lacked cytotoxic potency and were less potent than
the un-conjugated drugs [47]. Only in the past few years
the critical parameters for optimization have been identi-
fied and have begun to be addressed. These include low
drug potency, inefficient drug release from the mAb and
difficulties in releasing drugs in their active state [44]. On
the basis of this much research has been focused on
designing new linker technology. The use of peptides
which are susceptible to enzymatic cleavage, as condition-
ally stable linkers for drugs to mAbs. The peptides are
designed for high serum stability and rapid enzymatic
hydrolysis, once the mAb-drug conjugate is internalized
into lysosomes of target cells. For example cathepsin-B
sensitive peptides. Cathepsin-B is a cysteine protease
found in all mammalian cell lysosomes. The cathepsin-B
cleavable di-peptide Phe-Lys was used for conjugating
doxorubicin to BR96 mAb which were previously conju-
gated through a hydrazone labile linker [48]. The result-
ing immunoconjugate showed levels of immunological
specificity that had been unobtainable using the corre-
sponding hydrazone-based conjugates.

The objective of the experiments described herein was a
feasibility study of applying targeted drug delivery as an
anti cancer tool. The system was designed on three key
components: 1) a targeting moiety, exemplified here by
various monoclonal tumor specific antibodies complexed
via the ZZ domain [34]. 2) A high-capacity drug carrier,
exemplified here by the filamentous phage, with its 3000
copies of major coat protein, each amendable to drug con-
jugation. 3) A drug linked directly or through a labile
linker that is subject to controlled release, exemplified
here by hygromycin conjugate directly or by doxorubicin
that was linked through a cleavable peptide expressed on

all copies of phage major coat protein. In the case of cov-
alently-linked hygromycin, we postulate that a partial non
selective release in the lysosomes post internalization
would eventually lead to a specific killing of target cell.
Several features led us to use hygromycin as the model
drug: The first was the simplicity in which hygromycin can
be conjugated to the phages through simple EDC chemis-
try. Hygromycin has two primary amino groups, one for
phage conjugations and the other for drug or analyte con-
jugation (such as FITC as we have report previously) [34].
Another important feature at this stage is the high drug
solubility in water. With this chemistry, a carrying capac-
ity in excess of 104 drug molecules/phage was previously
reported by us [34].

The second example was a controllable release mecha-
nism that was genetically engineered into the phage major
coat protein g8p (p8). We mutated the N-terminus of p8
to express a cathepsin-B cleavage peptide with the
sequence of DFK [48]. Aspartate (D) was added to the
sequence FK for the creation of two options for chemical
conjugation; through the α-amine or through the car-
boxyl side chain. In addition to this mutation, the native
aspartic side chains were mutated to non carboxyl side
chains (asp 11 (Fig. 3A) was retained since it is buried
within the phage coat an inaccessible to conjugation
[49]). The native lys8 was mutated to glu7 in the newly
mutated p8 and used as internal control for drug conjuga-
tion and to maintaining balanced number of charged res-
idues that are important for phage solubilisation. Indeed,
from Fig. 3C one may appreciate that there was partial
release of doxorubicin upon cathepsin-B treatment, since
doxorubicin molecules linked to glu7 were not released.
Since two of the native carboxyl residues asp4 and asp5
were deleted it is important to note that by this genetic
modification in the structure of the major coat protein-8
we have reduced the potential drug capacity by more then
60%.

Doxorubicin was used as a model drug; primary by two
reasons; the first is its reporter properties, fluorescence as
well as specific emission in the wavelength of 480 nm.
This property was helpful for monitoring of drug release.
The second is the relative tolerance for conjugation of
linkers into the single primary amine located to the
aminoglycoside ring tailored specifically for the solubili-
zation of this highly hydrophobic drug. Doxorubicin was
conjugated to phages through EDC chemistry, resulting
with reddish solution. The releasing experiment with
commercial cathepsin-B led to a complete release of all
connected doxorubicin molecules. Each DFK phage
release about ~3500 doxorubicin molecules as we meas-
ured by a specific reading at 480 nm with a reference of a
calibration curve of free doxorubicin. This results corre-
lates with the maximal theoretical capacity of this phages.
Page 9 of 14
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Using HPLC analysis, we found that the release was lim-
ited to the DFK phage only, while doxorubicin linked cov-
alently to the wild-type phage coat was not released.
Further MALDI-TOF MS analysis showed that the released
moiety was doxorubicin with aspartate linked to it. Such
adducts are common when labile linkers are used do
deliver drugs, and in the case of doxorubicin, do not seem
to inactivate it. This is similar to the released drug of the
"non-cleavable" antibody-drug conjugates where upon
degradation in the lysosomal compartment, the drug
remains covalently linked to a single amino acid, either
lysine for maytansinoid conjugates or cysteine for aurista-
tin conjugates [50-52].

Internalization of the phages, unconjugated or armed
with drug could be demonstrated by fluorescence confo-
cal microscopy (Fig. 2). The result of the target cell killing
assays showed that the soluble drug hygromycin con-
nected through a non cleavable stable amide bond,
directly to phage coat carboxyl residues, could achieve
impressive potency improvement, in factor of >1000 over
the free drug (Fig 5A) (5 × 1010 phages carrying 104 drug
molecules/phage, carry 0.43 µg free drug, which inhibits
cell growth as well as ~1 mg of free drug). This occurred
although poor drug release within the cells could be
expected.

The interpretation of the results of doxorubicin-carrying
phages is more complex, since the goal of this system was
a proof of new concept for the construction of cleavable
linkers by genetic engineering instead of conventional
organic chemical linkage. Our results show the DFK pep-
tide to be specifically cleaved by cathepsin-B, specifically
at the engineered site (Fig. 3) and within the target cells.
Further, doxorubicin-carrying DFK phages (Fig. 3B and
3C, white bars) are more potent in comparison the phages
that carry covalently-linked doxorubicin (Fig. 3B and 3C,
grey bars) even though the latter carry 10000 drug mole-
cules/phage while the former carry 3500 drug molecules.
Moreover, phages to which doxorubicin was covalently
linked, although they were target-specific, inhibited cell
growth less efficiently than non-specific, human IgG
linked DFK phages, further demonstrating the contribu-
tion of the engineered drug-release mechanism to the
potency of the platform. As for the limited specificity of
doxorubicin-carrying DFK phages, we have already
observed that coating phages with a high density of hydro-
phobic molecules limits the solubility of the phages [34]
and cases them to become "sticky", that is, to bind non-
specifically to bacteria and to cells (unpublished results).
The results shown in Fig. 5B and 5C suggest that this may
also be the case with doxorubicin-carrying phages, since
comparably levels of cell-killing could be observed when
that phages were linked to the targeting antibodies, or to
the irrelevant control, normal human IgG. Such non-spe-

cific killing could not be observed with hygromycin-
armed phages (Fig 5A). Doxorubicin is known as a drug of
which doses are limited by unwanted toxicity to non-
tumor tissues [53]. Doxorubicin and other anthracyclines
are amphiphilic molecules known to interact with cell
membranes [54], which may cause non-specific binding.
Large polymer-doxorubicin conjugates were reported as
having limited solubility [55], which may also affect target
specificity. One may concluded that drug delivery plat-
forms that carry the drug on the outside will be limited to
highly water soluble drugs that do not bind non-discrim-
inately to cells. However, a remedy to this limitation may
be found in linking the hydrophobic drug to the phage
through a solubility-enhancing linker, as we have recently
reported [34]. We have shown that the potency and the
target specificity of anti bacterial chloramphenicol-armed
phages was substantially improved when this hydropho-
bic drug was linked to the phage coat through small
hydrophilic molecules that served as solubility-enhancing
linkers. On the other hand, phages that were directly
armed with the hydrophobic drug chloramphenicol were
less specific [34]. An additional advantage of such an
added hydrophilic coat is that it reduces both the immu-
nogenicity and antigenicity of the drug-carrying phages
upon injection into mice (unpublished data).

Conclusion
To conclude, our study demonstrated a proof of principle
of targeted, drug-carrying filamentous bacteriophage as
anti cancer agents. The issues of Pharmacokinetics, biodis-
tribution and immunogenicity and tumor penetration:
these parameters are key issues in current phage therapy
studies [56,57]. Basically, phages are immunogenic on
one hand, and upon intravenous injection are removed
quickly by the reticuloendothelial system on the other.
Attempts to modulate phage pharmacokinetics were
based on isolating long-circulating mutants of phage
lambda [56]. But no such studies were done with the fila-
mentous phages. We believe that chemical modification
of the phage coat (as we do during drug conjugation)
should modulate the pharmacokinetics, the biodistribu-
tion and the immunogenicity in comparison to bare
phages. Regarding tumor penetration, phages can not be
regarded as huge complexes as may be evident from their
molecular weight which is about 15 million dalton. Due
to their needle-like structure, they may very well penetrate
into tumors, as may be suggested by the study where
xenografts in nude mice were eradicated following IV
injection of phages that delivered a therapeutic gene [32].
We are currently comparing the immunogenicity, phar-
macokinetics and biodistribution of un-conjugated to
drug-carrying phages in animal studies.
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Methods
Cell lines
Cell lines used were the human breast carcinoma cell lines
SKBR3 and MDA-MB231, the human epidermoid carci-
noma A431 cell line, and the human kidney HEK293 cell
line. Cells were maintained in Dulbecco's modified Eagle
medium (DMEM) containing 10% foetal calf serum
(FCS), unless mentioned otherwise.

All the chemicals used were of analytical grade and were
purchased from Sigma (Israel). Unless stated otherwise,
reactions were carried out at room temperature (about
22°C).

Linking phages to the targeting antibodies
Phage fUSE5-ZZ that can be complexed with IgGs was
recently described [35]. Briefly, this is a derivative of the
filamentous phage vector fUSE5 [58] that was engineered
to display the IgG Fc-binding ZZ domain on all copies of
the g3p minor coat protein. Filamentous phages were rou-
tinely propagated in DH5-αF' cells using standard phage
techniques as described [59]. Phages were usually recov-
ered from overnight 1 litre cultures of carrying bacteria.
The bacteria were removed by centrifugation and the
phage-containing supernatant was filtered through a 0.22
µm filter. The phages were precipitated by addition of
20% (w/v) polyethylene glycol 8000 PEG/2.5 M NaCl fol-
lowed by centrifugation as described [59]. The phage pel-
let was suspended in sterile miliQ double-distilled water
(DDW) at a concentration of 1013 pfu/ml and stored at
4°C.

To form a complex with targeting antibodies, 1012 phage
in 1 ml PBS were mixed with 1.6 µg of the IgG: chFRP5
[36], Herceptin® (trastuzumab, Genentech, USA), Erbitux®

(cetuximab, ImClone, USA) or control normal human
IgG (Sigma, Israel). The phage-IgG mixtures were left for
at least 1 h at room temperature. This phage to IgG ration
yields occupancy of about 50% of the available ZZ sites on
the phage [35].

Construction of phage fUSE5-ZZ-(g8p)DFK
fUSE5-ZZ was further modified to display the lysosomal
cysteine protease cathepsin-B cleavable DFK tri-peptide
[48] on all copies of the g8p major coat protein. The DFK
tri-peptide was inserted into the N-terminal region of g8p
by two subsequent steps. First, fUSE5-ZZ DNA was ampli-
fied by PCR using primers P8-DFK/R-FOR (5'-CTGACTT-
TARGGGTCCTGCAGAAGCGGCCTTTGACTCCC-3') with
M13g3BamHI-REV (5'-TATTCACAAACGAATGGATCC 3')
and in a second reaction using primers P8-DFK/R-REV
(CAGGACCCRTAAAGTCAGCGAAAGACAGCATCG-
GAACG-3') with P5-BsrGI-FOR (5'-TCGTCAG-
GGCAAGCCTTATTC-3'). Second, the resulting DNA
fragments were assembled using primers P5-BsrGI-FOR

and M13g3BamHI-REV. The assembled PCR product was
purified, digested with restriction enzymes BsrGI and
BamHI, and cloned into a similarly digested fUSE5-ZZ
phage vector. The resulting phage was named fUSE5-ZZ-
(p8)DFK. The g8p major coat protein of fUSE5-ZZ-
(p8)DFK contains an amino terminal aspartate for drug
conjugation by ECD chemistry to its carboxyl residue fol-
lowed by the cathepsin-B cleavage site phenylalanine-
Lysine (FK). In addition, it contains mutations that elimi-
nated almost all of the naturally occurring free carboxyl
groups on g8p that may be susceptible to EDC conjuga-
tion.

Drug conjugation to phages by the EDC chemistry
The phage major coat protein g8p contains 3 carboxylic
amino acid (glu2; Asp4; asp5;) that can be conjugated by
application of (1-Ethyl-3- [3-dimethylaminopropyl] car-
bodiimide (EDC) chemistry, a rapid reaction performed
at mild acidic pH (4.5–5.5) [60]. All the conjugations
were done within a total volume of 1 ml of 0.1 M Na-cit-
rate buffer; pH = 5, 0.75 M NaCl, 2.5 × 10-6 mol of the
aminoglycoside, 5 × 1012 and phages that were already
complexed with the targeting IgG. The reaction was initi-
ated by the addition of 2.5 × 10-6 mol of EDC, which was
repeated two more times at time intervals of 30 min. Reac-
tions were carried out at room temperature (~22°C) with
gentle stirring in 2 ml Eppendorf tubes for a total of 2 h.
The targeted drug-carrying phage nanoparticles were sep-
arated from the reactants by two successive dialysis steps
of 16 h each against 1000 volumes of sterile 0.3 M NaCl.

Quantifying linked Doxorubicin molecules/phage by 
cathepsin-B cleavage in a cell-free system
2 × 1012 doxorubicin-conjugated fUSE5-ZZ-(g8p)DFK
phages were suspended within 300 µl cathepsin-B reac-
tion buffer as described [48]. Next, 7 units of cathepsin-B
(Sigma, Israel) were added for 24 h at 37°. The phages
were precipitated with PEG/NaCl and the supernatant was
analyzed by reverse-phase HPLC and MALDI-TOF MS. For
the HPLC analysis, a reverse phase C-18 column was used
on a Waters machine with a gradient 0% to 100% of ace-
tonitrile in the mobile phase, at 1 ml/min flow rate.
Under these conditions, the doxorubicin containing peak
at 480 nm was eluted 24–25 min after sample injection.

Evaluation of target cell binding by whole-cell ELISA
Unless stated otherwise, all secondary antibodies, HRP-
conjugated or fluorescent were from Jackson Immunore-
search Laboratories (USA). Evaluation of the binding abil-
ity of fUSE5-ZZ phages complexed with chFRP5 or
trastuzumab to SKBR3 cells was done by whole-cell ELISA
[36]. Following trypsinization, cells were washed once
with 2% foetal calf serum, in PBS (incubation buffer, pH
7.4). In each experiment approximately 106 cells were
divided into individual immunotubes (Nunc, Sweden).
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To confirm the specificity, phages (1010 and 1011 phage/
ml) were added to the cell tubes for 1.5 h at 4°C. After
washing ×2 with incubation buffer, HRP-conjugated rab-
bit anti M13 antibodies (GE healthcare, USA, 1/5000
dilution) were added to the immunotubes for 1 h at 4°C.
Detection of cell bound phage was performed by addition
of 0.5 ml of the chromogenic HRP substrate TMB (Dako,
USA) to each tube and colour development was termi-
nated with 0.25 ml of 1 M H2SO4. Finally, the tubes were
centrifuged for 10 min at 4000 rpm and colour intensity
of supernatants was measured at 450 nm.

Analysis of phage internalization using confocal 
microscopy
Internalization of IgG-complexed phages into SKBR3 and
A431 cells was studied using confocal microscopy as fol-
lows: Cells were grown on 24 mm cover slips in DMEM
supplemented with 10% FCS essentially as described [36].
Subsequently, the medium was replaced by 450 µl DMEM
without FCS into which 5 × 108 phages were added in 50
µl. After 3 h incubation at 37°C, the cells were gently
washed ×3 with PBS and 100 µl of 1 µg/ml of membrane
labelling CM-Dil (Molecular probes, USA) were added
following incubation for 5 min at 37°C and 15 min at
4°C. Next, the cells were washed ×3 with PBS and fixed by
30 min incubation with 500 µl of 4% formaldehyde fol-
lowed by washing with 1 ml PBS. To ensure efficient cell
permeability, cells were washed with 250 µl of 0.2% triton
× 100 in PBS, after which cells were blocked with 90% FCS
in PBS containing 0.05% Tween 20 (Sigma, Israel) for 30
min. The blocking solution was aspirated and mono-
clonal mouse anti-M13 (1/100 dilution; GE healthcare,
USA) was added for 1 h incubation following ×2 washes
with 2% BSA in PBS. Subsequently, cells were incubated
with 1:100 diluted FITC conjugated goat anti-mouse IgG
for 1 h at room temperature. Finally, the cells were gently
washed ×3 with PBS and images were acquired using a
LSM 510 laser scanning confocal microscope (Vontz
3403B).

Cell viability assay
The in-vitro cell-killing activity of hygromycin carrying
fUSE5-ZZ-chFRP5 or doxorubicin carrying fUSE5-ZZ-
(g8p)DFK-trastuzumab and fUSE5-ZZ-(g8p)DFK-cetuxi-
mab antibody complexed phage nanoparticles was meas-
ured by an MTT assay. Human breast carcinoma A431,
SKBR3 target cells, or HEK293 control cells were seeded in
96-well plates at a density of 104 cells/well in DMEM sup-
plemented with 10% FCS. |Targeted drug carrying phage
nano-particles and relevant control phages were added to
samples in 100 µl containing 5 × 1011 phages and serial
three-fold dilutions thereof and the cells were incubated
at 37°C in 5% CO2 atmosphere. 48 h later, the media was
replaced by phage-free media (100 µl per well) containing
5 mg/ml MTT reagent (Thiazolyl Blue Tetrazoliam Bro-

mide, Sigma, Israel, dissolved in PBS) and the cells were
incubated for another 4 h. MTT-formazan crystals were
dissolved by the addition of 20% SDS, 50% DMF, pH 4.7
(100 µl per well) and incubation for 16 h at 37°C in 5%
CO2 atmosphere. Absorbance at 570 nm was determined
on a microtiter plate reader. Identical concentrations and
combinations were tested in four separate wells per assay
and the assay was performed at least three times. The
results were expressed as percentage of living cells in com-
parison to the untreated controls that were processed
simultaneously using the following equation: (A570 of
treated sample/A570 of untreated sample) ×100.
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