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Abstract
Background: Altering a protein's function by changing its sequence allows natural proteins to be
converted into useful molecular tools. Current protein engineering methods are limited by a lack
of high throughput physical or computational tests that can accurately predict protein activity under
conditions relevant to its final application. Here we describe a new synthetic biology approach to
protein engineering that avoids these limitations by combining high throughput gene synthesis with
machine learning-based design algorithms.

Results: We selected 24 amino acid substitutions to make in proteinase K from alignments of
homologous sequences. We then designed and synthesized 59 specific proteinase K variants
containing different combinations of the selected substitutions. The 59 variants were tested for
their ability to hydrolyze a tetrapeptide substrate after the enzyme was first heated to 68°C for 5
minutes. Sequence and activity data was analyzed using machine learning algorithms. This analysis
was used to design a new set of variants predicted to have increased activity over the training set,
that were then synthesized and tested. By performing two cycles of machine learning analysis and
variant design we obtained 20-fold improved proteinase K variants while only testing a total of 95
variant enzymes.

Conclusion: The number of protein variants that must be tested to obtain significant functional
improvements determines the type of tests that can be performed. Protein engineers wishing to
modify the property of a protein to shrink tumours or catalyze chemical reactions under industrial
conditions have until now been forced to accept high throughput surrogate screens to measure
protein properties that they hope will correlate with the functionalities that they intend to modify.
By reducing the number of variants that must be tested to fewer than 100, machine learning
algorithms make it possible to use more complex and expensive tests so that only protein
properties that are directly relevant to the desired application need to be measured. Protein design
algorithms that only require the testing of a small number of variants represent a significant step
towards a generic, resource-optimized protein engineering process.
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Background
Protein properties that are relevant to real-world applica-
tions are often difficult to manipulate using either of the
current protein engineering paradigms [1-3]: structure-
based protein design [4,5] or directed evolution [6-8].
Both methods have shortcomings and advantages that
have been discussed and compared elsewhere [1-3]. Chief
amongst the limitations of both methods is the require-
ment for high throughput computational or physical tests
to evaluate protein variants for suitability to a specific
application. A common problem with both approaches is
that frequently there are no high throughput tests for real
applications. For example, there are no high throughput
tests for measuring how well a protease will remove grass
stains from jeans, how quickly an antibody will shrink a
tumour, or how immunogenic a potential vaccine antigen
will be. As a consequence, protein engineers are fre-
quently forced to compromise. Thus a structure-based
approach in which the effects of large numbers of amino
acid changes on the active site are calculated may require
the protein engineer to consider only the affinity of an
enzyme for its substrate and product while ignoring the
effects that temperature and solvent conditions may have
on the enzyme. Similarly an empirical library based
approach in which large numbers of randomly produced
viral antigen variants are tested for activity may allow the
protein engineer to measure their binding to antibodies
already known to be neutralizing, but would prohibit
direct measurement of the production of such antibodies
in animals exposed to the antigens.

Many non-biotechnological engineering endeavours pose
similar challenges to those found in protein engineering:
a large number of independent variables and cost-prohi-
bitions against exhaustive search. Such diverse tasks as
fuel formulation, clinical trial design and chemical proc-
ess optimization are solved using experimental designs to
combine variables in specific ways, and regression analy-
sis techniques to dissect out the contribution of each var-
iable to the outcome [9]. The common goal in all these
areas of optimization is to keep the total number of activ-
ity measurements small enough to allow complex func-
tional tests that are directly relevant to the final
application.

Multivariate data analysis has been used to optimize small
molecules and peptides for nearly a quarter of a century
[10-16]. In their paper describing chemical synthesis of a
gene in 1984, Benner and colleagues suggested that sys-
tematic variation of amino acids could provide an under-
standing of the relationship between a protein's sequence
and its function [17]. Until recently, however, synthesis of
specifically designed individual genes has been suffi-
ciently difficult to effectively preclude the construction of
designed gene sets and meaningful testing of analytical

predictions. Such efforts have thus been largely confined
to the synthesis of very small numbers of discrete polynu-
cleotide [18] or protein variants [19], or to the analysis of
variants produced in a library [20-22].

A synthetic biology approach to protein engineering has
been enabled by recent advances in gene synthesis tech-
nology [23-26] that permit cost-effective synthesis of indi-
vidually specified gene sequences instead of relying on
creation of libraries of variant sequences [27,28]. The fea-
sibility of producing tens or hundreds of protein variants
in which all amino acid changes are precisely specified
allows the sequences and activities of these variants to be
analyzed using multivariate regression and machine
learning techniques adapted from optimization tasks
found in other engineering disciplines.

We have tested this protein engineering approach by
increasing the activity and heat stability of proteinase K.
We selected 24 amino acid substitutions, then designed,
synthesized and tested 59 genes containing combinations
of these changes. We tested 8 different machine learning
algorithms for their ability to identify the amino acid
changes with a beneficial effect on proteinase K activity by
using them to design new variants with improved combi-
nations of substitutions. In 3 design cycles we synthesized
genes encoding a total of 95 enzymes (~100 kb of syn-
thetic genes), some of which had 20 times higher activity
than the wild type protein. All 8 algorithms produced
enzyme designs that were substantially improved over
wild type. The results show that machine learning models
of protein sequence and activity combined with efficient
gene synthesis can be valuable tools in engineering pro-
teins with improved properties.

Results and Discussion
1. Selection of proteinase K as a test system
To test machine learning-based protein engineering we
chose to optimize proteinase K-catalyzed hydrolysis of the
tetrapeptide N-Succinyl-Ala-Ala-Pro-Leu p-nitroanilide
following a heat-treatment of the enzyme. We selected
this activity because it mimics a key characteristic of prac-
tical protein optimization; target activities frequently
result from a combination of protein properties, in this
case expression and post-translational processing in a het-
erologous host, catalytic activity and thermostability.

The gene encoding proteinase K from Tritirachium album
[29] was re-synthesized with an E. coli codon bias [30,31]
and cloned into an arabinose-inducible E. coli expression
vector. The nucleotide and amino acid sequences of this
initial ("wild-type") proteinase K sequence are shown in
Additional file 1.
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2. Engineering proteinase K: design methods
2.1 Overview of the method
The protein engineering method described here involves
the following steps.

i) Selection of amino acid substitutions to incorporate
into a target protein.

ii) Design of protein variants containing different combi-
nations of those substitutions.

iii) Synthesis of genes encoding the protein variants.

iv) Expression of the protein variants.

v) Measuring the activity of the protein variants.

vi) Analysis of protein variant sequences and activities to
assess the contribution of each amino acid substitution.

vii) Design of a new set of variants using the information
from vi).

viii) Iteration of steps iii) to vii).

These steps are described in detail for the engineering of
proteinase K in the Results sections noted in Figure 1.

Flowchart of protein engineering design and testing processFigure 1
Flowchart of protein engineering design and testing process. The figure shows an overview of the experimental flow 
described in this work. Details are provided for each step in the indicated section of Results and Discussion.

Choose substitutions (Results section 2.2)

Starting point: wt proteinase K (Results section 1)

Design Variant Set 1 (1-1 to 1-59) (Results section 2.3)

Test Variant Set 1 (Results section 2.4)

Machine learning from data for  Variant Set 1 (Results section 2.5)

Design of Variant Set 2 (Results section 2.6)

A: Optimal (2-1 to 2-6)  B: Exploring (2-7 to 2-20)

Machine learning from data for  Variant Sets 1 & 2 (Results Section 2.7)

Design & Testing of Variant Set 3 (Results Section 2.8)

A: All positive substitution weights (3-1 to 3-5)  

B: Substitution weights > 1 SD above 0 (3-6 to 3-9)

C: Substitutions considering interactions between residues (3-10 to 3-16
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2.2 Selection of amino acid substitutions
We planned on synthesizing a total of less than 100 vari-
ants containing combinations of a limited set of amino
acid substitutions. To define a search space that could be
effectively explored by synthesizing such a small number
of variants we chose to use twenty four amino acid substi-
tutions within the ~370 amino acid proteinase K: less
than 0.5% of the total number of single amino acid
changes possible.

To select the substitutions, a set of serine proteases with
>30% amino acid identity to proteinase K were identified
by using the BLAST algorithm to search Genbank. This
search produced 3 groups of homologous sequences.
Group A contained the wild type and 5 close homologs
(>90% amino acid identity). Group B contained 42 more
distant homologs (between 30% and 90% amino acid
identity). Group C contained 11 homologs (>30% amino
acid identity) that were either reported in the literature to
be thermostable or were >90% identical to a known ther-
mostable sequence. Genbank accession numbers are pro-
vided in Additional file 1.

The homologs were aligned using clustalW[32], to iden-
tify the amino acids in each homolog that corresponded
with the amino acid found in wild type proteinase K at
each position. To increase the probability that at least
some of the substitutions would increase activity, we
selected 24 substitutions based on several different criteria
[33]: (i) the substitution was reported in the literature to
increase the stability of the serine protease subtilisin
(N95C, P97S, E138A, M145F, L299C, I310K) [34,35]; (ii)
the amino acid occurred within the homolog set (S107D);
(iii) the amino acid occurred within >70% of homologs
from thermophilic organisms and within other homologs
(S123A, I132V, L180I, R237N, S273T, G293A, K332R,
S337N); (iv) the amino acid was found within the
homolog set and the substitution from the wild type resi-
due is favourable in the Dayhoff substitution matrix
(V167I, A199S, V267I) [36]; (v) principal component
analysis of amino acids responsible for clustering of
homologs from thermophilic organisms (K208H, A236V)
[37]; (vi) literature reports that the P5S substitution has a
stabilizing effect in subtilisin [34,35] AND appearance of
a P to S substitution in the closest proteinase K homolog
(P265S, P355S); (vii) the change occurred in a close
homolog that is also thermostable (Y151A) and (viii) a
random mutation identified during synthesis of the wild
type (Y194S). This information is summarized in Table 1

We emphasize that the method used for choosing amino
acid substitutions is independent of the subsequent
machine learning analysis. Substitutions could be selected
by any of the many available methods including analysis
of protein structures [38] or comparison of homologous

sequences [39]. A more detailed review of combined
methods for substitution selection has been published
elsewhere[40].

2.3 Design of variant set 1
In order to test the machine learning algorithms, we
needed to obtain a set of variants with corresponding
activity measurements. For the most accurate analysis
each substitution should be approximately equally repre-
sented, and should occur with as many different substitu-
tions (ie in different sequence contexts) as possible. We
encountered two somewhat related obstacles to creating
such a variant set. Firstly, all of the substitutions were pre-
viously untested, so we did not know how many would
completely inactivate the enzyme. Secondly we did not
know how tolerant proteinase K would be to changes, that
is how many amino acids we could change in a single var-
iant and retain activity. The initial set of 59 variants was
therefore designed in several stages as we obtained infor-
mation about these parameters. The sequences of all vari-
ants synthesized are shown in Additional file 2.

i) First a set of 24 variants was designed with combina-
tions of substitutions selected randomly but with the con-
straint that each of the 24 substitutions occurred 6 times
and each variant contained 6 substitutions (1–2 to 1–25,
design method B in Additional file 2). Of these 24 variants
only one (1–13) was active after heat-treatment. To deter-
mine whether the low survival rate was because the substi-
tutions destroyed all proteinase K activity, or because the
substitutions primarily affected the heat sensitivity, we
also measured the activity of all 24 variants without heat-
ing. Under these less stringent conditions we found three
additional variants that were active (1–2, 1–6 and 1–12).
Eighteen of the 24 substitutions were present in 1 or more
of these 4 variants with detectable proteinase K activity
and thus did not completely inactivate the enzyme.

ii) To see which of the remaining 6 substitutions
destroyed proteinase K activity, we synthesized variants
containing the substitutions that had not occurred within
an active variant (1–26 to 1–33, design method C in Addi-
tional file 2). Variants containing N95C, P97S, E138A,
A236V and L299C were completely inactive, so these sub-
stitutions were eliminated from further designs.

iii) To obtain a larger number of active variants for mode-
ling using machine learning we designed 10 variants by
arbitrarily combining 3 substitutions that had appeared
previously in active variants (1–34 to 1–43, design
method D in Additional file 2) and 6 variants by arbitrar-
ily combining 5 substitutions that had appeared previ-
ously in active variants (1–44 to 1–49, design method E in
Additional file 2).
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Table 1: Amino acid substitutions selected for modification of proteinase K.

Substitution Effect Reason for Selection

N95C Lethal Literature report: disulphide bond between 95C and 299C reported to stabilize subtilisin BPN' (S3C and Q206C 
in subtilisin)[34,35].

P97S Lethal Literature report: P to S reported to increase stability in subtilisin BPN' (P5S in subtilisin)[34,35].

S107D Negative Homolog sequence alignment analysis: D present at this position in 2/42 Group B homologs.

S123A Positive Thermostable homolog sequence alignment analysis: residue found in 8/11 Group C homologs and 6/42 Group B 
homologs.

I132V Positive Thermostable homolog sequence alignment analysis: residue found in 10/11 Group C homologs, 1/6 Group A 
homologs and 13/42 Group B homologs. Also a favorable change according to Dayhoff substitution matrix[36].

E138A Lethal Literature report: acidic residue to A reported to increase stabibility in subtilisin BPN' (D41A in 
subtilisin)[34,35].

M145F Negative Literature report: M to F reported to increase stabibility in subtilisin BPN' (M50F in subtilisin) [34,35].

Y151A Strong positive Thermostable homolog sequence alignment analysis: residue found in close thermostable homolog gi|131084 and 
2/42 Group B homologs.

V167I Negative Substitution matrix-derived change: favorable change according to Dayhoff substitution matrix [36]. Residue 
found in 1/6 Group A homologs and 27/42 Group B homologs.

L180I Positive Thermostable homolog sequence alignment analysis: residue found in 10/11 Group C homologs, 1/6 Group A 
homologs and 10/42 Group B homologs. Also a favorable change according to Dayhoff substitution matrix [36].

Y194S Negative Random mutation obtained during synthesis of wt proteinase K.

A199S Negative Substitution matrix-derived change: favorable change according to Dayhoff substitution matrix [36]. Residue 
found in 1/6 Group A homologs and 9/42 Group B homologs.

K208H Positive PCA identification of amino acids responsible for clustering of thermophilic sequences gi|4092486; gi|56160990; 
gi|114081 within Group A and B homologs [37].

A236V Lethal PCA identification of amino acids responsible for clustering of thermophilic sequences gi|4092486; gi|56160990; 
gi|114081 within Group A and B homologs [37].

R237N Negative Thermostable homolog sequence alignment analysis: residue found in 9/11 Group C homologs, 1/6 Group A 
homologs and 1/42 Group B homologs.

P265S Negative Structural considerations: literature report: P5S reported to increase stability in subtilisin BPN' (P5S in subtilisin) 
[34,35]. 265S found at this position in proteinase K closest homolog (gi|131084).

V267I Positive Substitution matrix-derived change: favorable change according to Dayhoff substitution matrix [36]. Residue 
found in 1/6 Group A homologs and 1/41 Group B homologs.

S273T Positive Thermostable homolog sequence alignment analysis: residue found in 11/11 Group C homologs, 1/6 Group A 
homologs and 29/41 Group B homologs. Also a favorable change according to Dayhoff substitution matrix [36].

G293A Strong positive Thermostable homolog sequence alignment analysis: residue found in 11/11 Group C homologs, 1/6 Group A 
homologs and 38/41 Group B homologs.

L299C Lethal Disulphide bond between 95C and 299C reported to stabilize serine proteases [34,35].

I310K Negative Literature report: K substitution at this position reported to increase stabibility by adding hydrogen bonding in 
subtilisin BPN' (Y217K in subtilisin) [34,35].

K332R Positive Thermostable homolog sequence alignment analysis: residue found in 8/11 Group C homologs and 1/6 Group A 
homologs. Also a favorable change according to Dayhoff substitution matrix [36].

S337N Positive Thermostable homolog sequence alignment analysis: residue found in 8/11 Group C homologs, 1/6 Group A 
homologs and 2/41 Group B homologs. Also a favorable change according to Dayhoff substitution matrix [36].

P355S Negative Structural considerations: literature report: P5S reported to increase stability in subtilisin BPN' (P5S in subtilisin) 
[34,35]. 355S found at this position in proteinase K closest homolog (gi|131084).

Selection criteria and references are shown for 24 amino acid substitutions within proteinase K. Group A, wild type plus 5 closest homologs (>90% 
identity); Group B, 42 homologs (30–90% identity); Group C, 11 thermostable homologs. The effect of each substitution is also shown. Lethal: no 
active variant contained this substitution. Negative: the substitution was not selected by any of the third round design methods. Positive: the 
substitution was selected by at least one third round design method and was present in at least one third round variant with activity > 3× wild type. 
Strong positive: the substitution was selected by all third round design methods and are present in the most active variants.
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iv) Finally we performed a manual analysis of the activity
data from the first 49 variants, combining substitutions
that occurred frequently within active variants (1–50 to 1–
59, design method F in Additional file 2).

2.4 Testing variant set 1
To associate protein sequences with functions, we tested
the ability of the proteinase K variants to hydrolyze N-Suc-
cinyl-Ala-Ala-Pro-Leu p-nitroanilide. Proteinase K variants
were expressed in E. coli and purified over a Ni-NTA col-
umn. The purified proteins were heated to 68°C for 5
minutes, cooled and diluted into reaction buffer contain-
ing substrate. The activities measured are shown in Figure
2 and in Additional file 2, which also show the activities
of variants designed in two subsequent design cycles.

Only 19 of the 59 enzymes in variant set 1 had detectable
activities after heat treatment [see Additional file 2]. As
described in section 2.5, we wished to analyze this dataset
using machine learning algorithms to calculate the values
of 20 parameters. Using a dataset this sparse will cause
inaccuracies for the machine learning algorithms. To
increase the number of datapoints without increasing the
number of sequences synthesized we also measured the
activities of all of the enzymes in variant set 1 without the
heating step. We reasoned that this would provide addi-
tional information, differentiating combinations of sub-
stitutions that eliminated enzyme activity entirely from

those which were simply unable to confer thermostabil-
ity. More than half (32 of 59) of the variants in set 1 were
active without a heating step (Additional file 2).

2.5 Choice of machine learning algorithms and analysis of variant set 
1
We wished to learn which amino acid substitutions
increased activity and which were detrimental by analyz-
ing the sequences and activities of the proteinase K vari-
ants. The initial dataset was rather sparse: only two
variants in the initial set (1–40 and 1–50) had an activity
exceeding that of the wild type, by 2.8-fold and 3.3-fold
respectively, while 45 possessed less than 10% of the wild
type activity. Despite the generally low activities of the
first set of variants, there was a range of activities that we
analyzed by machine learning.

To do this we first eliminated five substitutions (N95C,
P97S, E138A, A236V and L299C) because variants with
any of these substitutions did not have any detectable
activity (Additional file 2). We then considered the
reduced set of 19 substitutions, representing each variant
as a 19 dimensional bit vector xi, where xi,j is 1 if there is a
substitution in the variant at position j. We used a bit vec-
tor since only one possible amino acid substitution was
used at each position. A test of a protein variant was
encoded as a pair (xi, yi), where xi represents the variant
and yi the activity measured for this variant.

We selected 8 different machine learning algorithms to
analyze the data. We used 8 different algorithms because
we had no way of knowing which, if any, would be suita-
ble for analyzing protein sequences and activities. The
algorithms differ in two main ways. First in the way in
which they calculate the differences between the meas-
ured activity and the predicted activity (the "loss"), for
example whether they use the square of the differences
between measured and predicted activities (square loss),
or whether they place more weight on differences between
measured and predicted activities for the more active var-
iants (matching loss). Second, the algorithms use differ-
ent regularization functions, which determine for
example whether preferred solutions use many small
weights (2-norm) or fewer large weights (1-norm). The
algorithms used were: ridge regression (RR) [41]; least
absolute shrinkage and selection operator (Lasso) [42]);
partial least square regression (PLSR) [43]; support vector
machine regression (SVMR) [44]; linear programming
support vector machine regression (LPSVMR) [45]; linear
programming boosting regression (LPBoostR) [46];
matching loss regression (MR) [47,48]; one-norm regular-
ization matching-loss regression (ORMR) [47,48]. See
Additional file 1 for detailed descriptions of the algo-
rithms.

Three cycles of proteinase K variant design and testingFigure 2
Three cycles of proteinase K variant design and test-
ing. Mean activity measurements of the 3 sets of proteinase 
K variants are shown. Set 1 (diamonds) is the initial set of 59 
variants. Set 2 (squares, 20 variants) was designed using the 
activities of Set 1. Set 3 (triangles, 16 variants) was designed 
based on sets 1 and 2. Activities towards N-Succinyl-Ala-Ala-
Pro-Leu p-nitroanilide were measured at 37°C following a 5 
minutes heat treatment of the enzyme at 68°C. Activities are 
expressed relative to the mean activity of 2 replicates of the 
wild-type proteinase K.
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Each algorithm was used to build linear models of the
sequence and activity by calculating a 20-dimensional
weight vector w, where the activity of a variant xj is esti-

mated as i = (∑j = 1..19wjxi,j) + w20. The weight wj is asso-

ciated with the j-th substitution, providing a measure of
the effect of the j-th substitution on proteinase K activity.
The last weight w20 is an additive shift. The machine learn-

ing algorithms were used to select values for wj that

resulted in the best correlation between the activities that
had been measured for each variant and the activities pre-
dicted by the weight vectors w. To do this we created 1000
subsamples of the training set (the set of all (xi, yi) pairs

used for a cycle of machine learning) by leaving out 5 ran-
domly chosen variant sequences for each such subsample.
For all 8 algorithms we calculated the mean value and the
standard deviation of each substitution weight wj over the

1000 subsamples of the training set.

2.6 Design of variant set 2
One objective in designing a second variant set was to see
whether variants based on the results of machine learning
analysis had improved activity relative to the training set.
We also wished to obtain additional data so that we could
perform a second round of machine learning-based vari-
ant design, should the first round prove successful. Vari-
ant set 2 was therefore designed in 3 parts.

Initially we used each machine learning algorithm to
select the sequence that it predicted would have the high-
est activity using the heated activity data from the first set
(variants 2-1 to 2–6, design method G in Additional file
2). The effect of any substitution may depend upon the
other substitutions with which it occurs (see Section 3.7).
The fewer times that a substitution has been seen, the less
accurately its average effect is known. We reasoned that a
substitution should be seen at least three times to estimate
a meaningful average effect (if the effect in one context is
positive, and in another context is negative, a third context
will provide a "tiebreaker"). We therefore excluded substi-
tutions that had occurred in active variants fewer than 3
times. To further reduce the chances of incorporating an
apparently positive substitution that actually had a nega-
tive effect we only included those substitutions whose
weights exceeded a threshold. We first normalized all our
activities against the wild type, resulting in activity 1 for
the wild type. We then chose the threshold as 0.04 = 1/25,
where 25 is the original number of weights (24 substitu-
tions plus a bias term). Note that the final number of sub-
stitutions somewhat smaller (19). This led to the
exclusion of M145F, S123A, E132A and V267I from vari-
ants 2-1 to 2–6. In designing variant set 3, we improved
our design method, using the standard deviation for each

substitution weight instead of an arbitrary threshold (see
Section 2.8).

We designed a further 14 variants in set 2 to more thor-
oughly explore the search space close to already tested var-
iants and thus to provide sufficient data for a further cycle
of machine learning. Six of these (2–7 to 2–12, design
method H in Additional file 2) were designed using each
machine learning algorithm in turn to select the variant
with the largest predicted activity based on the mean
weight for each substitution. To ensure that we designed
sequences that were different from the first six, we only
allowed variants between 3 and 5 amino acid changes
from any tested variant of set 1 or any variant already cho-
sen for inclusion in set 2. The lower bound of distance 3
assured that new and significantly different variants were
chosen, and the upper bound of distance 5 limited the risk
of encountering non-viable combinations.

The last 8 variants of set 2 (2–13 to 2–20, design method
I in Additional file 2) were designed in the same way as 2–
7 to 2–12, except that instead of using the activities after
heating for the machine learning, we used the activities
before heating. The reason for this was that only 19 of the
59 variants had detectable activities after heating, but 32
had detectable activities before heating. The unheated
measurements thus provided a better dataset for machine
learning and we reasoned that they would increase the
diversity of designs of active proteinase K variants. This is
discussed in more detail in section 3.6. The 0.04 threshold
was not subtracted from the weights for designs H and I
(our aim was to design a set of active but different vari-
ants) and the four substitutions that were excluded from
2-1 through 2–6 (M145F, S123A, E132A and V267I) were
included in 2–7 through 2–20.

2.7 Testing and machine learning analysis of variant set 2
The first set of machine learning-based designs signifi-
cantly outperformed those based on a manual "expert"
analysis in set 1. Thirteen of the twenty variants in set 2
were more active than wild-type proteinase K, with 8 more
active than the most active variant from set 1 (Figure 2 and
Additional file 2]). Encouraged by this result we per-
formed a second cycle of machine learning.

The sequence and activity data from the first and second
set of variants was combined and analyzed as before using
each of 8 different machine learning algorithms to build
linear models of the sequence and activity as described in
section 2.5. The mean weights and standard deviations
calculated by each algorithm are shown in Table 2, and
shown graphically for one algorithm (MR) in Figure 3A.

Because we now had more sequence and activity data, we
also performed a rudimentary test of regression models

y
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that consider epistatic interactions between the selected
substitutions. We did this by asking whether models con-
taining epistatic interactions would result in a better fit
between the observed and predicted activities of the vari-
ants in the training set.

Ideally we would like to know for each pair of positions
(A, B) which of the 4 combinations of amino acids present
at A and B maximize the activity. For 19 substitutions

there are a total of 171 total possible pairs to consider (: A
with B, A with C, A with D,...B with C, B with D, etc). Each
pair consists of 4 possible states: both wild-type, both sub-
stituted and 2 possibilities in which only 1 is substituted.
Thus to perform one separate test for each possible com-
bination in every pair would require 684 variants. To test
each of these combinations in at least 3 different sequence
contexts could require >2,000 variants, which would be
quite impractical. Since computational resources are

Table 2: Vector weights calculated for amino acid substitutions.

RR Lasso PLSR SVMR

Substitution M σ M σ M σ M σ

S107D -0.03 0.13 0.00 0.02 -0.70 0.26 -0.16 0.13
S123A -1.00 0.13 -0.41 0.35 -1.42 0.23 -0.93 0.14
I132V 0.04 0.44 0.04 0.55 0.32 0.76 -0.34 0.29
M145F -1.46 0.19 -2.27 0.49 -1.98 0.32 -1.58 0.20
Y151A 1.18 0.23 0.91 0.23 1.66 0.37 0.91 0.15
V167I -0.97 0.13 -1.09 0.15 -1.10 0.17 -0.79 0.14
L180I -0.23 0.15 -0.05 0.10 -0.35 0.19 -0.36 0.13
Y194S 0.27 0.20 0.00 0.01 0.94 0.73 0.01 0.14
A199S -1.16 0.39 -1.09 0.46 -2.66 0.98 -0.86 0.21
K208H 0.28 0.15 0.07 0.12 0.52 0.18 0.36 0.17
R237N -0.93 0.09 -0.91 0.13 -1.21 0.12 -0.86 0.15
V267I -0.48 0.11 -0.32 0.14 -0.68 0.13 -0.16 0.12
S273T 0.12 0.14 0.01 0.06 0.28 0.19 -0.05 0.17
G293A 1.95 0.13 2.24 0.14 2.10 0.17 1.70 0.13
K332R 0.07 0.13 -0.01 0.05 0.02 0.14 0.09 0.15
S337N -0.02 0.14 0.03 0.09 -0.20 0.15 0.03 0.14
P355S -1.08 0.12 -1.20 0.15 -1.25 0.13 -1.10 0.15

LPSVMR LPBoostR MR ORMR

Substitution M σ M σ M σ M σ

S107D -0.01 0.20 -0.02 0.21 -0.35 0.24 -0.35 0.24
S123A -0.41 0.43 -0.40 0.41 0.52 0.93 0.52 0.93
I132V 0.22 0.69 0.18 0.56 2.61 0.91 2.61 0.91
M145F -2.39 0.53 -2.39 0.53 -5.33 1.05 -5.33 1.05
Y151A 0.82 0.24 0.82 0.25 0.64 0.24 0.64 0.24
V167I -0.99 0.24 -0.98 0.23 -1.63 0.24 -1.63 0.24
L180I -0.20 0.16 -0.19 0.16 0.60 0.23 0.60 0.23
Y194S -0.02 0.08 0.21 0.38 4.59 2.10 4.59 2.10
A199S -0.49 0.33 -0.73 0.54 -4.92 2.03 -4.92 2.03
K208H 0.16 0.18 0.14 0.18 0.01 0.13 0.01 0.13
R237N -0.96 0.29 -0.96 0.29 -1.59 0.57 -1.59 0.57
V267I -0.41 0.23 -0.41 0.23 -1.33 0.14 -1.33 0.14
S273T 0.19 0.33 0.15 0.28 0.96 0.58 0.96 0.58
G293A 2.18 0.25 2.20 0.25 3.20 0.14 3.20 0.14
K332R 0.12 0.19 0.14 0.21 -0.33 0.13 -0.33 0.13
S337N 0.27 0.28 0.26 0.28 0.34 0.59 0.34 0.59
P355S -1.34 0.35 -1.35 0.34 -1.95 0.57 -1.95 0.57

Mean (M) and standard deviation (σ) values are shown for the 19 substitutions for which weights were calculated using machine learning. The values 
were calculated from 1000 subsamples of the variants with measurable activity from sets 1 and 2, where 5 variant sequences were randomly 
omitted from each subsample.
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Substitution weight mean and standard deviation values produced by the MR algorithmFigure 3
Substitution weight mean and standard deviation values produced by the MR algorithm. We created 1000 sub-
samples of the training set (the sequences and non-zero activities of variants from sets 1 and 2) by leaving out 5 randomly 
selected variants from each subsample. A: The MR (matching loss) algorithm was used to calculate substitution weights for 
each subsample. The mean values from the 1000 subsamples are indicated by horizontal notches. Error bars represent one 
standard deviation of the 1000 calculated substitution weights. Substitutions are indicated below the graph with the number of 
occurrences in the training set in parentheses. Each substitution is described by a single weight. Variant 3–4 was designed to 
include all substitutions with positive mean weight that occur at least 3 times in the training set (red and blue circles). Note 
that substitution Y194S (green circle) was not selected since it occurred less than 3 times in the training set. Variant 3–9 
included all substitutions that occurred at least 3 times and whose mean weight was at least one standard deviation above zero 
(red circles only). Substitution weights calculated from the entire dataset instead of the mean of 1000 subsamples are shown as 
purple circles. B: The MR algorithm was used to calculate substitution weights as in A, except that models were tested by 
expanding each pair in turn into 4 terms and selecting the pair that most improved the model. In this example each substitution 
is described by a single weight except for the 3 pairs (132,208), (337,355), (267,293) which are modeled by 4 weights each. Re 
d circles indicate the substitutions selected to design variant 3–14. Note that substitution combination I132V 208K was not 
selected since it occurred less than 3 times in the training set.
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cheap we instead used the 1000 subsamples of the train-
ing sets to "virtually" test which pairs of substitutions led
to better predictions by our algorithms.

To do this we expanded one amino acid pair at a time into
its four possible combinations and optimized the new
weight vector. Thus, for each of the 171 possible position
pairs (A, B), we built a model from each of the 1000 sub-
samples using one weight for each position except for the
(A, B) pair for which we used 4 weights: one for each pos-
sible combination of the substitutions at position A and
B. We computed the loss of the linear models on predict-
ing activities of the 5 variants held out from each subsam-
ple (the loss quantifies the differences between the
predicted and measured activities) and averaged the loss
over the 1000 subsamples. If one or more pairs of substi-
tutions improved the model (ie reduced the mean loss)
we fixed the pair that produced models with lowest mean
loss and then repeated the process. Each time we picked
the pair of positions that produced the largest reduction in
the average loss. We stopped expanding amino acid pairs
when no further reduction of the mean loss occurred.

Examples of weights calculated by considering amino acid
pairs are shown in Figure 3B. A comparison of Figure 3A
with 3B shows that the expansion of 3 amino acid pairs
into 4 combinations produced a model that also modified
the weights of the single substitutions. Thus S123A goes
from being less than 1 standard deviation above zero to
more than 1 standard deviation above zero. One substitu-
tion (Y194S) goes from being very positive to negative
(green circles in Figure 3). This substitution was only rep-
resented twice in active variants in the training set, and
both of these variants had very low activities (variants 1–
12 and 1–35; Additional file 2). The consequences of
these weights for variant design are discussed in sections
3.2 and 3.3.

2.8 Design and testing of variant set 3
In designing variant set 3 we aimed to obtain further
increases in proteinase K activity. We also wanted to test
whether new variant designs were improved either by
accounting for the general context dependence of a substi-
tution, or by considering epistatic interactions. Variant set
3 was therefore designed in 3 parts to answer these 3 ques-
tions.

Our first two designs used only linear models. We selected
one sequence for each algorithm by combining substitu-
tions whose weights were calculated by that algorithm to
be greater than zero (variants 3-1 to 3–5, design method J
in Additional file 2). We selected a second sequence for
each algorithm by combining substitutions whose
weights were calculated by that algorithm to be at least 1
standard deviation greater than zero (variants 3–6 to 3–9,

design method K in Additional file 2). Values for the mean
and standard deviations for substitution weights calcu-
lated by each method are shown in Table 2.

The third design used models that considered amino acid
pairs. We selected one sequence for each algorithm by
combining substitutions or substitution pairs whose
weights were calculated by that algorithm to be at least 1
standard deviation greater than zero (variants 3–10 to 3–
16, design method L in Additional file 2). When more
than one pair had a positive substitution weight, we
selected the pair with the highest value when the standard
deviation was subtracted from the mean. Thus in Figure
3B we chose 337S, 355P over S337N, 355P and S337N,
P355S although the weights for all three combinations
were more than 1 standard deviation above zero. As for
designs from the linear models, we only included a com-
bination for a pair if that combination was present in the
training set at least 3 times. Thus in Figure 3B we rejected
I132V, 208K because it was present only twice, but instead
chose 132IK, 208H which had a slightly higher value than
132I, 208K.

For every machine learning algorithm, the design that
incorporated substitutions only when the mean substitu-
tion weights were at least 1 standard deviation above zero,
outperformed the design that incorporated substitutions
when the mean substitution weights were simply greater
than zero. There was no clear pattern when epistatic mod-
els were used: the data is shown in Figure 4 and discussed
in more depth in section 3.3.

3. Analysis of the design methods
3.1 Functional contributions of amino acid substitutions
Ten of the initial set of 24 substitutions that we selected
had a beneficial effect on proteinase K activity, a success
rate of 40%. The substitutions were selected from a total
of more than 7,000 possible (371 positions × 19 alterna-
tives at each position), by using alignments of homolo-
gous sequences without the use of any structural
information.

Table 1 shows the effect of each of substitution next to the
method used to select it. Two of the 24 substitutions
selected (Y151A and G293A) were selected as positive by
all 8 algorithms in the second analyses (section 2.7).
These substitutions were incorporated into every variant
in round 3 and are present in the most active variants.
Both of these substitutions were chosen from alignments
of thermostable homologs of proteinase K. In all, eight of
the ten positive substitutions (S123A, I132V, Y151A,
L180I, S273T, G293A, K332R and S337N) were selected
based on the presence of the new amino acid in an align-
ment of thermostable homologs. By contrast, four of the
five substitutions that were not found in any active variant
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were designed based on literature reports of their stabiliz-
ing effects in subtilisin (N95C, P97S, E138A, and
L299C)[34,35]. We were thus most successful in choosing
beneficial substitutions by selecting changes that occur in
homologous natural proteins.

The positions of all substitutions used are shown mapped
onto the structure of proteinase K [see Additional files 3,
4 and 5]. We could see no obvious pattern distinguishing
the locations of beneficial from detrimental substitutions,
nor were we able to identify simple structural reasons for
the effect of the substitutions.

For future extensions of this method, if a target activity is
not achieved with the initial set of substitutions, addi-
tional substitutions can be chosen and incorporated into
a new set of variants along with the best substitutions that
have already been tested. Results from previous experi-
ments can improve a second cycle of substitution selec-
tion. For example, to obtain further improvements in
proteinase K activity by incorporating new substitutions,
we would pick more substitutions that appear in align-
ments of thermostable homologs and avoid those
reported to confer stability on subtilisin. More data from
other systems will be required to determine whether the

Activities of variants designed using substitution weightsFigure 4
Activities of variants designed using substitution weights. Activities towards N-Succinyl-Ala-Ala-Pro-Leu p-nitroanilide 
were measured at 37°C following a 5 minute heat treatment of the enzyme at 68°C. Activities are expressed relative to the 
mean activity of duplicates of wild-type proteinase K. Error bars represent one standard deviation of the activity measure-
ments. Variants are grouped according to the machine learning algorithm used to calculate substitution weights (indicated 
below each group), and are compared with the best variants from the initial design set (variants 1–40 and 1–50 black bars, on 
the left). The first design (yellow bars, design method G in Additional file 2) of each group belongs to set 2. We included a sub-
stitution in the design if it occurred at least three times in the training set and its mean weight was at least one standard devia-
tion above zero. All remaining designs in each group belong to set 3. The second in each group (green bars, design method J in 
Additional file 2) includes substitutions occurring at least three times and whose mean weights were merely positive (eg Figure 
3A, red and blue circles). The third in each group (red bars, design method K in Additional file 2) contained all substitutions 
occurring at least three times and whose mean weight was at least one standard deviation above zero (eg Figure 3A, red cir-
cles). Note that this third design in each group is always better than the second. The last variant(s) in each group (blue bars, 
design method L in Additional file 2) were designed by modeling interdependent substitutions (eg Figure 3B, red circles).
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best method for picking substitutions varies depending
on the protein target or the desired application. In either
case, using a variety of methods for the initial selection,
then analyzing the functional contributions of substitu-
tions selected by different methods is likely to provide a
good starting point for other protein engineering projects.

3.2 Representation of substitutions in the training data set
In our initial set of variant designs (section 2.3) we aimed
to have each amino acid substitution represented more
than 6 times. Because so many of our random combina-
tions of substitutions were inactive this resulted in a train-
ing set where different substitutions were represented very
unevenly.

There are two major consequences of underrepresentation
of a substitution for machine learning analysis. One can
be seen in Figure 3A, where the MR algorithm assigned
Y194S a high weight even though both variants in the
training set have very low activity. Because there are only
2 active variants encoding Y194S, the machine learning
algorithms tend to assign weights to the substitution that
improve the fit of other substitutions to the model, but do
not really reflect the contribution of the underrepresented
substitution. The more the substitution is represented the
less likely this is to occur because there are more
datapoints that the weight has to be consistent with. Table
2 also shows that this phenomenon is dependent on the
machine learning algorithm used. Two of the three algo-
rithms that use one-norm regularization (Lasso and LPS-
VMR) and use fewer larger weights to fit the data give very
low scores to Y194S.

A second consideration that arises when a substitution is
underrepresented is that it is difficult to assess effects of
context upon the contribution of a substitution. Some-
times a substitution may be beneficial with one set of
other substitutions, but deleterious with a different set.
The fewer times a substitution has been tested, the less
likely such interactions are to be detected.

In this study we required that a substitution occur at least
3 times for us to use it in a subsequent design. For future
designs of variant sets it will be important to ensure that
each substitution is adequately represented in the training
data set.

3.3 Accounting for interactions between amino acid substitutions
The extent to which one substitution affects the contribu-
tion of another substitution to protein function is difficult
to predict. For proteins that have evolved by the sequen-
tial accumulation of point mutations, most of those
mutations must work well in many different contexts.
This is because each new mutation will produce a new
sequence context, so an enzyme whose amino acids were

predominantly very context dependent would be largely
immutable. This view is supported by a study in which all
amino acid differences in 15 natural subtilisins were
recombined by DNA shuffling [49]. Almost all possible
pairwise combinations of amino acid differences were
found in functional subtilisin enzymes produced by this
recombination, suggesting that amino acid covariation
seen in the original 15 orthologs resulted from common
ancestral derivation rather than functional constraints.
Selecting amino acid substitutions that occur in natural
homologs should therefore provide a useful bias towards
variations that are tolerated in many contexts.

Different subsamples of the training set produced differ-
ent values for the weights of each substitution. This differ-
ence probably arises from noise in the data as well as from
possible context effects. To accommodate this variation in
our designs we used the standard deviation of each weight
as a measure of its variability of effect. We compared the
activities of third cycle variants designed by combining all
substitutions whose mean weights were positive (substi-
tution weight example shown in Figure 3A blue and red
circles, activities shown in Figure 4 variants 3-1 to 3–5,
green bars), with those designed by combining only sub-
stitutions whose mean weight was more than 1 standard
deviation above zero (substitution weight example shown
in Figure 3A red circles only, activities shown in Figure 4
variants 3–6 to 3–9, red bars). For every machine learning
algorithm, the variant that contained only substitutions
whose mean weights were at least 1 standard deviation
above zero was more active than the corresponding vari-
ant that included all substitutions with positive weights.
The standard deviation of a substitution weight thus
appears to provide a useful evaluation of the likely contri-
bution of that substitution to protein function.

As described in sections 2.7 and 2.8 we also tested designs
based on regression models that considered epistatic
amino acid interactions. Activities of variants designed in
this way are also shown in Figure 4 (variants 3–10
through 3–16, blue bars, substitution weight example in
Figure 3B). Only the algorithms PLSR and LPBoostR pro-
duced more active designs based on modeling amino acid
interactions than the corresponding designs produced
when all substitutions were modeled independently. One
of these, LPBoostR, found the most active of all the 95
sequences we tested (variants 3–11 and 3–12). However
we note that different machine learning algorithms
selected different amino acid pairs for expansion. It is
therefore unclear to us whether these pairings are actually
related to epistatic interactions between the amino acids
themselves, or result from differences in the machine
learning methods' ways of minimizing discrepancies
between measured and predicted activities in a small and
unevenly distributed dataset.
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Understanding interactions between specific pairs of
amino acid substitutions is unlikely to limit the protein
engineering method described here. To test every combi-
nation of all pairs of amino acid substitutions would rap-
idly become prohibitively expensive: for 19 substitutions
it would require more than 2000 variants (see section
2.7). However it is relatively simple to instead select sub-
stitutions that work well in many contexts and to reject
those that work well in some contexts but poorly in oth-
ers. This can be done by using the standard deviation of
the substitution weight over many subsamples of the
training set, keeping only those whose mean weights are
more than one standard deviation above zero. This will
also ensure that if additional substitutions are incorpo-
rated subsequently, those substitutions already accepted
and fixed are likely to be generally tolerant to further
change.

3.4 Comparison with other design methods
As a control to determine whether the same degree of
activity improvement could be achieved by simpler
means, we analyzed the activity distribution for 4 sets of
variants. The first set, taken from the first 49 variants syn-
thesized, comprised 20 variants which contained arbitrar-
ily selected combinations of the 19 substitutions
considered in the machine learning designs (1–2, 1–6, 1–
12, 1–13 and 1–26 through 1–49; Figure 5, white bars).
The second set comprised 10 variants that were designed
by our "expert" analysis of the sequence and activity data
from the first 49 variants (1–50 through 1–59; Figure 5,
light shading). The third and fourth sets comprised 20 and
16 variants designed using machine learning analysis (2-1
through 3–16; Figure 5, dark shading and black fill respec-
tively). The activities of the randomly designed variants
are predominantly extremely low: 80% are less than 3% of
wild type activity and just one is more active than wild
type. The activities for the variants designed by manual
data analysis are a little more evenly distributed, but still
only one is more active than wild type. By comparison
70% of the variants designed in the first cycle of machine
learning were more active than wild type and all of the
variants designed in the second cycle of machine learning
were at least 3-fold more active than wild type. While it is
not possible for us to compare machine learning with all
available protein engineering methods, this control shows
that machine learning identified highly functional combi-
nations of substitutions that could not be readily
obtained either by random selection or by manual analy-
sis.

The machine learning designs, which resulted in enzyme
activity increases of up to 20-fold, differed from classical
experimental designs (see for example [9]) because of the
epistatic effect of some amino acid changes. Amino acid
changes or pairs of changes that completely eliminate pro-

tein activity will mask any positive or negative contribu-
tions made by other substitutions that occur with them.
Experimental designs such as Taguchi matrices [50,51]
minimize the number of experiments by combining many
variables at once. A Taguchi orthogonal design for testing
24 substitutions would have produced 48 variants con-
taining different combinations of 12 substitutions and 1
containing all 24. Our initial design incorporated only 6
changes into each of 24 variants. Although this was a less
complete testing of the combinations, because 5 substitu-
tions abolished enzyme activity, we did obtain 4 variants
with detectable activity. By synthesizing an additional 8
variants we were able to identify the 19 functional amino
acids in our set of substitutions. By contrast the Taguchi
design would almost certainly have produced only inac-
tive variants and thus no information.

Machine learning has also been used in the related
domain of drug design to search large libraries of small
molecules for compounds with maximal activity towards
a biological target. The activity levels of some compounds
are known and "active learning" methods [52] are used to
select the next batch of compounds to be tested [53].
There are a number of significant differences between
these searches and those in a protein engineering setting.
For example small molecules are described by feature vec-
tors of sizes between 10 and 105 [54], while each protein
variant in this study is described by 24 binary features.
Another difference is that in drug discovery large datasets
are available for testing various machine learning meth-
ods [53,55] while no such data exists for proteins. Small
molecule datasets are also generally quite large, typically
with 103 to 104 compounds: Fang et al estimate that train-
ing sets of 10,000 member compounds are required to
build a predictive model but in this study we tested a total
of less than 100 variant proteins. In part this is possible
because our protein descriptors are so much simpler and
the relatedness of any pair of variants is unambiguous.
This allowed us to identify improved proteins and then to
focus on highly related proteins.

3.5 Multiple protein properties are modified simultaneously
The activity of proteinase K that we targeted depends on
activity towards the substrate and heat-stability of the pro-
tein. We were interested in knowing whether we had mod-
ified one or both of these properties. A second motivation
was that we were unable to measure the concentration or
proteinase K: it autodigested so efficiently that we were
unable even to visualize it on a gel. Since the half-life of
the protein at 68°C should be essentially independent of
the protein concentration, changes in half-life reflect
changes in the protein itself and not possible influences of
expression levels.
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We measured the activity towards the substrate and the
half-life at 68°C of 13 of the best variants. Figure 6A
shows the activity of wild type proteinase K following dif-
ferent exposures to 68°C, Figure 6B shows one of the third
cycle variants (3–9) after the same heating times. Figure 7
shows the activity without heating (white bars) and the
half-life (shaded bars) for wild type proteinase K and 13
third cycle variants, as well as the substitutions in each
variant. With combinations drawn only from a small set
of 24 selected substitutions, a significant diversity of func-
tional combinations provided the desired outcome, from

variants in which the primary effect was increasing overall
activity (3-3) to those in which both activity and half-life
were improved (3–11). We expect that this pattern would
continue if we attempted to deconvolute further. For
example, the increase in activity without heat treatment is
probably a combination of increased specific activity and
increased protein expression levels, with varying contribu-
tions from each activity in each variant. Most importantly
for the approach described here, several properties were
altered simultaneously to improve an activity that
depended on multiple properties.

Machine learning design compared with random choices and "expert" designsFigure 5
Machine learning design compared with random choices and "expert" designs. Distribution of activities of 4 sets of 
variants designed using different methods are shown. Set A (white bars, variants 1–2, 1–6, 1–12, 1–13 and 1–34 to 1–49, total 
of 20 variants) contain arbitrarily selected combinations of 3, 5 or 6 substitutions. Set B (light shading, variants 1–50 to 1–59, 
total of 10 variants) were designed by manual analysis of the sequence and activity data from variants 1 through 49. Set C (dark 
shading, variants 2-1 to 2–20, total of 20 variants) were designed using machine learning algorithms based on the data from var-
iants 1 through 59. Set D (black fill, variants 3-1 to 3–16, total of 16 variants) were designed using machine learning algorithms 
based on the data from variants 1-1 through 1–59 and 2-1 through 2–20.
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3.6 Different machine learning predictions from different data sets
Different parts of variant set 2 were designed using differ-
ent data sets (see section 2.6). Variants 2-1 to 2–12 were
designed using the activity of the first set of protein vari-
ants after heat-treatment, while variants 2–13 to 2–20
used the activity without heat treatment. Variants 2–13 to
2–20 contained new combinations of the substitutions
incorporated into 2-1 to 2–12, as well as 2 that were not
included using only the heated data (S273T and V167I;
Additional file 2). Five variants designed using the
unheated data were more active than wild type, approxi-
mately the same proportion as those that were designed
using the activities after heating (Additional file 2).

Although some variants designed using the unheated
activities were active after heating, the activities without
heating were in no way intended as a surrogate for the
activity after heating. We used the unheated activities only
to obtain a larger set of sequences, but did not measure
the activities of variant sets 2 or 3 without heating. There
are clearly combinations of substitutions that produce
increased activity over wild type without heat treatment,
but lower activity than wild type after heating (eg 1–13, 1–
30, 1–37, 1–43 and 1–47). If we had performed several
cycles of engineering using only the unheated activities,
we would therefore expect only a subset to be active after
heating.

3.7 Differences in predictions of the machine learning algorithms
The different machine learning algorithms did not con-
verge to the same sequence design. The eight algorithms
produced 4 different variant designs (3–6 through 3–9)
using the same training data set. These differences in turn
arose from differences in calculated mean and standard
deviations for the substitution weights (shown in Table
2), which themselves resulted from differences in the way
in which the algorithms model the data. The activities of
the variants designed using different machine learning
algorithms were very comparable (see Figure 4), and we
were unable to really distinguish between them by their
performances. The comparable performance of all the
machine learning algorithms we used is probably due to
the fact that we have too few example proteins. We expect
that with more examples, clear differences between the
algorithms could appear. Testing this hypothesis will
require analysis of additional datasets.

It is unclear from the activity data whether there is a single
optimal sequence, although there are clearly many
improved sequences. For example the two most ther-
mostable variants, 3–9 and 3–11, share 3 substitutions
but differ at 5 positions (see Figure 7). The substitutions
I132V and L180I appear in 3–9 but not in 3–11. Addition
of either of these 2 substitutions to 3–11 leads to variants
with lower thermostability than either 3–9 or 3–11 (vari-

Increases in proteinase K activity with and without heatingFigure 6
Increases in proteinase K activity with and without heating. Proteinase K variants were tested from triplicate inde-
pendent cultures for activity after heating at 68°C for different times: unheated (circles), 2.5 minutes (squares), 5 minutes 
(crosses), 7.5 minutes (triangles), 10 minutes (diamonds) and 15 minutes (open squares). A: absorbance at 405 nm of substrate 
incubated with wild type proteinase K, B: absorbance at 405 nm of substrate incubated with variant 3–9.
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ants 3–2 and 3–12). Thus the effect of these two substitu-
tions appears to be influenced by other changes in the
protein. This context dependence of substitutions suggests
a limitation for approaches such as site saturation muta-
genesis [56], in which all changes are considered inde-
pendently and then combined based only on their
behaviour in the wild-type context.

Conclusion
We have developed a new synthetic biology approach to
protein engineering in which amino acid substitutions are
selected, incorporated in different but defined combina-
tions into a small number of variant enzymes which are
individually synthesized and tested functionally. Machine
learning algorithms are then used to assign values to the
functional contribution of each substitution, which serves
as the basis for a further set of variant designs. The process

is repeated until a target activity is achieved. We have
tested the approach using proteinase K as a target protein.

Substitutions that improved the activity of proteinase K
were primarily identified using alignments of naturally
occurring homologous proteins, structural information
was not used. The exponential accumulation of natural
DNA sequences [57,58] could facilitate the use of phylo-
genetic information for substitution selection in many
other systems, helping to remove the prerequisite of
obtaining high resolution crystal structures before initiat-
ing a protein engineering project.

We tested 8 different machine learning algorithms and
found them all able to produce predictive models describ-
ing the contributions of individual amino acid substitu-
tions to the activity of proteinase K. We also found that it

Changes in activity and half-life in designed protein variantsFigure 7
Changes in activity and half-life in designed protein variants. Activity (unheated) and half life were calculated for 13 
protein variants and wild type proteinase K. The activity without heating was calculated from the initial slopes of the A405 meas-
urements without heating (white bars), examples shown in Figure 6. The half-life at 68°C (shaded bars) was calculated using the 
initial slopes after different heating times and fitting to an exponential curve. Error bars represent one standard deviation of the 
experimental measurements. The wild-type values are shown on the left. The substitutions of each variant are given in the col-
umn below the variant name. Only 10 of the 19 positions are shown. In the remaining 9 positions, all variants contained amino 
acids from the wild-type sequence.
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was unnecessary to consider all possible amino acid inter-
actions to obtain substantial improvements in protein
activity. However, it was advantageous to use the machine
learning models to identify (and eliminate) substitutions
whose effect appeared to vary significantly depending on
the sequence context.

By designing, synthesizing and testing a total of only 95
specific proteinase K variants, of which 36 were designed
using machine learning algorithms, we obtained a 20-fold
increase in protein activity. Application of the strategy
described here to other systems should allow proteins to
be optimized using functional measurements for small
numbers of protein variants. This would obviate the need
for library construction and high throughput screening.
Instead, variants could be directly tested in complex low-
throughput assays that accurately reflect the combination
of properties desired for the final application of the opti-
mized protein.

Methods
Gene synthesis
A proteinase K-encoding gene was designed using Protein-
2-DNA software [30] to select a codon distribution mim-
icking natural highly expressed E. coli proteins [31]. The
gene was assembled from chemically synthesized oligode-
oxyribonucleotides (purchased from Operon) as
described previously [59,60], and cloned into pBAD/gIII
(Invitrogen). Variant genes were synthesized by replacing
oligonucleotides encoding the amino acids with those
encoding the desired amino acid substitutions. Variants
were cloned between the NcoI and SalI sites of the
sequence [see Additional file 1].

Proteinase K expression and purification
Proteinase K was expressed in the E. coli periplasm and
purified on Ni-NTA. Briefly, a single colony of E. coli car-
rying a proteinase K variant in pBAD/gIII was picked from
a carbenicillin plate and grown overnight. Forty microlit-
ers of culture was then diluted into 4 ml pre-warmed LB-
carbenicillin, grown for 3 to 4 hours (to an A600 of 0.2–
0.3), arabinose was added to 0.2% w/v and the cells were
grown overnight. All growth was performed at 30°C in LB
containing 50 µg/ml carbenicillin. Cells were pelleted in a
microfuge, thoroughly resuspended in 200 µl of 20% wv
sucrose, 200 mM NaH2PO4, pH 7.4, 1 mM EDTA and 30
U/µl lysozyme (freshly added from a 30,000 U/µl stock:
Ready-Lyse, Epicentre) and incubated at 25°C for 5 min-
utes. Cells were subjected to osmotic shock by addition of
200 µl ice-cold water, mixed by inversion and incubated
for 5 minutes on ice to release periplasmic protein. Cells
were pelleted in a microcentrifuge. The supernatant was
removed, adjusted to 300 mM NaCl, 10 mM imidazole,
67 mM NaH2PO4, pH 7.4 and loaded onto an Ni-NTA col-
umn (Qiagen) pre-equilibrated with 50 mM NaH2PO4,

pH 7.4, 300 mM NaCl, 10 mM imidazole. The column
was washed twice with 600 µl of 50 mM NaH2PO4, pH
7.4, 300 mM NaCl, 20 mM imidazole and then eluted
twice with 100 µl of 50 mM Tris-Cl pH 7.4, 300 mM NaCl,
250 mM imidazole. The two eluates for each culture were
pooled.

Proteinase K activity measurements
Proteinase K Ni-NTA eluates were heat-treated in a PCR
machine at 68°C for 5 minutes. Proteinase K activity was
measured by addition of 10 µl Ni-NTA eluate to 90 µl
reaction buffer. Final reaction conditions were 50 mM
Tris-Cl pH 7.4, 180 mM NaCl, 5 mM CaCl2, 25 mM imi-
dazole, 500 µM N-Succinyl-Ala-Ala-Pro-Leu p-nitroani-
lide substrate (Sigma S-8511). The reaction was incubated
at 37°C, and followed by measuring absorbance at 405
nm. Activities were calculated from the initial rate of reac-
tion and comparison with a standard curve constructed
using 4-nitroanilide [61-63]. Because proteinase K self-
digests we were unable to accurately determine protein
concentration. Activities are therefore expressed either rel-
ative to the wild-type enzyme activity, or as pmol sub-
strate hydrolyzed per second per ml of initial culture from
which the proteinase K variant was purified (pmol/s/ml).
The activities measured for each sequence in Set 1 and Set
2 are shown in Additional file 2.

Proteinase K half-life calculations
Proteinase K Ni-NTA eluates were heat-treated in a PCR
machine at 68°C for 0, 2.5, 5, 7.5, 10 and 15 minutes.
Proteinase K activity was measured at 37°C, and followed
by measuring absorbance at 405 nm. Initial reaction rates
were plotted against heating time and fitted to an expo-
nential curve.

Machine learning algorithms
Machine learning algorithms and methods used for vari-
ant design are detailed in Additional file 1. Variant set 1
(active variants in Additional file 2) was the training data
set used for the design of set 2. Multiple measurements of
the same variant were treated as separate pairs. All algo-
rithms were implemented using commercially available
software (Matlab from Mathworks).
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