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Abstract
Background: The chicken avidin gene family consists of avidin and several avidin related genes
(AVRs). Of these gene products, avidin is the best characterized and is known for its extremely high
affinity for D-biotin, a property that is utilized in numerous modern life science applications.
Recently, the AVR genes have been expressed as recombinant proteins, which have shown different
biotin-binding properties as compared to avidin.

Results: In the present study, we have employed multiple biochemical methods to better
understand the structure-function relationship of AVR proteins focusing on AVR2. Firstly, we have
solved the high-resolution crystal structure of AVR2 in complex with a bound ligand, D-biotin. The
AVR2 structure reveals an overall fold similar to the previously determined structures of avidin and
AVR4. Major differences are seen, especially at the 1–3 subunit interface, which is stabilized mainly
by polar interactions in the case of AVR2 but by hydrophobic interactions in the case of AVR4 and
avidin, and in the vicinity of the biotin binding pocket. Secondly, mutagenesis, competitive
dissociation analysis and differential scanning calorimetry were used to compare and study the
biotin-binding properties as well as the thermal stability of AVRs and avidin. These analyses
pinpointed the importance of residue 109 for biotin binding and stability of AVRs. The I109K
mutation increased the biotin-binding affinity of AVR2, whereas the K109I mutation decreased the
biotin-binding affinity of AVR4. Furthermore, the thermal stability of AVR2(I109K) increased in
comparison to the wild-type protein and the K109I mutation led to a decrease in the thermal
stability of AVR4.

Conclusion: Altogether, this study broadens our understanding of the structural features
determining the ligand-binding affinities and stability as well as the molecular evolution within the
protein family. This novel information can be applied to further develop and improve the tools
already widely used in avidin-biotin technology.
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Background
Avidin from eukaryotic chicken together with streptavidin
from prokaryotic Streptomyces avidinii share an unique
property not seen in any other known proteins, an
extremely high affinity (Kd ≈ 10-15 M) to its natural ligand,
the water-soluble vitamin D-biotin [1,2]. High affinity
and stability of the free and complex forms of (strept)avi-
din and biotin [1], the easy attachment of biotin to vari-
ous target molecules [3] and the non-obtrusive chemical
nature of biotin are currently exploited in numerous
(strept)avidin-biotin based life science applications [4].

Avidin is postulated to exist throughout the oviparous ver-
tebrates [5-7] and has long been known to be the opera-
tional biotin-harvester in chicken egg-white, comprising
about 0.05% of the total protein [1]. Recently, avidin
related genes (AVRs) highly similar to avidin (91–95%
identity at the nucleotide level) have also been found in
the chicken genome [8-10], suggesting that in addition to
avidin AVRs may also play a role in biotin-harvesting.
AVRs seem to have functional promoter regions [11] and
are located in close vicinity of the avidin gene on the
chicken male-sex chromosome Z [10,12]. Interestingly,
the total number of AVRs is likely to vary between differ-
ent individuals and even between different cells of the
individual chicken [13]. The function of the AVR gene
products is unknown, however, since the proteins
encoded by them have not yet been isolated from chicken
although mRNAs of AVR1, AVR2 and AVR3 are found
during inflammation [11].

Since the avidin gene of chicken is the only cloned avidin
gene within the vertebrates [14], structure-function and
protein engineering studies have long been concentrated
on it [15-24]. The three-dimensional structure of chicken
avidin has already been determined, too [25,26]. The bac-
terial homolog of avidin, streptavidin, is also well charac-
terized: the gene encoding steptavidin has been cloned
[27], its structure solved [28] and several studies on the
biochemical properties and protein engineering of
streptavidin have been reported [17,29-34].

In order to characterize the proteins encoded by the AVRs,
avidin related proteins (AVRs) have recently been pro-
duced in insect cells using a baculovirus expression system
and have been demonstrated to be functional biotin-
binding proteins like chicken avidin [35]. AVRs do, how-
ever, show unique features when compared to avidin. The
AVRs differ from avidin, with respect to glycosylation and
charge properties, and all AVRs except AVR2 contain an
uneven number of cysteine residues in their sequence,
which can form inter-subunit disulphide bridges in addi-
tion to the intra-subunit disulphide bridges also seen in
avidin [35]. Interestingly, the biotin-binding affinities of
AVRs have been reported to vary over a wide range of val-

ues, AVR4 being almost as efficient a biotin binder as avi-
din [35,36] and AVR2 showing the lowest affinity for
biotin [35]. AVRs, like avidin, have been found to be very
stable proteins, too; AVR4 has clearly higher thermal sta-
bility than avidin [35,36]. Recently, we have been able to
produce avidin and some AVRs in Escherichia coli, too
[37]. The 3D-structure of AVR4 has been recently deter-
mined [38], and we have been able to produce chimeric
forms of avidin and AVR4, which retained their high
biotin affinity and showed improved thermal stability
[39].

In this study, we have determined the high-resolution X-
ray crystal structure of AVR2 in complex with the natural
ligand, D-biotin. By using site-directed mutagenesis and
recombinant expression techniques combined with struc-
tural studies, we have been able to characterize some of
the structural factors responsible for the varying biochem-
ical properties of the members of the chicken avidin pro-
tein family. The results may be utilized in avidin protein
engineering aiming to fine-tune the ligand binding prop-
erties and thermal stability of AVRs and their chimeric
forms in experiments needed to expand the tools availa-
ble in the area of avidin-biotin technology. This study pro-
vides insight into the molecular evolution within the
avidin family, too.

Results
Production and mutagenesis of proteins
Several different AVRs, AVR2, AVR2(I109K),
AVR4(K109I), AVR6, and a novel avidin mutant K111I,
were efficiently expressed either in insect cells or using a
bacterial expression system as summarised in Table
1 [37,40]. Since wild type AVR6 was found to form oli-
gomers in solution via disulphide bridges (data not
shown), Cys-58 of AVR6 was mutated to Ser based on the
alignment of AVR6 with AVR2 and AVR4 (Figure 1). The
resulting protein AVR6(C58S) (hereafter referred to
AVR6), as well as all of the other studied proteins, were
found to form avidin-like tetramers according to analysis
by size exclusion chromatography (Table 2) and con-
firmed to be pure and homogenous using SDS-PAGE. The
elution time of AVR2 was slightly different from that of
avidin and of the other studied AVRs, which can partially
be explained by the different charge properties of these
proteins: AVR2 has a theoretical isoelectric point of 4.7
compared to 9.6 for AVR4, 6.9 for AVR6 and 9.7 for avi-
din. The effect of glycosylation is also clearly seen by the
varying elution times in gel filtration analysis (Table 2) for
AVR2-b produced in bacteria (no glycosylation) and from
insect cells (two potential glycosylation sites; both uti-
lized to some extent [35]).

Purification of AVR2 and AVR6 on the 2-iminobiotin col-
umn was inefficient and therefore biotin affinity
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chromatography was used to isolate these proteins. In
order to confirm the quality of the protein and correct
cleavage of the bacterial signal peptide used in the produc-
tion of AVRs in E. coli, the molecular weight of AVR2-b
was determined using ESI-MS. The Mr (14310.0 ± 0.3 Da)
determined from the experimental data using four charge
states correlates well with the expected Mr of 14307.8 Da.
The final product from E. coli expression carries three
additional residues (QTV) at the N-terminus as previously
reported for avidin produced using the same method [37].

In a previous study, the K109I mutation of AVR2 was
hypothesised to be at least partially responsible for the
lower biotin-binding affinity of AVR2 when compared to
other AVRs and avidin [35]. In order to validate this sug-
gestion, we subjected AVRs to mutagenesis. The mutation
I109K was introduced into AVR2 to increase its biotin-
binding affinity. Likewise, the mutation Lys→Ile was
introduced into both AVR4 and avidin in order to cross-
validate the hypothesis and lower the biotin-binding
affinity of AVR4 and avidin. Gel filtration analysis showed
that all of the mutated proteins corresponded to tetramers
(Table 2).

X-ray structure of AVR2
The X-ray structure of AVR2-b in complex with D-biotin
was determined at 1.4 Å resolution. The structure determi-
nation statistics are summarized in Table 3. As expected
based on the sequence alignment (Figure 1), AVR2 has an
overall three-dimensional structure similar to those of avi-
din [PDB:1AVD] [26] and AVR4 [PDB: 1Y52] [38]. Each
monomer in the homotetrameric protein has a β-barrel
fold of eight β-strands with one end of the barrel adapted
to bind D-biotin (Figure 1C).

Although AVR2 shares many structural features with avi-
din and AVR4, there are clear differences in their func-
tional properties (Table 2, Figure 4). The most distinctive
structural differences are found around the terminal car-
boxylate group of D-biotin. In avidin, atom O10B of the
terminal carboxylate group of D-biotin is hydrogen
bonded to the backbone nitrogen atoms of Ala-39 and
Thr-40 of the L3,4 loop [26], whereas in AVR4 there is
only one polar contact between the O10B atom and the
backbone nitrogen atom of Asp-39 of the L3,4 loop [38].
In AVR2, the O10B atom of D-biotin forms an additional
hydrogen bond to the NE2 atom of Gln-97. Moreover, in
avidin, the O10A atom of the carboxylate group of biotin
is hydrogen bonded to the OG atoms of Ser-73 and Ser-
75, while in AVR2 and AVR4 there is only one hydrogen
bond to the OG atom of Ser-71 (equivalent to Ser-73 in
avidin).

A few differences are also found around the central
aliphatic segment and the bicyclic ring system of D-biotin.
Leucine in avidin (Leu-99) and AVR4 (Leu-97) is replaced
by glutamine in AVR2 (Gln-97), and threonine in avidin
(Thr-77) and AVR4 (Thr-75) is replaced by Ser-75 in
AVR2. The side-chain atoms of Gln-97 of AVR2 not only
interact with the valeryl segment of D-biotin, as in the case
of the corresponding Leu in avidin and AVR4, but also
with the carboxylate group of D-biotin (see above). The
corresponding residue in AVR4 and avidin is leucine, but
glutamine is also found aligned at the equivalent position
in other AVRs. The presence of the polar head group of
Gln-97 in AVR2 also affects the type and conformation of
the neighbouring residues, such as Ser-73, Leu-99 and
Arg-112 as well as Ile-109 from another subunit. These
residues line the entrance of the biotin-binding pocket: i)
Ser-73 of AVR2 has two alternative rotamers unlike in the

Table 1: The recombinant proteins of this study. The immobilised ligand used for affinity chromatography purification and the elution 
conditions are shown. Protein eluted using acetic acid was immediately dialyzed against 50 mM NaPO4 pH 7.0 + 100 mM NaCl.

Protein Affinity chromatography ligand Elution conditions Expression system Production yield (mg/l)a

AVR2 D-biotin 0.5 M acetic acid BEVSb 0.8
AVR2-b D-biotin 0.5 M acetic acid E. colic 4.9
AVR2(I109K) D-biotin 0.5 M acetic acid BEVS 9.0
AVR4d 2-iminobiotin 50 mM Na-Ac + 100 mM NaCl BEVS 6.1
AVR4-bd 2-iminobiotin 50 mM Na-Ac + 100 mM NaCl E. coli 21.9
AVR4(K109I)d 2-iminobiotin 50 mM Na-Ac + 100 mM NaCl BEVS 16.2
AVR4(K109I)-bd 2-iminobiotin 50 mM Na-Ac + 100 mM NaCl E. coli 6.7
AVR6-be D-biotin 2 M acetic acid E. coli 8.3
AVD(K111I) 2-iminobiotin 50 mM Na-Ac + 100 mM NaCl BEVS 11.5
AVD(K111I)-b 2-iminobiotin 50 mM Na-Ac + 100 mM NaCl E. coli 0.7

aAfter affinity chromatography per one liter of culture medium. The yields are calculated based on only a few protein purifications.
bProduced using a baculovirus expression system in insect cells as described previously [40].
cThe bacterial signal peptide from the protein OmpA was utilised in order to produce the protein in an active form in E. coli as described in [37].
dAVR4 is identical to AVR5. The protein carries the mutation C122S, which prevents oligomerisation via intermolecular disulphide bridges [36].
eCarries mutation C58S, which prevents oligomerisation via intermolecular disulphide bridges (this study).
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X-ray structure of avidin and AVR4, ii) Leu-99 of AVR2 is
replaced by Ser-101 in avidin (Ser-99 in AVR4), iii) Arg-
112 of AVR2 and AVR4 form a salt bridge with Asp-39
from the L3,4 loop, but Arg-112 has a different conforma-

tion in AVR2 than in AVR4 (in avidin the corresponding
ARG-114 does not form a salt bridge with any of the resi-
dues from the L3,4 loop) and iv) Ile-109 of AVR2 is sub-
stituted by Lys-111 in avidin and by Lys-109 in AVR4. In

The X-ray structure of AVR2Figure 1
The X-ray structure of AVR2. (A) Multiple sequence alignment of the avidin family. The secondary structure elements are 
numbered according to the AVR2 structure. The residues mutated in this study (AVR2, Ile-109; AVR4, Lys-109; AVR6, Cys-58) 
are coloured green. Residue Cys-122 in AVR4, which was mutated to serine in a previous study [36], is indicated in blue. (B) 
Two tetramers found in the asymmetric unit of the AVR2-b crystal. (C) Monomer A of AVR2-b. The weighted difference Fo – 
Fc electron density map (blue), calculated in the absence of biotin, is drawn with a 1.5 Å radius around the atoms of D-biotin of 
the final structure of AVR2-b. Contours are shown at 3.0σ. The secondary structure elements of AVR2-b are numbered. (D) A 
close-up view of (C) focused on biotin.
Page 4 of 14
(page number not for citation purposes)



BMC Biotechnology 2005, 5:28 http://www.biomedcentral.com/1472-6750/5/28
addition, Ile-109 of AVR2 is located next to Trp-108, a res-
idue known to be important for biotin binding [17,30],
but Ile-109 does not appear to alter the conformation of
this residue significantly in comparison to avidin and
AVR4. All of these differences are located at the open end
of the biotin-binding pocket and are very likely responsi-
ble for the varying biotin binding properties of avidin,
AVR2 and AVR4. Moreover, although D-biotin adopts a
very similar conformation in avidin, AVR2 and AVR4, the
biotin-binding network is not identical (Figure 2).

The 1–3 subunit interface (numbering according to Ref.
[25]) is also markedly different in amino acid composi-
tion in AVR2 in comparison with avidin and AVR4. In avi-
din, the subunit contacts are established between the
hydrophobic amino acid residues Met-96, Val-115 and
Ile-117 [25,26], which are in contact with the same set of
residues from a neighbouring subunit. In AVR2, only
valine (Val-113 in the AVRs) is conserved, while Met-96
and Ile-117 of avidin are respectively substituted by the
hydrophilic residues Lys-94 and Asn-115 in AVR2 (Figure
1A). In the crystal structure of AVR2, the side chain of Lys-
94 can exist in two alternate rotamers, which are hydrogen
bonded either to the side-chain oxygen atom of Asn-115
or to the main-chain oxygen of Val-113, both from a
neighbouring subunit (Figure 3). Asn-115 is also in con-
tact with Asn-115 from a neighbouring subunit. In AVR4,
Ile-117 of avidin is substituted by Tyr-115, the latter inter-
acting strongly with Tyr-115 of an adjacent subunit and
through a hydrogen bond to Lys-92 [38].

Comparative analysis of avidin family proteins
Previously, it has been found that AVR6 forms intermon-
omeric disulphide bridges [35]. Gel filtration analysis of
AVR6 revealed that these disulphide bonds are formed
between tetramers, thus causing further oligomerization

of the protein (not shown). Consequently, we introduced
the C58S mutation into AVR6, which successfully blocked
oligomerisation, and used this mutated protein form in
the comparative analyses in the present study.

The overall charge of AVR2 (pI ≈ 5) is very different when
compared to that of avidin and AVR4 (pI ≈ 10). The
number of ionic bonds in avidin is seven per subunit,
whereas three salt bridges are seen in AVR4 [38]. In the
AVR2-biotin complex, four intra-subunit salt bridges are
detected: Asp-39-Arg-112, Glu-89-Arg-120, Lys-92-Asp-
117 and Arg-98-Asp-107.

Biotin dissociation analysis
Of the proteins studied, the fastest [3H]biotin dissociation
rate was found with AVR2, while the slowest rate was
measured for avidin (Figure 4). Ile-109 is found close to
the biotin-binding site in AVR2, whereas all other proteins
in avidin family [35] have lysine at the equivalent posi-
tion. In order to test the effect of Ile-109 on the biotin
dissociation rate, the AVR2(I109K) mutant was produced.
The resulting mutant had a significantly slower dissocia-
tion rate than the wild-type protein. AVR6, in turn,
showed a dissociation rate constant in between the values
observed for the two AVR2 forms. The dissociation rate
constant for AVR4, measured in a previous study [39], was
somewhat higher when compared to that of avidin. When
Lys-109 of AVR4 was mutated to isoleucine according to
the sequence of AVR2, the rate of dissociation increased as
expected, but biotin binding of the resulting protein was
still stronger than for the mutated AVR2 form. Similarly,
the analogous mutation K111I in avidin increased the
biotin dissociation rate compared to the wild-type pro-
tein. Hence, the analyzed proteins can be sorted according
to their biotin-binding affinities (as the biotin dissocia-
tion rate decreases, biotin binding strengthens): AVR2 <

Table 2: Structural properties of avidin and avidin related proteins. Elution times from FPLC gel filtration and calculated molecular 
weights of the proteins. Heat-induced unfolding temperatures of proteins from DSC analysis (average ± S.D).

Gel filtration DSC

Protein Elution time (min) Molecular mass (kDa) Tm (-biotin) (°C) Tm (+biotin) (°C) ∆Tm
a (°C)

AVDb 31.5 46.5 83.5 ± 0.1 117.0 ± 0.7 33.5
AVD(K111I) 31.9 42.1 76.5 ± 0.1 116.0 ± 0.1 39.5

AVR2 30.1 66.6 91.3 112.5 21.2
AVR2(I109K) 30.0 68.2 97.6 ± 0.1 118.7 ± 0.1 21.1

AVR2-b 30.9 55.1 93.4 ± 0.4 112.5 19.1
AVR4c 31.9 42.1 106.4 ± 0.8 125.4 ± 0.8 19.0

AVR4(K109I) 31.3 49.8 104.5 ± 0.5 118.6 ± 1.2 14.1
AVR6-b 31.1 51.5 87.7 114.0 26.3

a∆Tm is the change in Tm upon addition of a three-fold molar excess of D-biotin.
bDSC results for avidin are from Ref [61].
cDSC results for AVR4 are from Ref [36].
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AVR6 < AVR2(I109K) < AVR4(K109I) < AVR4 <
AVD(K111I) < avidin (Figure 4).

The biotin dissociation data, measured at various temper-
atures, were analysed using the global fit method
described elsewhere [41]. The resulting dissociation rate
temperature-dependency model was compared to the one
previously measured for avidin [39]. The analysis revealed
a different temperature-dependency for AVR2 in compar-
ison to avidin (Figure 4B). The mutation I109K caused a
shift in the temperature-dependency of AVR2-biotin dis-
sociation, resulting in a model resembling that deter-

mined for AVR6. AVR4 has a similar temperature-
dependency of the biotin dissociation rate as avidin, and
the K109I mutation did not significantly change the tem-
perature-dependency although it clearly increased the
biotin dissociation rate constant (Figure 4B). The equiva-
lent mutation K111I in avidin resulted in a nearly two-
fold increase in the biotin dissociation rate over a temper-
ature range of 40–60°C (Figure 4B).

Differential scanning calorimetry
The thermostability of avidin, AVR2, AVR4 and AVR6
were measured using DSC analysis (Table 2). In this anal-
ysis, AVR2 showed higher thermostability than avidin.
The measured Tm (91.3°C) was between the values meas-
ured previously for avidin (83.5°C) and AVR4 (106.4°C)
[36]. As expected, the thermal stability of AVR2 increased
in the presence of biotin (Tm = 112.5°C), similarly as
reported for avidin, AVR4 and streptavidin [22,36,42].
The I109K mutation significantly stabilised AVR2, result-
ing in a 6.3°C increase in Tm as compared to the wild-type
protein. The reverse mutation, K109I in AVR4 and K111I
in avidin, led to destabilisation of the proteins, resulting
in a 1.9°C and 7.0°C decrease in the Tm, respectively.
Interestingly, AVR6 showed slightly higher thermal stabil-
ity (Tm = 87.7°C) than avidin (Tm = 83.5°C) in the
absence of biotin, while in its presence the Tm of AVR6
(114.0°C) was raised significantly but remained lower
than that measured for the avidin-biotin complex (Tm =
117.0°C).

Discussion
In the present study, we have used targeted mutagenesis
and X-ray crystallography combined with the comparative
analysis of thermal stability and ligand-binding kinetics
to dissect the functional properties of the chicken avidin
protein family. The high-resolution structure of AVR2, a
close relative of avidin, provides new insights into the
biotin-binding mechanism of the avidins and serves as a
new source of knowledge for protein engineering studies,
too.

In order to understand the observed differences in the
biotin-binding affinities and thermal stabilities within the
avidin protein family, the crystal structures of avidin [26],
AVR2, and AVR4 [38] were compared, all in complex with
D-biotin. Overall, these proteins share high structural
similarity and their ligand-binding sites within the eight-
strand β-barrel resemble each other. The most distinctive
structural differences are found around the terminal car-
boxylate group and central valeryl segment of D-biotin. In
the AVR2 structure, D-biotin is in contact with the L3,4
loop as in the case of avidin [26] and AVR4 [38], but also
in contact with the side-chain atom of Gln-97 unlike the
avidin or AVR4 complexes where leucine is found at the
equivalent position. Glutamine is conserved in all of the

Table 3: Data collection and structure determination statistics 
for AVR2.

Data collectiona

Wavelength (Å) 0.934
Beamline ID14-1 (ESRF)
Detector ADSC Q4R CCD
Resolution (Å) 25 – 1.40 (1.50 – 1.40)
Unique observations 257876 (47505)
I/sigma 14.3 (3.2)
Rsym

b (%) 7.2 (54.6)
Completeness 99.6 (99.0)
Redundancy 6.0 (5.9)

Refinement

Space group P212121
Unit cell:

a, b, c (Å) 97.7, 99.9, 135.2
α, β, γ (°) 90, 90, 90

Monomers (asymmetric unit) 8
Resolution (Å) 25 – 1.40
Rwork

c (%) 17.4
Rfree

c,d (%) 20.1
Protein atoms 7720
Heterogen. atoms 234
Solvent atoms 1168
R.m.s.d:

Bond lengths (Å) 0.015
Bond angles (°) 1.7

Ramachandran plot:
Residues in most favored regions 94.3%
Residues in additional allowed regions 5.7%

aThe numbers in parenthesis refer to the highest resolution bin.

b

c

dPerformed on 5% of the reflections.
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I hkl I hkl

I hklsym

i
ihkl
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Biotin-binding sites of avidin, AVR2 and AVR4Figure 2
Biotin-binding sites of avidin, AVR2 and AVR4. Stereo images of the biotin-binding sites of (A) AVR2-b, (B) AVR4 
[PDB:1Y52] [38] and (C) avidin [PDB:1AVD] [26] are shown. The cavities (transparent) around the bound biotin molecules of 
subunit A are shown. The water molecules within the cavities are shown as red spheres. Hydrogen bonds between the atoms 
of D-biotin and the surrounding proteins are shown with dashed lines. Carbon atoms of residues from subunit 1 are coloured 
white; those from a neighbouring subunit 2 are indicated in cyan: residues 108 and 109 (110 and 111 in avidin).
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The 1–3 subunit interface of AVR2, AVR4 and avidinFigure 3
The 1–3 subunit interface of AVR2, AVR4 and avidin. Stereo images of the 1–3 subunit interface of (A) AVR2-b, (B) 
AVR4 [PDB:1Y52] [38], and of (C) avidin expressed in E. coli [PDB:1VYO] (Airenne, Hytönen et al. unpublished) are shown. 
Lys-94 of AVR2 exists in two alternate conformations, which can form a hydrogen bond with the side-chain oxygen atom of 
Asn-115 or with the main-chain oxygen atom of Val-113, both from an adjacent subunit. Putative hydrogen bonds are shown by 
dashed lines. The carbon atoms of subunits 1 and 3 are coloured white and cyan, respectively.
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AVRs except for AVR4 [35], resides 3.3 Å away from D-
biotin in the AVR2 structure, and a hydrogen bond may
form between Gln-97 and biotin even though the angle is
not optimal. In addition to D-biotin, Gln-97 seems to
form a hydrogen bond with Ser-73, which exists in two
alternative conformations. The presence of Gln-97 in
AVR2 probably affects the conformation of nearby Arg-

112, which is slightly displaced with respect to the corre-
sponding residue seen in AVR4 and avidin. Then again,
the conformation of Arg-112 may be altered due to inter-
actions with the AVR2-specific Ile-109, too. Ile-109 of
AVR2 respectively corresponds to Lys-109 and Lys-111 in
avidin and AVR4. In AVR2, Ile-109 resides close to Trp-
108, which is known to be important for biotin binding
[17,30], but the conformation of Trp-108 does not seem
to be significantly affected by Ile-109. Yet another
sequence difference, whereby Thr-77 of avidin and the
corresponding threonine of AVR4 (residue 75 in the
AVRs) is substituted to Ser in AVR2 does not appear to dis-
rupt hydrogen bonding to the sulfur atom of D-biotin.
However, this substitution enlarges the binding cavity
around bound biotin (Figure 2) and hence contributes to
the lower affinity of AVR2 for biotin. The biotin-binding
network is not identical in avidin, AVR2 and AVR4 despite
the similar conformation that D-biotin adopts in all of
these structures. In general, the polar contacts with D-
biotin seem to be much more variable than the hydropho-
bic ones, which are highly conserved, indicating their
important role in the biotin-binding process. In line with
this, the importance of hydrophobic residues for biotin-
binding of streptavidin has been demonstrated experi-
mentally [30]. Moreover, the interactions of avidin, AVR2
and AVR4 with the carboxylate group of D-biotin are
clearly less conserved than the interactions with the cen-
tral aliphatic valeryl segment and the bicyclic ring system
of the tetrahydrothiophenic and ureido rings buried
deeper within the biotin binding pocket [26,38,43].

Based on the temperature-dependence of the biotin disso-
ciation rates and relative biotin dissociation rate constants
(Figure 4), the order of the biotin binding affinities is as
follows: AVR2 < AVR6 < AVR4 < avidin. These results are
in line with the previous ligand-binding analyses per-
formed for AVRs using an optical biosensor [35]. Further-
more, the presence of an isoleucine residue at sequence
position 109 in AVR2 rather than lysine seems to be the
most dominant difference affecting biotin binding in
comparison to AVR6. However, this sequence variation
does not explain the differences in the biotin-binding
properties of AVR2 versus AVR4. This was confirmed by
analysing the AVR4(K109I) mutant, which showed signif-
icantly stronger interactions with biotin when compared
to wild-type AVR2. Moreover, the equivalent mutation
K111I in avidin affected only slightly the dissociation rate
constant of avidin. The temperature-dependency model
suggests even slower dissociation rates at low
temperatures for the mutant compared to wild-type avi-
din (Figure 4B). The different effects of the Lys→Ile muta-
tion on avidin versus AVR4 may reflect differences at the
L3,4 loop of avidin and AVRs. Although the AVR2-biotin
dissociation rate was over 5000-fold higher at 20°C than
that of avidin and thus showed significantly lower biotin-

Biotin dissociation analysisFigure 4
Biotin dissociation analysis. (A) Temperature-depend-
ence of biotin dissociation rates measured by the [3H]biotin 
dissociation assay. Radiobiotin dissociation rate constants 
measured for the proteins are plotted as a function of tem-
perature. The models for dissociation rate constants 
obtained by global fit analysis [41] are shown by lines and the 
determined individual dissociation rates by symbols. The dis-
sociation rate constants determined previously for avidin and 
AVR4-b are also shown [39]. (B) Relative dissociation rate 
constants of the AVRs and avidin mutant K111I compared to 
that of avidin. The individual dissociation rates as well as glo-
bal fit analysis models of the dissociation rate are divided by 
the dissociation rate constants of avidin obtained from global 
fit analysis. The data are plotted using a logarithmic y-axis.
Page 9 of 14
(page number not for citation purposes)



BMC Biotechnology 2005, 5:28 http://www.biomedcentral.com/1472-6750/5/28
binding affinity than avidin, the thermal stability of AVR2
in the absence of biotin is higher (Tm = 91.3°C) than for
avidin (Tm = 83.5°C). Higher thermal stability is notable
and may have a functional role.

The biological role of AVRs is unclear; avidin is thought to
work as a biotin-harvester in chicken egg-white, thus
preventing growth of biotin-dependent organisms [1].
The lower biotin-binding affinity and higher stability of
AVR2 raises the question if AVR2 has any biological role
similar to avidin. The expression of avidin is induced in
chicken during inflammation in various tissues and
mRNAs of some AVRs, including AVR2, have been
detected during inflammation [11]. This suggests that
AVR2 (and the other AVRs) may play a role in inflamma-
tory reactions.

The conformation of the L3,4 loop of AVR2 was found to
strongly resemble that of AVR4 [38]. In avidin, this loop
is disordered in the absence and ordered in the presence
of D-biotin [25]. In contrast, the L3,4 loop of AVR4 was
previously found to be in an nearly identical, fixed confor-
mation both in the absence and presence of D-biotin [38].
The latter situation seems to be true for all AVR proteins,
since the L3,4 loop per se, as well as the neighbouring
sequences between the β3 and β5 strands, are highly con-
served within the AVR family but quite different from
avidin [35]. Recently, this region was transferred to avidin
from AVR4 [39]. The resultant chimeric ChiAVD showed
better thermal stability (Tm = 96.5°C) than avidin (Tm =
83.5°C) [39] and, interestingly, the observed stability of
AVR2 (Tm = 91.3°C) and its mutant AVR2(I109K) (Tm =
97.6°C) was similar to that of ChiAVD. Hence, in addi-
tion to the 1–3 subunit interface, the region between the
β3 and β5 strands of AVR2 is likely to affect the stability of
the protein (Figure 3). This view is supported by our pre-
liminary results of engineered dual chain avidins suggest-
ing only slightly better stability for the AVR2-type 1–3
interface compared to the 1–3 interface of avidin
(Hytönen et al. unpublished results).

The present study provides novel knowledge of the struc-
tural characteristics of AVR proteins. Avidin related pro-
teins are considered as an individual branch in the
evolutionary tree of avidins in chicken [44]. Based on the
results of the current study (Figure 5), AVR2 and AVR6
seem to be functionally closely related to each other, sup-
porting the previous phylogenetic analysis [44]. It seems
that the critical difference, isoleucine at position 109 in
AVR2 in comparison to lysine in avidin and the other
AVRs, has arisen after the divergence of AVR4 and the rest
of AVRs. This sequence difference also explains why AVR2
has the lowest observed biotin-binding affinity among the
AVRs. All AVRs have a region between β3 and β5 strands,
which is quite different from that in avidin [35]. In com-

parison with the other AVRs, this region in AVR4 shares a
higher level of similarity with avidin. This likely correlates
with the high, avidin-like biotin-affinity of AVR4 versus
the lower biotin-affinity of the other AVRs [39].

Ligand binding to avidin and streptavidin can be consid-
ered as an extreme discovery of nature in the sense of
affinity and free energy [45]. The structural complementa-
rity between biotin and its binding site in (strept)avidin is
almost perfect, which together with the numerous hydro-
gen bonds that are formed between (strept)avidin and
biotin is the basis for the extraordinary tight binding
[25,28]. Thus, it is not surprising to find that a small per-
turbation in this highly perfected system can reverberate
as a major change in the biotin binding kinetics. It is
known that the high biotin-binding affinity of (strept)avi-
din is dominated by extremely slow ligand dissociation
rates, especially in the case of avidin.

Conclusion
The high-resolution structure of AVR2 combined with the
ligand binding data broadens our understanding of the
general principles of ligand-binding processes. Further-
more, the structural information can be employed as a
basis to create improved tools for biotechnology. This was
demonstrated in a previous study, where chimeric forms
of avidin and AVR4 showed improved properties com-
pared to the native proteins [39].

Methods
Production and mutagenesis of proteins
Proteins were expressed using the Bac-to-Bac baculovirus
expression system in Sf9 insect cells in biotin-free media
as previously reported [40]. Bacterial expression in BL-
21(AI) (Invitrogen) was also used for protein expression
as described in Ref. [36]. The proteins were isolated using
affinity chromatography with an 2-iminobiotin or biotin
matrix (Affiland S. A., Belgium) as described earlier [17].
Biotin was used as the capture ligand for AVR2, AVR2-b,
AVR2(I109K) and AVR6-b, and for these proteins elution
was achieved using acetic acid. The recombinant proteins
investigated in this article are summarised in Table 1.

Crystallization and data collection
Minimal Screen 12 [46], a sparse matrix protein crystalli-
zation screen [47], was used to search for suitable condi-
tions for crystallization of AVR2-b with the vapor
diffusion hanging drop method at 22°C. An orthorhom-
bic crystal with approximate dimensions of 0.15 × 0.1 ×
0.1 mm was obtained within three weeks using equal
volumes (1 µl) of sample solution containing 0.5 mg/ml
protein in 50 mM NaPO4 (pH 7.0), 100 mM NaCl and
well solution containing 0.1 M Na-citrate (pH 4.6) and
1.5 M NH4PO4. Before crystallization, the AVR2-b –
biotin complex was prepared by adding biotin to the pro-
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tein solution in a molar ratio of 5:1, respectively, followed
by incubation at 4°C for 1.5 hours. For data collection,
the AVR2-b crystal was cryoprotected with 20% glycerol
(v/v) and 2 M lithium sulfate just prior to flash-freezing in
a 100 K nitrogen stream (Oxford Cryostream). Diffraction
data were collected from a single crystal at the ESRF beam
line ID14-1, Grenoble at 100 K using an ADSC Q4R CCD
detector. Data were processed with programs of the XDS
program package [48]. Data collection statistics are sum-
marized in Table 3.

Structure determination
The X-ray structure of AVR2-b was solved using the molec-
ular replacement method and programs from the CCP4i
suite [49]. The space group (P212121) of the AVR2-b crys-
tal was ascertained by Amore [50] and molecular replace-
ment was done with Molrep [51]. A tetramer (biological
unit) composed of only main-chain atoms and based on
a high resolution X-ray structure of avidin (Airenne,
Hytönen et al. unpublished; [PDB:1VYO]) was used as a
trial model. The best solution (correlation coefficient =
0.291) from molecular replacement was selected as the

Summary of the biochemical properties and phylogeny of avidin (AVD) and the AVRsFigure 5
Summary of the biochemical properties and phylogeny of avidin (AVD) and the AVRs. The putative chicken 
biotin-binding proteins BBP-A and BBP-B [12] as well as streptavidin (STR) are included. The confidence levels of the branching 
of the phylogenetic tree were assessed using the bootstrap method [64]. The tree is unrooted and the branch lengths are not 
to scale. The values at each node represent the percentage of the 1000 trees where the species above the node are consist-
ently found. Tm(-), heat-induced unfolding temperature without D-biotin (°C). Tm(+), heat-induced unfolding temperature in 
the presence of D-biotin (°C). Tr(-), transition temperature of oligomeric disassembly without D-biotin determined using SDS-
PAGE assay (°C) [70]. Tr(+), transition temperature of oligomeric disassembly in the presence of D-biotin (°C). kdiss, biotin dis-
sociation rate constant (× 10-6 s-1) obtained from global fitting [41] of the 3H-biotin dissociation data. I1–3, three residues 
important for the 1–3 subunit interface (equivalent to residues 94, 113 and 115 in AVR2). The residues in BBP-A and BBP-B are 
numbered according to avidin. N. D., not determined. aHytönen VP, unpublished data. Analysis performed on wt proteins pro-
duced in the baculovirus expression system as described in Ref. [35]. bFrom Ref. [70]. cFrom Ref. [36]. dFrom Ref. [71]. eFrom 
Ref. [72].
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input for automatic model building with ARP/wARP [52].
After adding side chains separately for each monomer A to
H using the guiSIDE mode of ARP/wARP, the model was
refined with Refmac5 [53], and modified and rebuilt with
O [54]. Solvent atoms were added to the model with the
automatic procedure of ARP/wARP [55] and the ligand
biotin was built with the ARP/wARP LigandBuild program
[56]. Sulfate ions and glycerol molecules were built either
manually in O or with the aid of the program Coot [57].
The AVR2-b structure was analyzed with the programs
PROCHECK [58] and WHATIF [59]. Structure determina-
tion statistics are summarized in Table 3. The coordinates
and structure factors of AVR2-b have been deposited in
the Protein Data Bank with entry code [PDB:1WBI].

Biotin dissociation analysis
The dissociation rate constant of AVR2-b, AVR2(I109K),
AVR4(K109I), AVR6-b and AVD(K111I)-b for [3H]biotin
was measured at various temperatures as previously
described [60]. [3H]Biotin was purchased from Amer-
sham. The data were analysed by using the global fit
approach as shown by Hyre et al. [41], in which the tem-
perature dependence of the dissociation rate constant is
modelled by the Eyring equation.

Differential scanning calorimetry
The thermal stability of AVR2, AVR2-b, AVR2(I109K),
AVR4(K109I), AVR6-b and AVD(K111I) was studied
using differential scanning calorimetry (DSC) as previ-
ously described [61]. The melting point of protein unfold-
ing was determined from thermograms measured in a
buffer containing 50 mM NaPO4 (pH 7.0) and 100 mM
NaCl. Proteins were also analysed in the presence of
biotin (three-fold molar excess of biotin per protein
subunit).

Size exclusion chromatography
Gel filtration experiments were performed as described in
Ref. [23] with a Superdex HR 10/30 column using 50 mM
NaCO3 (pH 11.0), 150 mM NaCl as the liquid phase. The
column was calibrated using IgG (158 kDa), BSA (68
kDa) and ovalbumin (44 kDa) as molecular weight
standards.

Mass spectroscopy
The molecular weight of AVR2-b was measured with a
Micromass LCT Electronspray ionization TOF Mass spec-
trometer essentially as described previously [37]. Samples
were dialysed against water and diluted 1:1 with ace-
tonitrile. The final protein concentration was 7 µM and
the pH was adjusted using formic acid (0.2 %). Positive
ions were detected using the default parameters (source
temperature 100°C, desolvation temperature 120°C, RF
lens voltage 750 V, extraction cone voltage 6 V, sample

cone voltage 50 V, capillary voltage 3800 V) and the sam-
ple was injected at a rate of 20 µl/min.

Phylogeny inference
Avidin-related sequences were aligned using MALIGN
[62,63]. One-thousand bootstrap variations [64] of the
alignment were generated using SEQBOOT and distance
matrices produced using a structure-based scoring matrix
[62,63]. Trees were produced using NEIGHBOR, and the
consensus tree produced using CONSENSE. SEQBOOT,
NEIGHBOR and CONSENSE are programs from the
PHYLIP package [65,66].

Miscellaneous methods
The multiple sequence alignment shown in Figure 1A was
created using the program MALIGN [62,63] of Bodil [67]
and edited with Corel Draw11. The protein representa-
tions in Figure 1, 2, 3 were made with the PyMOL Molec-
ular Graphics System [68] and edited with the programs
Gimp and/or Corel Draw11. Cavities were calculated with
Surfnet [69] using 1.4 Å and 3.0 Å radii for minimum and
maximum gap spheres, respectively. The electron density
map shown in Figure 1C and 1D was calculated with pro-
grams of the CCP4i suite.
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