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Modified expression of alternative oxidase in
transgenic tomato and petunia affects the level
of tomato spotted wilt virus resistance
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Abstract

Background: Tomato spotted wilt virus (TSWV) has a very wide host range, and is transmitted in a persistent
manner by several species of thrips. These characteristics make this virus difficult to control. We show here that the
over-expression of the mitochondrial alternative oxidase (AOX) in tomato and petunia is related to TSWV resistance.

Results: The open reading frame and full-length sequence of the tomato AOX gene LeAox1au were cloned and
introduced into tomato ‘Healani’ and petunia ‘Sheer Madness’ using Agrobacterium-mediated transformation. Highly
expressed AOX transgenic tomato and petunia plants were selfed and transgenic R1 seedlings from 10 tomato
lines and 12 petunia lines were used for bioassay. For each assayed line, 22 to 32 tomato R1 progeny in three
replications and 39 to 128 petunia progeny in 13 replications were challenged with TSWV. Enzyme-Linked
Immunosorbent Assays showed that the TSWV levels in transgenic tomato line FKT4-1 was significantly lower than
that of wild-type controls after challenge with TSWV. In addition, transgenic petunia line FKP10 showed
significantly less lesion number and smaller lesion size than non-transgenic controls after inoculation by TSWV.

Conclusion: In all assayed transgenic tomato lines, a higher percentage of transgenic progeny had lower TSWV
levels than non-transgenic plants after challenge with TSWV, and the significantly increased resistant levels of
tomato and petunia lines identified in this study indicate that altered expression levels of AOX in tomato and
petunia can affect the levels of TSWV resistance.

Background
Mitochondrial alternative oxidases (AOXs) are important
components of the alternative respiratory pathway of
plants [1]; Aox genes have been isolated from several
important plant species [2-10]. Synthesis of AOX can be
induced when the cytochrome pathway is inhibited, or
when the plant is wounded, treated with ethylene, cyclo-
heximide, chloramphenicol, or if the plant is exposed to
cold environmental conditions [11-15]. In addition, the
AOX pathway can also be induced by treatments with sal-
icylic acid (SA) [16], nitric oxide [17], reactive oxygen spe-
cies [18,19], high light intensities [20] or pathogen
challenge. Because SA induction has been linked to the
defense response in plants, it has been suggested that the
alternative pathway might be associated with disease

resistance in plants [21] including resistance to viruses
[22,23]. Evidence supporting this hypothesis includes the
finding that elevated levels of AOX in tobacco inhibit
long-distance movement of Cucumber mosaic virus
(CMV) and replication of Tobacco mosaic virus (TMV)
and Potato virus X (PVX) [24]. Furthermore, additional
works with cytochrome inhibitors and salicylhydroxamic
acid (SHAM) have led to the proposal that the AOX path-
way and the products of the Aox genes play a key role in
the resistance of tobacco plants to virus infection [25].
Other studies have suggested, however, that AOX is

not a critical component of plant viral resistance but
that it may play a role in the development of the hyper-
sensitive response [26]. Elevated Aox gene expression
levels had no clear-cut effects on SA-induced resistance
to systemic infection by TMV in transgenic tobacco.
Moreover, resistance to TMV in tobacco induced by
antimycin A (AA), an inhibitor of the cytochrome path-
way, was repressed with increased alternative pathway
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capacity, and both SA- and AA-induced resistances were
enhanced when alternative pathway capacity was
reduced [27,28]. Furthermore, high-levels of alternative
oxidase expression allowed increased TMV spread and
the development of severe symptoms in NN-type
tobacco and Nicotiana benthamiana [29]. The involve-
ment of AOX in virus resistance has been reported in a
limited number of plant species and virus combinations,
however, the mechanisms of this antiviral action varied
[3,30,31]. In order to accumulate more evidence that
might further elucidate the association of AOX with
antiviral activity, we generated transgenic tomato and
petunia lines with altered AOX expression levels and
evaluated their resistant levels to tomato spotted wilt
virus (TSWV).

Results and discussion
Tomato and petunia transformation and controlled
pollination of transgenic lines
Tomato cultivar ‘Healani’ and petunia cultivar ‘Sheer
Madness’ were transformed with the Leaox1au gene iso-
lated from tomato to obtain transgenic lines. Primers
specific for the CaMV 35S promoter and 3’-end of the
target inserts pBILaF and pBILaC were used in PCR
amplifications to detect the presence of integrated
LeAox1au sequences. Both wild type and transgenic
tomato plants contain the same alternative oxidase gene
in their genomes, therefore the CaMV 35S promoter
fragment DNA (pBI525 digested with Hind III and Bgl
II, Figure 1), was used to probe EcoRI-digested genomic
DNA. A single EcoR I recognition site is located near
the left border of the inserted sequences, thus each
band shown in Figure 2 should represent different insert
locations. Tomato lines CDT13 and CKT6 showed sin-
gle bands, and may represent single copy transformants.
The other 7 lines showed 2 to 3 bands, indicating that
these 7 lines were transformed with multiple copies of
the LeAox1au construct.
Several putatively transgenic tomato lines were ana-

lyzed for Aox RNA expression by northern analyses
using a LeAox1-au specific ORF DNA fragment labeled

with DIG as a probe. Leaox1-au was not detected in
vector only (525DT5) or non-transgenic (wild-type)
tomato plants (Figure 3). Expression of Aox could not
be detected in lines CDT10, CDT13, CDT17-1 and
CDT17-3. The remaining eleven transformed lines
showed altered expression of LeAox-1au ranging from
0.69 to 1.14 times the average signal intensity of the
Aox ORF verses that of 18S rRNA. No clear relationship
between the Aox copy number determined by Southern
analyses and the Aox RNA expression level determined
by northern analyses was observed (compare figures 2
and 3). The putative transgenic tomato lines were tested
for their AOX protein expression levels by western blot
analyses. AOX expression in non-transgenic and vector-
only transformed tomato plants was below detection
levels (Figure 4). Thirty-two transgenic tomato lines
showed increased expression of AOX compared to AOX
expression levels in non-transgenic and vector-only
transgenic tomato plants. However three transgenic
lines (FDT3-3-3, CDT10, and CDT13) did not show
increased AOX expression (CDT10 and CDT13 not
shown). Based on PCR, Southern, northern, and western
blot analyses, a total of 35 tomato and 37 petunia lines
were shown to be transformed with the LeAox1au gene.
The transgenic lines were self-pollinated and the har-

vested seeds were dried and stored at 4°C. Seeds of 10
tomato lines and 13 petunia lines were germinated and
grown in the greenhouse. When the tomato seedlings
reached 4 to 6 cm in height, one leaf disk was collected
from each plant using #5 cork borer. Transgene con-
structs in the progeny were confirmed by PCR and
Southern hybridizations. Only confirmed transgenic
lines were analyzed further by TSWV challenge.

Response of R1 generation transgenic tomato plants to
TSWV infection
Twenty to 34 R1generation tomato plants from each
line were evaluated for resistance to TSWV (Table 1).
Within these groups, 17 to 22 lines were confirmed to
contain the transgene by PCR analyses. The results
showed that within each line, all of the transgenic plants

Figure 1 Constructs developed for plant transformations. PCR amplicons of the ORF and full-length LeAox1au gene were cloned into pBI525
at the XbaI and BamHI sites (dashed line). The resulting fragment was excised from pBI525 at the Hind III and EcoR I sites and ligated into pBI121
to form the transformation constructs.
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had lower ELISA readings after TSWV challenge than
those of non-transgenic plants, indicating that the trans-
genic tomato plants had elevated resistance level to
TSWV infection [32]. Although no lines were found to
be completely immune to TSWV, paired t-tests indi-
cated that the progeny from line FKT4-1 showed signifi-
cantly lower ELISA values than the wild-type control
line. Progeny from seven other transgenic lines did not
have statistically significant enhanced resistance com-
pared with wild-type controls, which might possibly be
related to positional effects of the insertion event or if
the transgene interacted somehow with other genes.

Response of transgenic tomato plants to TSWV infection
at different time points
To evaluate the dynamic response to TSWV infection, 4
to 7 plants of transgenic lines FKT9, FKT4-1, and wild-
type controls were evaluated over time after virus chal-
lenge. Tissues were sampled and ELISA analyses were

performed up to 47 days after the second TSWV inocu-
lation. The data in Figure 5 are the average of three
ELISA values from 4-7 plants of each line. Results show
that plants of both transgenic lines and the control all
developed TSWV infections by 47 days after challenge,
which showed small dark spots, bronzed leaves that
rolled upward, and dieback of young branches. Line
FKT9 was slightly more resistant to TSWV at 12 days
post inoculation, but was less resistant to the virus at
later times. Plants from line FKT4-1 were more resistant
than wild-type control plants at all-time points except at
21 days after inoculation. The resistance of FKT4-1
transgenic progeny over time is consistent with the
results presented in Table 1, in which selfed plants from
line FKT4-1 that contained the transgene were signifi-
cantly more resistant to TSWV than selfed plants from
this line that did not contain the transgene.

Response of transgenic petunia plants to TSWV infection
The progeny of 13 transgenic petunia lines were tested
for TSWV resistance in a randomized complete block
design. In each of the replicates, wild-type non-trans-
genic controls grown under the same conditions were
included among the transgenic lines. Three to four days
after TSWV inoculation, necrotic local lesions developed
on inoculated leaves of test plants. One transgenic line
(FKP10) had significantly smaller local lesion sizes and
fewer numbers of local lesions compared with wild-type
control plants (Table 2). Twelve other transgenic lines
were not significantly different from control plants in
their levels of resistance to TSWV infection as measured
by the sizes and numbers of local lesions. Because the
numbers of R1 petunia plants used in our experiments
ranged from 39 to 128 for each line, all of the bioas-
sayed plants were not screened by PCR for the presence
of the transgene. However, the data could still indicate a
correlation of modified AOX expression in the trans-
genic progeny with resistance to TSWV infection, even
though segregation of AOX expression existed in the R1
population.

Figure 2 Southern blot analyses of selected transgenic tomato
plants. Genomic DNA was digested with EcoR I, separated in 1%
agarose gel, transferred to a nylon membrane, and hybridized to a
620 bp DIG-labeled probe of the 35S promoter sequence. Numbers
on the left are approximate sizes in kilobase pairs. Lanes 1 to 10: 1,
FDT3-3-1; 2, FDT3-1; 3, CDT1-1; 4, CDT13; 5, CDT17-1; 6, CDT17-3; 7,
CKT1; 8, CKT6; 9, 525DT5; 10, wild type.

Figure 3 Northern blot analyses of selected transgenic tomato plants. Panel A, total RNA prepared from tomato plants was probed with
the ORF fragment of LeAox1au. Panel B, tomato 18S rRNA. Lanes 1 to 17: 1, FDT3-3-1; 2, FDT3-3-2; 3, FDT3-1; 4, FDT3-3-3; 5, FKT6; 6, FKT7; 7,
CDT1-1, 8, CDT6; 9, CDT10; 10, CDT13; 11, CDT16-1; 12, CDT17-1; 13, CDT17-3; 14, CKT1; 15, CKT6; 16, 525DT5; 17, wild type. The values below
panel B are the ratios of the intensity of hybridization signal of the sample in panel A verses that in panel B.
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Conclusion
Our experiments demonstrate that transgenic tomato
line FKT4-1 and transgenic petunia line FKP10, both
with elevated AOX expression levels, have higher levels
of resistance to TSWV than control plants. These
results differ from the reported lack of resistance to
tobacco mosaic virus (TMV) in transgenic tobacco with
altered levels of AOX [26]. However, in these experi-
ments with tobacco, only two transgenic lines were ana-
lyzed. If more transgenic lines had been created and
evaluated, different conclusions might have been
reached. Several studies have shown that altered AOX
activity was positively correlated with resistance of
transgenic tobacco and Arabidopsis plants to TMV and
CMV infection [23,27,31]. Other, contradictory results
were found in TMV challenged tobacco and N.
benthamiana [29]. As more plant species and viruses
have been used to elucidate antiviral mechanisms in
plants, it has become clear that different host species
can use different mechanisms to resist virus infection
[31]. Our results support the hypothesis that the AOX
pathway may be associated in some way with plant
resistance to viruses. In our experiments and those of
others, all plants with modified AOX expression levels
that have been evaluated have been challenged with
only one virus. It has not been reported how host

species with altered AOX levels respond to challenges
by different plant viruses. Our transgenic tomato line
FKT4-1 and petunia line FKP10 will be challenged with
viruses other than TSWV to evaluate their wide-spec-
trum virus resistance.

Methods
Production of transgenic plants
The full-length and ORF only sequences of the
Leaox1au gene isolated from tomato and cloned into
pBI525 and subcloned into pBI121 were constructed [9]
(Figure 1). Tomato cultivar ‘Healani’ and petunia culti-
var ‘Sheer Madness’ leaf explants were transformed with
these constructs using Agrobacterium infection. Total
RNAs and plant genomic DNAs were isolated using
RNeasy® Plant Mini Kits and DNeasy® Plant Mini Kits
(Qiagen, Valencia, CA) respectively. DNA was extracted
from selfed R1 plants using a simplified method for
screening transgenes [33]. Putatively transformed tomato
and petunia plants and the progeny of selfed primary
transgenic lines were screened by PCR using 35S-speci-
fic primer pairs (5’-GACATCTCCACTGACGTAAGG-3’
and 5’-CTCAACACATGAGCGAAACC-3’) or (35SF: 5’-
AAAGGAAGGTGGCTCCTACAAAT-3’ and 35SR: 5’-
CTCTCCAAATGAAATGAAATGAACTTCC-3’) [34].
DNA and RNA hybridizations, electrophoresis, and

Wild type CKT1 FDT3-3-1 FDT3-3-3

U       M      L U       M      L U       M      L U       M      L

A

B

Wild type CKT1 FDT3-3-1 FDT3-3-3

U       M      L U       M      L U       M      L U       M      L

Wild type CKT1 FDT3-3-1 FDT3-3-3

U       M      L U       M      L U       M      L U       M      L

A

B

Figure 4 Western blot analyses of AOX expression of some tomato transgenic and wild type lines. A, mitochondrial proteins isolated
from transgenic lines CKT1, FDT3-3-1, FDT3-3-3 and non-transgenic control plants were separated in 12% SDS-PAGE gels, transferred to PVDF
membranes, probed with mouse monoclonal antibody AOA and detected with NBT/BCIP. B, mitochondrial protein stained with Coomassie. U,
upper leaf; M, middle leaf; L, lower leaf.

Table 1 Evaluation of R1-generation of tomato transgenic lines for levels of resistance to TSWV

Line Total number
of R1 plants

Number of plants
with AOX transgene

Percentage of transgenic progeny
without AOX gene and OD < control

Percentage of transgenic progeny
with AOX gene and OD < control

Paired t-test
Prob > |T|

CDT9 20 18 50.0 77.8 0.179

FKT12-
1

27 20 42.9 60.0 0.597

FKT2 26 17 44.4 76.5 0.076

FKT4-1 32 22 40.0 86.4 0.036*

FKT6 31 22 22.2 72.7 0.095

FKT7 28 19 33.3 68.4 0.257

FKT8 27 19 25.0 57.9 0.892

FKT9 34 17 47.1 82.4 0.254

* indicates significant (P < 0.05) difference
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blotting were done according to Sambrook and Russell
(2001)[35]. Chemiluminescent detection was conducted
using the DIG High-Prime DNA Labeling and Detection
Starter Kit II® (Roche, Indianapolis, IN). The 35S probe
was prepared by PCR with plasmid PBI525 DNA as
template, and the 18SrDNA control probe was amplified
by PCR (18SF:5’-CCTCAGAAACCGCTACCAC-3’ and
18SR: 5’-AATACGAATCCCCCCGAC-3’) using geno-
mic DNA as template. Both probes were purified with
the Concert® PCR purification system (Life Technolo-
gies, Grand Island, NY). Band intensities in northern
blot analyses were measured using a Bio-Rad Discovery
Series Quantity One® image analyzer and software (Bio-
Rad,Hercules,CA).

For western blot analyses, mitochondrial proteins were
extracted according to Boutry et al. [36] with modifica-
tions. Briefly, 0.1 g plant leaves were ground in 1 ml
extraction buffer (0.4 M sucrose, 50 mM Tris base,1
mM EGTA, 5 mM 2-mercaptoethanol, 1% bovine serum
albumin, 10 mM KH2PO4, 0.1% polyvinylpolypyrroli-
done, pH 7.6) and the homogenate was filtered through
4 layers of Miracloth® (Calbiochem, La Jolla, CA). The
filtrate was centrifuged at 3000 g for 10 minutes in a
Sorvall SS34 rotor and the supernatant was then centri-
fuged at 25,000 g for 10 min in the same rotor. The
resulting pellet containing mitochondria was dissolved
in 50 μl suspension buffer (0.4 M mannitol, 0.5% bovine
serum albumin, 10 mM KH2PO4, pH 7.2), and sample
aliquots (5 μl) were analyzed by electrophoresis in 12%
SDS-PAGE gels. Gels were stained with Comassie Brilli-
ant Blue R-250 according to Sambrook & Russell (2001)
and protein fragments were transferred onto PVDF
membrane by electroblotting. Detection of AOX protein
was done using the mouse monoclonal antibody Alter-
native Oxidase All (AOA) raised against Sauromatum
guttatum AOX [37].
The confirmed transgenic tomato and petunia lines

were selfed and seeds of 24 transgenic tomato lines and
33 transgenic petunia lines were collected. Ten selfed
transgenic tomato lines and 1 non-transgenic control
tomato were challenged with TSWV by mechanical
inoculation with three replications. Segregated trans-
genic and non-transgenic plants were identified by PCR.
Twenty-two to 32 tomato R1 transgenic plants from
each line were confirmed by PCR, challenged with
TSWV, and analyzed by enzyme-linked immunosorbent
assay (ELISA). For petunia R1 plants, 13 replications
each with about 10 plants were used for TSWV screen-
ing in a randomized complete block design.

TSWV infection and plant evaluation
TSWV was isolated from a tomato plant with typical
symptoms of TSWV infection (small dark spots on
leaves, bronzed leaves that rolled upward, and dieback
of young branches) grown on a farm on Oahu, Hawaii.
When R1 tomato seedlings had grown 4 to 6 cm height,
the individual plants were transplanted into single pots
and grown to the 5 - 6 leaf stage. These plants were
then grown at 22 to 25°C under 16/8 hr. photoperiod
before virus challenge. On one fully-expanded young
leaf of each plant, five carborundum-dusted leaflets were
inoculated with 100 μl freshly-prepared TSWV inocu-
lum made by grinding tomato leaves systemically-
infected with TSWV in phosphate buffer (0.033 M
KH2PO4, 0.067 M Na2HPO4, pH7.0) (1:10, w/v) supple-
mented with 10 mM sodium sulfite. All TSWV extracts
were kept on ice until all plants had been inoculated.
Seven to ten days after the first inoculation, all the

1
Figure 5 Mean ELISA readings of progeny from 2 transgenic
tomato lines and wild-type control plants. Two lines of
transgenic tomato (FKT9 and FKT4-1) and wild-type control plants
were inoculated twice with TSWV and virus titer assayed by ELISA at
different time points over a 47 day period.

Table 2 Evaluation of progeny of petunia transgenic line
for resistant reaction to TSWV

Line local lesion diameter Local lesion numbers

CKP4-1-1 0.264 0.2199

CKP6-6-1 0.3824 0.3528

CKP7-2 0.369 0.3922

CKP8-1 0.4146 0.3103

CKP11-2-1 0.5041 0.3422

CKP15-2-3 0.1324 0.1641

CKP24 0.6186 0.7152

FKP10 0.0458* 0.0384*

FKP16 0.1730 0.1501

FDP1-3-1 0.6076 0.4269

FDP1-6 0.9885 0.9574

FDP2 0.0855 0.0889

FDP14 0.3862 0.2575

The average values of each replication were used for paired t-test of the
progenies produced from transgenic petunia lines and wild-type control. The
P values in the table were estimated by the replications ranged from 11 to 13.

* indicates significant (P < 0.05) difference.
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plants were inoculated for a second time as above.
About 20 to 30 days after the second inoculation,
Immunostrips® (Agdia, Elkhart Ind.) were used to assay
challenged plants for TSWV infection. If positive plants
were confirmed, then fully-expanded new leaves were
collected for ELISA [38]. The absorbance values at 405
nm were determined in a microplate reader (Bio-Rad
model 680, Hercules, CA). For petunia seedlings, within
each replicate, randomly selected plants were dusted
with carborundum on three young leaves. Fifty microli-
ters of fresh TSWV inoculum, prepared as above was
inoculated onto each of three leaves on each plant. Four
to seven days after inoculation, the number and dia-
meters of local lesions were recorded.

Data analysis
For each assayed tomato sample, extracts from three leaf
disks prepared as above were collected and analyzed in
adjacent wells of ELISA plates. A sample was considered
positive if the average absorbance value of the three
replicate wells was four times greater than the average
absorbance value of healthy uninoculated samples of
non-transgenic plants analyzed in the same plate [39].
Samples from R1 transgenic tomato plants and wild-
type controls from each plate, and petunia plants and
wild-type controls from each replicate were considered
paired values to conduct two-sample paired t-tests with
SAS® software.
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