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Abstract
Background: Quantum dots (QDs) have been considered as a new and efficient probe for labeling cells non-invasively 
in vitro and in vivo, but fairly little is known about how QDs are eliminated from cells after labeling. The purpose of this 
study is to investigate the metabolism of QDs in different type of cells.

Results: Mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs) were labeled with QD 655. QD-
labeling was monitored by fluorescence microscopy and flow cytometry for 72 hours. Both types of cells were labeled 
efficiently, but a quick loss of QD-labeling in ESCs was observed within 48 hours, which was not prevented by 
inhibiting cell proliferation. Transmission electron microscope analysis showed a dramatic decrease of QD number in 
vesicles of ESCs at 24 hours post-labeling, suggesting that QDs might be degraded. In addition, supernatants collected 
from labeled ESCs in culture were used to label cells again, indicating that some QDs were excreted from cells.

Conclusion: This is the first study to demonstrate that the metabolism of QDs in different type of cells is different. QDs 
were quickly degraded or excreted from ESCs after labeling.

Background
A variety of cell labeling techniques and reagents have
been developed, including organic dyes, radioactive
reagents, ultra small iron, as well as fluorescent protein
expression through genetic manipulation [1-5]. Each of
these labeling methods has its own disadvantages, such as
low intensity, short period of labeling time, and compli-
cated procedures. Compared to these cell labeling tools,
quantum dots (QDs) have been considered as a new and
efficient probe for labeling cells non-invasively in vitro
and in vivo [6-11]. QDs are a family of semiconductor
nanocrystals that have broad excitation spectra and nar-
row emission spectra, which is ideal for multiplex imag-
ing [7,8,12-15]. In addition, QDs have exceptional
photostability which is ideal for live cell imaging. They
have been used to label somatic cells, tumor cells, multi-
potent adult stem cells, as well as embryonic stem cells
(ESCs) [6,7,15-18]. Studies have demonstrated that QDs
can label cells in vitro and in vivo for long periods of time
[6,7,17,19], while others have shown that the labeling

time in stem cells was short [17]. Lin, S et al. revealed that
mouse ESCs could be labeled with QDs efficiently in
vitro, but labeled cells could not be detected after 2 weeks
of transplantation in vivo [18]. The discrepant results
achieved from those studies indicate that the metabolism
of QDs in different type of cells might be variable.

It is relatively clear that QDs enter the cells through
endocytosis [20-22], but fairly little is known about how
QDs are eliminated from cells after labeling. Understand-
ing the metabolism of QDs in individual cells could help
us to prevent the cytotoxicity of QDs in different types of
cells. In order to address above question, we labeled
mouse ESCs and mouse embryonic fibroblasts (MEFs)
with QD 655 and followed the QD-labeling in culture. We
found that both types of cells were labeled efficiently, but
MEFs maintained QD-labeling for a long period of time
in culture, while ESCs lost their labeling in a short time
period. In addition, the quick loss of QD-labeling in ESCs
was mainly due to the degradation or excretion of QDs by
cells rather than cell division.

Methods
Cell culture
Mouse embryonic stem cell line R1 was obtained from
the American Type Culture Collection (ATCC; Manassas,
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VA). R1 cells were kept on mitomycin C (Sigma, St Louis,
MO) inactivated MEFs in Dulbecco's Modified Eagle
Medium (DMEM; Invitrogen, Carlsbad, CA) containing 2
mM L-glutamine (Invitrogen), Penicillin(100U/ml)-
Streptomycin(100ug/ml, Invitrogen), 100 μM monothio-
glyceral (Sigma), 1000 IU/ml leukemia inhibitory factor
(Chemicon, Billerica, MA), and 15% fetal bovine serum
(FBS, Invitrogen). MEFs were isolated from ICR mice and
cultured in DMEM with 10% FBS as described [23].

QD-labeling
Cells were labeled with Qtracker® 655 Cell Labeling Kit
(Invitrogen) as the manufacturer described. Briefly, ESCs
or MEFs were dissociated by 0.25% trypsin/EDTA (Invit-
rogen) to achieve a single cell suspension; 0.2 ml labeling
solution was then added to a 1.5 ml microcentrifuge tube
with 1 million of ESCs or MEFs, followed by incubating at
37°C for 60 minutes. After one wash in cell growth media,
cells were subsequently seeded on 0.1% gelatin coated
plates. Fresh culture media were replaced after 24 hours.

Cell viability and proliferation
Cells with or without QD-labeling were plated in 6-well
plates at a density of 0.2 million/well. At indicated time
points, cells were harvested by trypsin/EDTA dissocia-
tion. Viable cells were then counted by trypan blue exclu-
sion assay. Cell viability was calculated as: viable cell
number/total cell number × 100%.

Fluorescence microscope observation and flow cytometry 
analysis
Cell morphology and intracellular fluorescence of QDs
were observed with a fluorescence microscope (Olympus,
Shinjuku-ku, Tokyo,). For flow cytometry analysis, cells
were trypsinized, washed with phosphate buffered saline
(PBS), resuspended in PBS with 2% FBS, and then ana-
lyzed on a flow cytometer (Beckman Coulter, Fullerton,
CA). The data were analyzed by CXP software (Beckman
Coulter).

Inhibition of cell division
After regular QD labeling, Cells were seeded in 0.1% gela-
tin coated dishes and then treated with 5 μg/ml mitomy-
cin C (Sigma) for 3 hours or 0.2 μg/ml colchicine (Sigma)
for 4 hours, respectively. Cells were then washed with
PBS, and kept in regular cell culture medium. Cell prolif-
eration was evaluated by viable cell counting at indicated
time points, and the intracellular QDs were analyzed by
flow cytometry as described above.

Transmission electron microscope analysis
For transmission electron microscope analysis, cells at 6,
24, and 48 hours after QD labeling were harvested, pre-
fixed with 2% glutaraldehyde for 2 hours at 4°C, washed
twice with PBS, and then post-fixed with 1% osmic acid

for 2 hours at 4°C. After another two washes in PBS, the
samples were dehydrated with ethanol gradient, replaced
twice with propylene oxide, soaked in ethoxyline resin
over night, and mounted at 60°C for 48 hours. Thin sec-
tions (80 nm) were cut with an ultramicrotome (LKB,
Margate, FL) and then viewed under transmission elec-
tron microscope (Philips, Amsterdam, Netherlands).

Detection of QDs in supernatant
To investigate whether QDs could be excreted from cells
after labeling, one million QD-labeled ESCs or MEFs
were seeded in 6-well plates, non-attached cells were
removed by medium change after 4 hours, and superna-
tants were collected at 24 or 48 hours, respectively. The
supernatants were filtered through 0.22 μm meshes
(MILLIPORE, Bedford, MA) and centrifuged at 3500 × g
to precipitate the QDs. The pellets were resuspended in 5
μl of QD-labeling buffer, observed under a fluorescence
microscope (Olympus), and then incubated with 1 mil-
lion of MEFs at 37°C for 60 minutes. MEFs were then
washed with PBS twice and analyzed by flow cytometry
as described above.

Statistical analysis
Each experiment was repeated at least three times. All
data are presented as mean ± standard deviation. Statisti-
cal analysis was performed by Student's t-test and p <
0.05 was considered to be statistically significant.

Results
QDs label ESCs efficiently but transiently
After QD labeling, cell viabilities were evaluated by try-
pan blue assay. Over 97% of ESCs and MEFs were viable,
indicating that cell viability was not affected by QD-label-
ing. Cells adhered on the plates and proliferated well
without significant differences compared to their un-
labeled counterparts (Figure 1). A few floating cells
(about 15% in MEF and 5% in ESCs) were seen in the first
24 hours of culture, but very few floating cells were
observed in the following days after medium replace-
ment. Morphologically, ESCs grew in compact clones as
their unlabeled parent cells grew (Figure 1). With the pro-
liferation of cells, an obvious decrease of QD-labeling in
ESCs was observed at 48 and 72 hours post-labeling but
not in MEFs (Figure 1).

QD-labeling was quantitively analyzed with flow
cytometry. The percentage of QD-positive cells was
determined based on the fluorescence level of cells with-
out labeling (Figure 2A). Right after labeling, about 97 ±
1.6% (n = 3) and 94 ± 3.9% (n = 3) of ESCs and MEFs were
positive for QD, respectively (Figure 2A). A representa-
tive set of histograms from ESCs at 0, 24, 48 and 72 hours
after labeling is shown in Figure 2B. The decrease of QD-
labeling in ESCs was significant at 48 and 72 hours post-
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labeling. Statistical analyses from three independent
experiments are summarized in Figure 2C. QD-positive
ESCs decreased to 63.9 ± 10.9% (n = 3) at 24 hours post-
labeling but were maintained at a high level in MEFs (90 ±
8.8%, n = 3). Within the following 24 hours, a dramatic
decrease of QD-positive cells was observed in ESCs (15.8
± 2.9%, n = 3) but not in MEFs (74.3 ±17.2%, n = 3). At 72
hours post-labeling, only a small amount of ESCs (4.6 ±
1.6%, n = 3) were positive for QDs, while 34.6 ± 11.7% (n
= 3) of the MEFs still contained QDs at that time. These

results indicate that ESCs were labeled with QDs as effi-
ciently as MEFs but lost their labeling quicker than MEFs.

Quick loss of QD-labeling in ESCs is not primarily due to cell 
division
Since ESCs possess high proliferation potential, it is pos-
sible that the quick loss of QD-labeling in ESCs might be
due to rapid cell division. To address this question, we
inhibited cell proliferation by treating ESCs with mitomy-
cin C or colchicine. As shown in Figure 3A, cell growth
was completely inhibited by mitomycin C or colchicine

Figure 1 Cell morphology and intracellular fluorescence of QDs in ESCs and MEFs after QD-labeling. Cells were observed at 3, 24, 48, and 72 
hours post-labeling. Bars: 50 μm.
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treatment. However, flow cytometry analyses showed
that loss of QD-labeling was not prevented by inhibition
of cell growth (Figure 3B, Additional file 1). The percent-
ages of QD-positive cells constantly dropped from 97 ±
1.6% (n = 3) to 27 ± 2.9% (n = 3, mitomycin C treated) and
25 ± 8.2% (n = 3, colchicine treated) after 72 hours. On
the contrary, when proliferation of MEFs was completely
inhibited by mitomycin C treatment, QD-labeling slightly
decreased from 94 ± 3.9% (n = 3) to 90 ± 3.7% (n = 3) after
72 hours (Figure 3C,D, Additional file 2). These results

indicate that the loss of QD-labeling in MEFs is almost
completely related to cell division, while the loss of QD-
labeling in ESCs is not primarily due to cell division.

QDs might be degraded in ESCs
It is known that QDs enter cells through endocytosis, but
little is know about the fate of QDs after internalization.
We detected the intracellular distribution of QDs at sev-
eral time points by transmission electron microscope. As
shown in Figure 4, high densities of QD aggregates were

Figure 2 Quantitative analyses of QD-positive cells by flow cytometry. (A) Representative histograms of QD fluorescence in unlabeled ESCs, la-
beled ESCs and MEFs right after labeling. (B) Histograms of QD-labeling in ESCs during cell culture. (C) Dynamic changes of QD-labeling in ESCs and 
MEFs were followed up to 72 hours by flow cytometry. MFI: mean fluorescence intensity of the whole population.
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easily observed in the vesicles in both ESCs and MEFs at
6 hours post-labeling, which is similar to previous reports
[17,24]. The aggregates could be steadily observed in
MEFs even after 48 hours. However, the amount of QDs
within vesicles dramatically decreased in ESCs after 24
hours, and very few QD aggregates were observed after
48 hours. The decrease of QD aggregates in individual
vesicles suggests that QDs might be degraded.

Excretion of QDs from ESCs
Besides the degradation of QDs, the quick loss of QD
aggregates within ESCs might also due to the excretion of
QDs from cells, although it was described by the manu-
facturer that QDs would not leak out of intact cells. To
address this question, we collected the supernatant from
cultured ESCs or MEFs at 24 and 48 hours after labeling.
The supernatants were concentrated by centrifuge, resus-

Figure 3 Effects of cell proliferation on QD-labeling. (A) Proliferation of ESCs was inhibited by either mitomycin C (MMC) or colchicine (CLC) treat-
ment. (B) Constant loss of QD-labeling in MMC or CLC treated ESCs was observed by flow cytometry. (C) Proliferation of MEFs was inhibited by mito-
mycin C (MMC) treatment. (D) Loss of QD-labeling in MMC treated MEFs was prevented.
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pended in QD-labeling buffer, and observed under fluo-
rescence microscope. Red fluorescent dots were observed
in the pellets collected from ESCs at 24 hours post-label-
ing, but there were very few in those from MEFs (Figure
5A). The pellets were then buffered to label MEFs. As
shown in Figure 5B, supernatants collected at 24 and 48
hours from ESCs could label 11.1 ± 2.4% (n = 3) and 23.4
± 1.3% (n = 3) of MEFs, respectively, which was signifi-
cantly higher (P < 0.05) than those labeled with the super-
natants from MEFs (3.2 ± 1.1% and 3.9 ± 1.3%,
respectively).

Discussion
QD labeling has become an efficient tool for cell tracking
both in vitro and in vivo [6-11], but little is known about
the intracellular metabolism of QDs after labeling. It has
been reported that QDs are quite stable and would be
only diminish during cell division [20,21]. In the present
study, we found that ESCs lost QD-labeling within a short
period of time, which coincided with the data observed
by Lin et al. [18]. Although the quick loss of QD-labeling
has also been observed in other stem cells [17], cell prolif-
eration is the only explanation that has been given
[17,18]. By inhibiting the cell proliferation, we found that
the loss of QD-labeling in MEFs could be prevented (Fig-
ure 3C,D), suggesting that the elimination of QDs in
MEFs is mainly due to cell division. However, in ESCs,
QD-positive cells decreased over time from 95% to 25-
27%, even though cell proliferation was completely inhib-

ited by either MMC or CLC treatment (Figure 3B). Com-
paried with non-inhibited ESCs (about 5% QD-positive
cells at 72 hours), it was estimated that only 20% of QD-
elimination is related to cell division, and the remaining
80% of elimination is likely related to other mechanisms.

One possibility for QD-elimination in ESCs is degrada-
tion. It is known that QDs are degraded within lysosomes
and peroxisomes [22,25]. By transmission electron
microscopic observation, we found that the number of
QDs within each vesicle decreased dramatically within 24
hours in ESCs but not in MEFs (Figure 4), suggesting that
quick degradation of QDs may occur in ESCs. We specu-
late that ESCs possess higher digestive enzyme activities
than MEFs, resulting in the faster elimination of QDs in
ESCs. However, which enzymes relate to QD-degradation
are not clear. Comparing global level of enzyme activities
in ESCs and MEFs, especially those localized in lyso-
somes and peroxisomes, may give some clue to get the
answer. Another way to detect the QD-degradation is to
measure the degradation products. Further studies are
worth conducting to evaluate how much QDs are
degraded in ESCs.

Another possibility for QD-elimination is the excretion
of QDs from labeled cells. It has been noted that QDs
would not leak out of intact cells; however, when we col-
lected the supernatants from labeled ESCs in culture, QD
particles could be observed under a fluorescence micro-
scope (Figure 5A). In addition, the concentrated superna-
tants could label cells again (Figure 5B), suggesting that

Figure 4 Transmission electron microscope observation of intracellular QD distribution in ESCs and MEFs. Representative cells at 6, 24, 48 
hours after labeling are shown. Higher magnifications of the squared area in the left columns at each time point are shown in the right columns for 
both ESCs and MEFs. Black arrows: vesicles; White arrows: QD aggregates; Bars: 500 nm.
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Figure 5 Exclusion of QDs from labeled cells. (A) Supernatants from cultured ESCs and MEFs at 24 hours post QD-labeling were concentrated and 
observed under fluorescent microscope. Red dots represent QDs. Bars: 10 μm. (B) MEFs were labeled with the supernatants collected from QD-labeled 
ESCs or MEFs in culture at 24 and 48 hours post labeling. Representative histograms of QD fluorescence in re-labeled MEFs right after labeling are 
shown.
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QDs do leak out of cells. By trypan blue exclusion assay,
over 97% of cells were viable at 24 and 48 hour time
points and floating cells were barely seen in culture, indi-
cating that QDs are actively excreted from living cells
rather than being released from dead cells. It is known
that many types of stem cells possess membrane trans-
porters which could extrude toxic reagents from the cyto-
plasm to protect themselves [26]. ESCs express ATP-
binding cassette (ABC) transporters, such as multi-drug
resistant protein (MDR) and ABCG2, which could trans-
port various molecules across extra- and intra-cellular
membranes [27,28]. However, we failed to inhibit the
excretion of QDs by inhibiting the transporters with vera-
pamil (data not shown), indicating that QD excretion is
not mediated by ABC transporters. The method by which
QDs are excreted from cells needs to be further investi-
gated.

The histograms of QD-labeled ESCs analyzed by flow
cytometry showed that around 5% cells were not labeled
at 0 hour timepoint (Figure 2), and unlabeled cells
increased to 35% after 24 hours. One may speculate that
the increase of unlabeled cells is due to the selective pro-
liferation of unlabeled cells, rather than degradation or
excretion of QDs from labeled cells. Inhibition of cell pro-
liferation study revealed that this is likely not the case,
since the percentage of unlabeled cells was still increased
even though cell growth was completely inhibited (Addi-
tional file 1). In addition, only a few floating cells (5% in
ESCs) were seen in the first 24 hours of culture, and very
few floating cells were observed in the following cultures
after medium replacement at 24 hours timepoint, indicat-
ing that decrease of labeled cells is not due to the selective
death of these cells either. The floating cells at first 24
hours were observed in both QD-treated and non-treated
cells without difference, indicating that QD-labeling do
not affect cell attachment and growth, which were also
demonstrated by cell counting (Figure 3A,C). The float-
ing cells observed in the first 24 hours are possibly related
to the enzymic digestion during cell collection. Interest-
ingly, more floating cells were observed in MEFs (15%)
than in ESCs (5%). Since theses cells were removed before
cell collection, the flow cytometry analyses data would
not be affected by the floating cells.

QDs have been used for labeling and tracing cells in
vitro and in vivo, it is very important to make sure that
they are not leaked from labeled cells. Although no leak-
age of QDs have been reported [7,17,29], it is still worth
noting that it may happen in certain types of cells. Thus, a
regular assessment of QD-leakage may be necessary
when a new type of cell is going to be labeled. Interest-
ingly, cells differentiated from ESCs could be labeled with
QDs for a long period of time in culture (data not shown),
further confirming that the metabolism of QDs in ESCs is
quite different from other types of cells. Labeling QDs in

ESCs could be a valuable model to study the metabolism
of nanoparticles at the cellular level.

Conclusion
In summary, we have demonstrated that mouse ESCs and
MEFs could be efficiently labeled by QDs, but ESCs
would lose their QD-labeling within a short time period.
The quick elimination of QD-labeling in ESCs is mainly
due to the degradation or excretion of QDs from cells
rather than cell division. The special mechanism of QD-
elimination in ESCs is worth investigating further to bet-
ter understand the metabolism of such nanoparticles at
the cellular level.

Additional material
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cine.
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