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Abstract

Background: With the availability of large-scale genome-wide association study (GWAS) data, choosing an optimal
set of SNPs for disease susceptibility prediction is a challenging task. This study aimed to use single nucleotide
polymorphisms (SNPs) to predict psoriasis from searching GWAS data.

Methods: Totally we had 2,798 samples and 451,724 SNPs. Process for searching a set of SNPs to predict
susceptibility for psoriasis consisted of two steps. The first one was to search top 1,000 SNPs with high accuracy for
prediction of psoriasis from GWAS dataset. The second one was to search for an optimal SNP subset for predicting
psoriasis. The sequential information bottleneck (sIB) method was compared with classical linear discriminant
analysis(LDA) for classification performance.

Results: The best test harmonic mean of sensitivity and specificity for predicting psoriasis by sIB was 0.674(95% CI:
0.650-0.698), while only 0.520(95% CI: 0.472-0.524) was reported for predicting disease by LDA. Our results indicate
that the new classifier sIB performs better than LDA in the study.

Conclusions: The fact that a small set of SNPs can predict disease status with average accuracy of 68% makes it
possible to use SNP data for psoriasis prediction.

Background
Risk classification models that utilize independent vari-
ables and outcomes through machine learning have
been widely used to predict disease status in medical
research. To better characterize a disease, researchers
have drawn information from clinical, microarray, and
single nucleotide polymorphism (SNP) data to build a
disease risk model, which is then applied for clinical
diagnosis and prediction of an individual’s susceptibility
to the disease. For example, researchers examined tradi-
tional risk factors such as age, total cholesterol, HDL
cholesterol, smoking, systolic blood pressure, diabetes,
and treatment for hypertension and built a classification
rule with high discriminant power for diagnosing cardio-
vascular disease [1]. Selection of genomic biomarkers for
disease classification with microarray data has been
reported extensively in cancers [2-4] and other diseases
[5] although in most cases high-dimensional gene
expression data were obtained from a small number of

observations. With the availability of high-throughput
genotyping technology, data on hundreds of thousands
of SNPs are available through genome-wide association
studies (GWAS). One of main goals of GWAS is to
identify an optimal set of SNPs that can predict disease
status with greatest possible accuracy. Prediction of
genetic risk will be increasingly useful in diagnosis,
treatment, and prognosis of complex diseases. Exhaus-
tive search of all possible SNP subsets to perform
feature selection is computationally infeasible with a
large number of features. Therefore employment of
search algorithms for development of a good classifier is
a challenging task.
Several feature selection methods have been used to

search for an optimal SNP subset among big data sets
in which feature size far exceeds the number of observa-
tions, such as search by ranked scores [6,7], or by
genetic algorithm[8] or heuristics search [7,9]. Choosing
SNP markers to predict disease or infer population
ancestry via learning models has been reported in
several studies[9-11]. For the studies performed by
Brinza et al. [9] and Wang et al. [10], however, the
authors used cross-validation accuracy of the optimized
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subset as a measure of the final performance of the clas-
sifier. This might be biased because the cross-validation
accuracy for the best subset is maximized within a
search algorithm wrapped around a classifier. In another
genome-wide study[12], although an independent data
set was preserved, the power are limited because the
sizes of sample for training and test data set are insuffi-
cient. In the present study, both the training sample
dataset and the independent testing sample dataset
numbered more than 1000.
To evaluate the performance of a classification

method on an imbalanced two-class dataset, the area
under the receiver operating characteristic (ROC)
curve (AUC) can be calculated. ROC plots true posi-
tive rate versus 1-true negative rate with the continu-
ous change of threshold, and AUC can be considered
as the probability that the classifier can correctly rank
a randomly chosen pair of diseased and nondiseased
individuals. It measures the global classification accu-
racy and therefore a higher AUC represents a better
classifier. Lu and Elston [13] used the area under the
ROC to construct a predictive genetic test on the basis
of variants at several genetic loci by taking the results
from some previous association researches. Cho et al.
[14] applied another criterion, the harmonic mean of
sensitivity and specificity (HMSS), to evaluate a classi-
fier from an unbalanced dataset. HMSS is defined as

HMSS
sensitivity specificity
sensitivity specificity

= ×
+2 , which treats sensitiv-

ity and specificity equally and is invariant to propor-
tion of each group. This criterion was applied in the
present study to assess the performance of a classifier.
In this study, a new classifier, the sequential informa-

tion bottleneck (sIB), was proposed to perform classifi-
cation on a big dataset with 2,798 observations and
451,724 SNPs. We first reduced the GWAS feature set
into a manageable one through an effective filter
method and then performed a feature selection wrapped
around a classifier to identify an optimal SNP subset for
predicting psoriasis. To deal with an unbalanced distri-
bution of positive and negative observations, HMSS was
used as the performance measurement of the predictive
models. This study aimed to select optimal subsets of
SNPs with maximum classification performance for
psoriasis prediction.

Methods
Data sets
The dataset was obtained from the Genetic Association
Information Network (GAIN) database as part of a
Collaborative Association Study of psoriasis sponsored
by the Foundation for the National Institutes of Health.
Approval was given for the use of the data used in this

study by the Genetic Association Information Network
(GAIN). The data were available through dbGaP acces-
sion number phs000019.v1.p1. at URL http://dbgap.ncbi.
nlm.nih.gov. All genotypes were filtered by checking for
data quality [15]. A total of 1,627 subjects (941 cases
and 686 controls) in the general research use (GRU)
group and 1171 subjects (443 cases and 728 controls) in
an autoimmune disease only (ADO) group were finally
used in this study. Each case of psoriasis was diagnosed
by a dermatologist. Controls were at least 18 years old
and had no cognate relative with a known diagnosis of
psoriasis. Both cases and controls agreed to sign in the
consent contract. DNA for each of the participants was
genotyped with the Perlegen 500 K array. It was
assumed that high-dimension data mining tools,
together with feature selection methods, might provide
clues for locating the genes for predicting the disease on
a genome-wide scale.

Experiments
Each genotype was assigned a value of 0, 1 or 2, where 0
and 2 denoted homozygotes of minor and majror alleles,
respectively and 1 represented heterozygotes. Missing
data were replaced with the majority category for each
SNP feature. We trained the model based on the GRU
dataset and tested it through ADO dataset. Within the
training dataset, the 1,000 most predictive SNPs were
chosen through one criterion to reduce the space
dimension to a manageable size. The training set was
further split into five non-overlapping subsets of equal
size. Four of these subsets were used for training, and
the remaining one for evaluation. The wrapper approach
follows the feature subset selection algorithm “wrapped
around” the mining algorithms, such as sIB or linear
discriminant analysis (LDA). Two search algorithms, for-
ward selection (FS) and sequential forward floating
selection (SFFS), were compared. The model with best
cross-validation evaluation was chosen and tested on the
independent test set for each learning algorithm. The
results for the test set represent an estimate of generali-
zation accuracy. This accuracy was plotted over the
number of variables included in the model so that the
optimal number of variables could be determined. For
each promising subset of markers, we further ran 200
bootstrap iterations to estimate 95% confidence interval
for the accuracy.
LDA is a classifier that separates the two classes by

determining the projection matrix that maximizes the
ratio of between-class covariance to within-class covar-
iance. LDA is simple, fast and often produces models
with accuracy comparable to more complex mthods. sIB
is a new, unsupervised method that can be adopted for
classification tasks. Given a joint distribution p(X;Y), the
principle of this method is to find the cluster variable
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C that compresses the original information X while try-
ing to preserve the relevant features in X with respect to
information about Y. By introducing a Lagrange multi-
plier, b, the information bottleneck function is con-
structed as L[P(c | x)] = I(C; X) - b I (C; Y), where
I(C; X) represents mutual information between C and X
and I(C; Y) means mutual information between C and
Y. By minimizing this function, we can solve for P(c |
x), based on which x is mapped into c. In the sIB algo-
rithm, this conditional probability is deterministic,
which means that x is assigned to a cluster with prob-
ability 1 and all other clusters with probability 0. By ran-
domly initializing the partitions several times, the
clustering that minimizes the loss function L is finally
chosen. After clusters are built, each one is labelled by
its dominant category [16]. sIB was demonstrated to
have a better performance than all other unsupervised
classification methods(agglomerative, K-means and
other sequential procedures) by a significant gap and
was comparable to the naïve Bayes method [17].
All programming analysis was done with MATLAB

student version 7.1 and the SAS system (Cary, NC).

Results
To reduce the feature subsets to a manageable size, we
first used training HMSS of LDA as a filter criterion to
obtain the candidate 1,000 SNPs for the second-stage
marker selection. The psoriasis data set consists of two
independent studies. The first study (cases: 941 and con-
trols: 686) was used as a training data set and the sec-
ond study (cases: 443 and controls: 728) was used as a
test data set. We used LDA with HMSS as a selection
criterion and selected best 1000 SNPs from 451,724
SNPs genotyped in the training data set (Additional file
1, Table S1).
To identify an optimal subset of predictive SNPs using

a LDA classifier, the study consists of two steps. In
the first step, we split the training set into five non-
overlapping subsets of equal size. Four of them were
used for training, and the remaining one for cross-
validation. We used LDA as a classifier and HMSS eval-
uated in the cross-validation data set as a criterion to
select an optimal subset of SNPs for prediction by FS or
SFFS algorithms (see Methods). In the second step, we
used the test data set to calculate HMSS of the optimal
subset of SNPs selected from the first step. To deter-
mine how many SNPs should be used for prediction, we
plotted Figure 1 showing cross-validation HMSS and
test HMSS versus the number of markers searched
through two feature selection algorithms. Inclusion of
more SNP markers in FS did not lead to a significant
change of test HMSS(Figure 1(a)). The best subset con-
sisted of 38 SNPs and its test HMSS was 0.520(95% CI:
0.472-0.524). Because this method easily generates

nested subsets of SNPs and optimal large subsets might
not include optimal subsets with small sizes, FS does
not give an optimal result. We also used SFFS for fea-
ture selection(Figure 1(b), by backtracking after each
inclusion, SFFS started from a 2-SNP subset and all pos-
sible 2-SNP combinations were evaluated. Although
cross-validation HMSS for SFFS was in general higher
than that for FS, the test HMSS for SFFS was, in gen-
eral, lower than that for FS. The highest value for test
HMSS in SFFS was 0.512(95% CI: 0.472-0.523), pro-
duced by an optimal subset of 32 SNPs.
To find a subset of SNPs with maximum predictive

ability, two different feature selection algorithms
wrapped around the sIB classifier were performed.
Cross-validation HMSS and test HMSS were plotted
by the number of markers searched through each
feature selection method (Figure 2). In the process of FS
(Figure 2(a)), although cross-validation HMSS reached
its top value when the size of subsets reached six, the
test HMSS for FS algorithm reached its highest value
0.668(95% CI: 0.641-0.694) with only one SNP marker
and decreased with additional markers. SFFS(Figure 2
(b)) started from an optimal 2-SNP subset obtained by
evaluating all combinations of 2 SNPs. Similar to FS,
test HMSS for SFFS reached its highest value 0.659(95%
CI: 0.633-0.683) with a subset of 2 SNPs and decreased
with additional markers.
Table 1 and Additional file 1, Table S2 list all optimal

SNP subsets for each search algorithm using the LDA
or sIB classifier. For the LDA method, although the sub-
set of SNPs rs10958357 and rs7973936 had the highest
test HMSS of 0.556(95% CI: 0.471-0.525), it was picked
post hoc and spuriously inflated with the test HMSS not
covered by 95% CI, therefore, we used mean value of
Bootstrap sampling–0.498 as the point value estimate
for the test HMSS. The reliable test HMSS was given by
the subset of 38 SNPs from forward selection. Its test
HMSS reached 0.520(95% CI: 0.472-0.524), and its
cross-validation HMSS was 0.500(95% CI: 0.478-0.520).
For the sIB method, the best subset of SNPs is
rs12191877 and rs4953658 with test HMSS reaching
0.674(95% CI: 0.650-0.698) and cross-validation HMSS
0.557(95% CI: 0.014-0.633). In general, sIB performed
better than LDA for all search algorithms, and point
estimate results for sIB were all located within 95% con-
fidence interval
HMSS as a criterion gives equal weight to both sen-

sitivity and specificity. But in practice, there have also
been concerns regarding prediction accuracy in one
group given that the accuracy in the other group is
reasonable. In this study, for example, to determine
how much accuracy a SNP subset can reach to predict
a normal status if its prediction accuracy among cases
is at least 0.4, we observed the top 20 ranked SNP
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subsets based on cross-validation accuracies in controls
for all SNPs with accuracies not less than 0.4 among
cases. Table 2 presents the highest test accuracies for
predicting non-psoriasis among controls with test
accuracy equal to or greater than 0.4 among cases, or
for predicting psoriasis among cases with test accuracy
equal to or greater than 0.4 among controls, deter-
mined by using a LDA or sIB classifier through 1 or 2
SNPs. Generally speaking, sIB yielded higher test accu-
racy than LDA. If the test accuracy among cases was
required to be at least 0.4, then the best test accuracies
among controls were 0.582(95% CI: 0.555-0.613) by
LDA through rs7507133 and 0.850 (95% CI: 0.826-
0.870) by sIB through a combination of rs12191877
and rs3823418. On the other hand, if the test accuracy
among controls was required to be at least 0.4, then
the best test accuracies among cases were 0.607(95%
CI: 0.558-0.628) by LDA through rs231390 and 0.749
(95% CI: 0.718-0.779) by sIB through rs1265078 and
rs1466215.

Table 3 and Additional file 1, Table S3 list 20 SNPs
with the best training HMSS for classifying psoriasis: 15
have P-values smaller than the cut-off value 1.11 × 10-7

by a chi-square test. This demonstrates that our classifi-
cation methods are consistent with chi-square test in
terms of detecting valuable SNP markers.

Discussion
The purpose of this study is to address the feasibility of
using SNPs for diagnosis of psoriasis. To achieve this,
we addressed two issues. The first issue is what classifi-
cation method should be used. We propose to use a
new adaptive classification method, sIB wrapped inside
feature selection methods, to predict disease occurrence.
By first extracting a fixed number of clusters that mini-
mizes the loss of mutual information between the input
features and the outcome variable, and then assigning
the class label to each cluster by a majority rule, this
method has been proved to perform better than linear
discriminant analysis in this study.

Figure 1 Cross-validation HMSS (CVhmss) and test HMSS (thmss) by the number of markers. The markers were identified for predicting
psoriasis using LDA classifier with forward selection(a) and sequential forward floating selection (b) algorithms, respectively.
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The second issue is how to select a subset of SNPs
from half millions of SNPs. Accessibility of millions of
DNA variations makes it possible to use SNPs for
predicting common diseases. Because the number of
combinations of SNPs is extremely large, it is neces-
sary to select a subset of informative SNP markers
that can accurately predict the disease. In this study,
we first selected the 1,000 most predictive SNPs
through an effective filter method and then used a fea-
ture selection algorithm wrapped around a classifier to
identify an optimal SNP subset for predicting the dis-
ease. In general, searching for an optimal subset
through cross-validation criterion gives an overfitting
estimate of subset’s performance and makes poor gen-
eralization. It is strange that inclusion of more SNPs
in the optimal sets of SNPs with 1 or 2 SNPs through
an exhaustive search does not always improve accu-
racy. sIB can be adopted to predict the outcome, and
in our study its ability to predict the disease status
was better than that of traditional LDA. The best test

HMSS for predicting psoriasis using a subset of SNPs
with rs12191877 and rs4953658 through sIB was
0.674. In terms of group prediction accuracy for the
study of psoriasis, if accuracy in the test samples
among cases was required to be not less than 0.4, the
highest accuracy of sIB among controls reached 0.850
by a combination of rs12191877 and rs3823418. On
the other hand, if prediction precision among control
test samples was required to be at least 0.4, the best
accuracy of sIB among case test samples reached
0.749 by a combination of SNPs rs1265078 and
rs1466215.
An initial filter approach is fast and simple to perform.

The reason that features were first filtered through LDA
HMSS rather than through LDA classification accuracy
is that LDA HMSS can be applicable in imbalanced data
without resampling the original dataset. Since filter
approaches look at each feature independently and the
best subset may not consist of the best features selected
individually[18], selecting the top ranked features might

Figure 2 Cross-validation HMSS(CVhmss) and test HMSS(thmss) by the number of markers. The markers were determined for predicting
psoriasis status that can be obtained by sIB classifier with forward selection(a) and sequential forward floating selection (b), respectively.
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not generate an optimal subset. They can, however,
work as a preliminary technique to obtain a candidate
subset with a manageable size. More intensive feature
selection and model learning methods should be per-
formed in the next step. In this study, the most predic-
tive 1000 HMSS SNPs were selected as a filter subset
and the second-stage wrapper approach was based on
this subset.
In this study, using a variable ranking method to dis-

card the lowest scoring SNPs through a filter method
could potentially lose some variables that prove to be
important in a wrapper process. Guyon and Elisseeff

showed that a feature that is useless by itself (least
separation of the target variable) can improve other
features’ classification performances if they are com-
bined together[19]. Since exhaustive search for all possi-
ble combinations of SNPs for best prediciton precision
is computationally infeasible, using top 1,000 SNPs with
the highest individual classification accuracy may miss
the optimal sets of SNPs with the highest classification
accuracy. Although this study shows that we can predict
the risk of psoriasis with an identified subset of SNP
markers, this doesn’t mean that those markers are func-
tionally associated with the feature of interest. The

Table 1 Optimal SNP subsets using LDA or sIB for predicting psoriasis with average accuracy and 95% confidence
interval estimated from Bootstrap re-sampling

Subsets Components (dbSNP_rs
on chromosome)

CV HMSS (Bootstrap
mean and 95% CI)

Total CV accuracy
(Bootstrap mean
and 95% CI)

Test HMSS (Bootstrap
mean and 95% CI)

Total test accuracy
(Bootstrap mean
and 95% CI)

LDA

1 SNP* rs10905106 on 10 0.498(0.498, 0.475-0.518) 0.495(0.496, 0.474-0.516) 0.544(0.494, 0.469-0.519) 0.553(0.508, 0.486-0.532)

2 SNPs* rs10958357 on 8 rs7973936
on 12

0.486(0.499, 0.480-0.520) 0.495(0.500, 0.481-0.521) 0.556(0.498, 0.471-0.525) 0.565(0.512, 0.491-0.535)

1 SNPΔ rs4375421 on 11 0.540(0.497, 0.474-0.519) 0.540(0.498, 0.476-0.518) 0.492(0.500, 0.476-0.529) 0.491(0.499, 0.474-0.529)

2 SNPsΔ rs950753 on 3
rs7058025 on X

0.570(0.493, 0.468-0.514) 0.575(0.508, 0.486-0.530) 0.463(0.476, 0.451-0.502) 0.459(0.473, 0.450-0.498)

FS 38 SNPs 0.604(0.500, 0.478-0.520) 0.622(0.503, 0.482-0.523) 0.520(0.496,
0.472-0.524)

0.514(0.491,
0.466-0.518)

SFFS 32 SNPs 0.622(0.497, 0.475-0.520) 0.622(0.502, 0.479-0.525) 0.512(0.498, 0.472-0.523) 0.509(0.498, 0.473-0.522)

sIB

1 SNP* rs12191877 on 6 0.611(0.605, 0.563-0.630) 0.611(0.608, 0.580-0.631) 0.668(0.668, 0.641-0.694) 0.699(0.698, 0.676-0.720)

2 SNPs* rs12191877 on 6 rs4953658
on 2

0.557(0.444, 0.014-0.633) 0.574(0.550, 0.426-0.633) 0.674(0.674,
0.650-0.698)

0.685(0.684,
0.662-0.707)

FS rs12191877 on 6 0.611(0.605, 0.563-0.630) 0.611(0.608, 0.580-0.631) 0.668(0.668, 0.641-0.694) 0.699(0.698, 0.676-0.720)

SFFS rs2844627 on 6 rs7773175
on 6

0.619(0.617, 0.576-0.641) 0.616(0.615, 0.585-0.638) 0.659(0.658, 0.633-0.683) 0.677(0.676, 0.655-0.699)

* The best test HMSS among all subsets.
Δ Test HMSS for the subset with the best CV HMSS.

Table 2 1 SNP or 2-SNP subsets with the highest group accuracies using LDA and sIB for predicting psoriasis

Subsets Components Test accuracy among
controls
with ≥0.4 among
cases(Bootstrap
mean and 95% CI)

Components Test accuracy among cases with ≥0.4 among
controls(Bootstrap mean
and 95% CI)

LDA

1 SNP rs7507133 on 19 0.582(0.586, 0.555-
0.613)

rs231390 on 2 0.607(0.591, 0.558-0.628)

2 SNPs,based on all
combinations

___* ___* ____ Δ ____ Δ

sIB

1 SNP rs12191877 on 6 0.761(0.760, 0.735-0.785) rs7773175 on 6 0.731(0.731, 0.694-0.764)

2 SNPs-based on all
combinations

rs12191877 on 6
rs3823418 on 6

0.850(0.850, 0.826-
0.870)

rs1265078 on 6
rs1466215 on 4

0.749(0.748, 0.718-0.779)

* No subsets with test accuracies ≥0.4 among cases.

ΔNo subsets with test accuracies ≥0.4 among controls.
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identified SNPs in this study mainly serve as prediction
variables.

Conclusions
We propose a new adaptive classification method, sIB
wrapped inside feature selection methods, to predict dis-
ease occurrence. By first extracting a fixed number of
clusters that minimizes the loss of mutual information
between the input features and the outcome variable,
and then assigning the class label to each cluster by a
majority rule, this method has been proved to perform
better than linear discriminant analysis in this dataset.
Searching for an optimal subset through cross-validation
criterion gives an overfitting estimate of subset’s test
performance. Starting from an exhaustive search of a
small subset, incorporation of more SNPs through a
heuristic algorithm does not always improve accuracy.
Although SFFS can be applied to prevent from the nest-
ing effect of FS, it can lead to overfitting because it
involves more complex subset states and thus does not
outperform FS.
Although our classification methods achieved high

prediction accuracy in this study, determining the
statistical significance of those models requires more
cost-effective methods or efficient computing system,
neither of which is available currently in our gen-
ome-wide study. We should also note that the

purpose of this study was to identify subsets of SNPs
with high predictive ability, and that SNPs with good
discriminant power are not necessarily causal mar-
kers for the disease. The fact that a small set of SNPs
can predict disease status with average accuracy of
68% makes it possible to use SNP data for psoriasis
prediction.

Additional material

Additional file 1: Supplemental table S1-S3. Table S1. Selected 1000
SNPs based on HMSS in the training general research use(GRU) group.
Table S2. Prediction accuracy with Bootstrap mean and 95% confidence
interval for optimal SNP subsets using LDA or sIB for predicting psoriasis.
Table S3. Classification accuracy (Bootstrap mean and 95% CI) and chi-
square test for 20 SNPs with the highest training HMSS by LDA for
predicting psoriasis
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Table 3 Classification accuracy and chi-square test for 20 SNPs with the highest training HMSS by LDA
for predicting psoriasis

Chr LDA sIB

SNP_RS Training HMSS Test HMSS Training HMSS Test HMSS P-value(GRU) * P-value(ADO) *

rs12191877 6 0.611 0.315 0.611 0.668 0 0

rs2894207 6 0.603 0.387 0.603 0.657 0 1.11 × 10-16

rs3130517 6 0.600 0.414 0.600 0.608 0 4.33 × 10-15

rs2394895 6 0.598 0.425 0.598 0.620 0 1.13 × 10-14

rs2844627 6 0.598 0.413 0.598 0.627 0 0

rs3130713 6 0.597 0.400 0.597 0.599 5.55 × 10-16 1.52 × 10-14

rs3130467 6 0.596 0.415 0.596 0.605 1.11 × 10-16 2.73 × 10-14

rs9468933 6 0.595 0.321 0.595 0.656 0 0

rs7773175 6 0.585 0.416 0.585 0.604 0 1.33 × 10-15

rs6861600 5 0.569 0.456 0.569 0.544 7.48 × 10-4 2.32 × 10-8

rs9380237 6 0.569 0.405 0.569 0.628 0 1.38 × 10-10

rs6887695 5 0.568 0.454 0.568 0.546 7.46 × 10-4 3.96 × 10-8

rs3823418 6 0.568 0.342 0.120 0.142 0 1.11 × 10-16

rs1265078 6 0.565 0.434 0.565 0.561 5.29 × 10-11 3.44 × 10-12

rs2647087 6 0.564 0.443 0.564 0.573 1.25 × 10-8 1.21 × 10-8

rs2858333 6 0.564 0.444 0.564 0.572 5.65 × 10-8 1.23 × 10-8

rs3132965 6 0.564 0.434 0.564 0.574 2.57 × 10-9 6.62 × 10-9

rs10947208 6 0.563 0.442 0.563 0.554 2.77 × 10-5 3.71 × 10-8

rs9266846 6 0.562 0.458 0.562 0.548 1.31 × 10-5 3.03 × 10-7

rs497150 22 0.562 0.486 0.562 0.490 0.22062 1.67 × 10-5

* cut-off P-value = 1.11 × 10-7 (0.05/451724).
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