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Abstract
Background: Tendinosis lesions show an increase of glycosaminoglycan amount, calcifications, and lipid accumulation.
Therefore, altered cellular differentiation might play a role in the etiology of tendinosis. This study investigates whether
adolescent human tendon tissue contains a population of cells with intrinsic differentiation potential.

Methods: Cells derived from adolescent non-degenerative hamstring tendons were characterized by
immunohistochemistry and FACS-analysis. Cells were cultured for 21 days in osteogenic, adipogenic, and chondrogenic
medium and phenotypical evaluation was carried out by immunohistochemical and qPCR analysis. The results were
compared with the results of similar experiments on adult bone marrow-derived stromal cells (BMSCs).

Results: Tendon-derived cells stained D7-FIB (fibroblast-marker) positive, but α-SMA (marker for smooth muscle cells
and pericytes) negative. Tendon-derived cells were 99% negative for CD34 (endothelial cell marker), and 73% positive
for CD105 (mesenchymal progenitor-cell marker). In adipogenic medium, intracellular lipid vacuoles were visible and
tendon-derived fibroblasts showed upregulation of adipogenic markers FABP4 (fatty-acid binding protein 4) and PPARG
(peroxisome proliferative activated receptor γ). In chondrogenic medium, some cells stained positive for collagen 2 and
tendon-derived fibroblasts showed upregulation of collagen 2 and collagen 10. In osteogenic medium Von Kossa staining
showed calcium deposition although osteogenic markers remained unaltered. Tendon-derived cells and BMCSs behaved
largely comparable, although some distinct differences were present between the two cell populations.

Conclusion: This study suggests that our population of explanted human tendon cells has an intrinsic differentiation
potential. These results support the hypothesis that there might be a role for altered tendon-cell differentiation in the
pathophysiology of tendinosis.
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Background
Tendinosis is a chronic degenerative tendon disorder
occurring particularly among athletes and middle-aged
people [1]. As its pathophysiology is still largely
unknown, only symptomatic treatment options are avail-
able, with limited success rates [1,2]. A better understand-
ing of the cellular processes involved in the development
of tendinosis lesions may ultimately improve treatment
and prevention.

Histopathological findings in tendinosis have been
described in detail [3,4]. In brief, hypercellularity and
rounding of the cell nuclei indicate a relatively high met-
abolic activity. Likewise, altered extracellular matrix com-
position reflects changes in cellular behaviour. For
instance, in tendinosis lesions there is a higher amount of
glycosaminoglycans [3]. Lipid accumulation and calcium
deposition have also been described [5]. Thus, the his-
topathological findings may indicate the presence of cells
with diverse phenotypes, different from that of tenocytes
under healthy conditions.

Cells with multilineage differentiation potential likely
play an important role in the body's capacity to naturally
remodel, repair, and regenerate various tissue types where
necessary [6]. However, the multilineage differentiation
potential of cells might also be involved in pathological
processes. Although the pathophysiology of tendinosis is
largely unclear, histological findings suggest that multipo-
tent cells might be implicated in its development. The ori-
gin of these multipotent cells is unknown. They may be
recruited from the bone marrow in response to tendon tis-
sue injury, and migrate through the circulation to the site
of tissue damage [7]. They might also be present in the
tendon tissue itself.

Local progenitor cells with multilineage potential have
previously been found in many locations within the mus-
culoskeletal system, e.g. in bone marrow, skin, perios-
teum, bone, muscle and adipose tissue [8-15]. On the
other hand, progenitor cells are not the only cells with
multilineage potential: some highly differentiated cells
are capable of transdifferentiation, i.e. switching their
phenotype to another lineage. This transdifferentiation
has been demonstrated for highly differentiated chondro-
cytes [16,17].

Multipotent cells have been found in virtually all tissues
of the musculoskeletal system, but it is not known if ten-
don tissue has a cell population with multilineage poten-
tial. In this study, we investigated whether the population
of cells derived from non-degenerative tendon tissue has
differentiation potential similar to bone marrow-derived
stromal cells (BMSCs). Specifically, we characterized
human tendon-derived fibroblasts by immunohisto-

chemical staining and FACS-analysis. Then, after a culture
period of 21 days in adipogenic, chondrogenic, and oste-
ogenic medium, we evaluated changes in their phenotype
using immunohistochemical and histochemical stainings
as well as gene expression analysis.

Methods
Study design
Cells were explanted from human adolescent non-degen-
erative hamstring tendon tissue (n = 5). After the pheno-
type of the cells was analyzed by immunohistochemical
staining and FACS-analysis, cells were cultured for 21 days
on osteogenic, adipogenic, or chondrogenic medium. The
differentiation potential of the tendon-derived cell popu-
lation was evaluated by immunohistochemical and histo-
chemical staining and real-time RT-PCR, and was
compared with the differentiation potential of human
femoral-shaft-derived BMSCs (n = 5).

Isolation of tendon-derived cells and BMSCs
Human tendon-derived cells were cultured from explants
from hamstring tendon tissue of five adolescents (age 12–
17 years) undergoing hamstring-tendon release for treat-
ment of knee-contractures (MEC-2006-069). In this clini-
cal condition the tendon is primarily not affected, but is
exposed to continuously high tensile strains. After the per-
itendineum had been carefully removed, the tendon was
cut into 3 mm3 sections, transferred into six-well plates
(Corning, NY, USA) and cultured in expansion medium
(Dulbecco's modified Eagle's medium, 10% fetal calf
serum (FCS), 50 μg/ml gentamicin and 1.5 μg/ml fungi-
zone (all Invitrogen, Scotland, UK)). Tissue cultures were
maintained at 37°C in a humidified atmosphere of 5%
CO2 for ten days, with three medium changes. During this
time, fibroblasts migrated out of the tissue and adhered to
the bottom of the culture dish. Cells were subcultured and
trypsinized at subconfluency and cells from the third to
the fifth passage were used for the differentiation experi-
ments.

Human bone marrow stromal cells (BMSCs) were isolated
from femoral shaft biopsies of six patients (age 42–72
years) undergoing total hip replacement for treatment of
osteoarthritis (MEC-2004-142). BMSCs were isolated
from aspirated marrow acccording to procedures
described earlier [18]. Briefly, heparinized femoral-shaft
marrow aspirate was plated out and after 24 hours, non-
adherent cells were removed with 2% FCS in 1×PBS.
Adherent cells were subcultured in medium with 10% FCS
and trypsinized at subconfluency. Cells from the second
to the fourth passage were used for the differentiation
experiments. The used serum lot was selected specifically
for the maintenance of multipotential cells.
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Phenotypic characterization of tendon-derived cells
Explants harvested on day 6 of the explantation period
were fresh frozen in liquid nitrogen and 6 μm frozen sec-
tions were fixated in acetone. Cells in monolayer cultures,
passage 1 and 4, were fixated in ice-cold 70% ethanol.

Ki-67, D7-FIB, and α-SMA staining
Cells and histological sections were incubated with either
mouse monoclonal antibody against 11-fibrau (Clone
D7-FIB; diluted 1:400; Imgen, Netherlands), a marker for
fibroblasts [19], or monoclonal antibody against α-SMA
(Clone 1A4; diluted 1:1000; Sigma, St.Louis, Missouri,
USA), a marker for smooth muscle cells and pericytes
[20], for two hours. Cells were rinsed in 1×PBS and IHC
detection was performed using Link-Label (Biotin-based)
Multilink® IHC Detection Kit (Biogenex, San Ramon, CA).
Finally, a new fuchsin substrate was added to obtain a
pink signal in positive cultures. Cells were counterstained
with Gill's haematoxilin (Sigma). For Ki-67 staining histo-
logical sections were pre-incubated in 1% H2O2 (Sigma)
in methanol (Sigma) and then incubated with mouse
monoclonal antibody Ki-67 (M7187; diluted 1:25; Dako,
Glostrup, Denmark). IHC detection was performed using
StrAviGen Multilink® Kit (Biogenex, San Ramon, CA), sub-
strate development was performed using the SK-4800 Vec-
tor® NovaRED™ Substrate kit (Vector Laboratories,
Burlingame, CA), and no counterstaining was performed.

FACS-analysis
Trypsinized first to fifth passage cells were incubated at
4°C for 30 minutes with saturating amounts of human
antibodies CD105-PE (dilution 1:20; BD Biosciences, San
Jose, USA), a marker for mesenchymal progenitor cells
[21], and CD34-PE (dilution 1:20; Ancell, Bayport, USA),
a marker that remains negative in non-hematogenic pro-
genitor cells [20] and is positive for hematogenic progen-
itor cells, endothelial cells, and pericytes [22-24]. Cells
were washed and resuspended in 300 μl HBN buffer
(Hank's Balanced Salt Solution (HBSS; GIBCO, Breda,
The Netherlands) + 0.5% (wt/vol) Bovine Serum Albumin
+ 0.05% (wt/vol) sodium azide) and analyzed by flow
cytometric analysis using a FACSCalibur flow cytometer
and Cellquest software (BD Biosciences, San Jose, USA)
with a minimum of 10,000 events acquired.

Differentiation experiment
After trypsinisation, cells were seeded in six-well plates
and cultured in a modified version of three differentiation
media described earlier [18]. Briefly, cells were seeded at
3,000 cells/cm2 to induce osteogenic differentiation and
then cultured in an osteogenic induction medium con-
taining DMEM plus 10% FCS and freshly added β-glycer-
ophosphate 10 mM (Sigma, St. Louis, USA),
dexamethasone 0.1 μM (Sigma) and L-ascorbic acid 2
phosphate 0.5 mM (Sigma). Cells were seeded at 20,000

cells/cm2 to induce adipogenic differentiation, and cul-
tured in adipogenic induction medium containing
DMEM with 10% FCS, supplemented with dexametha-
sone 1 μM, indo-methacin 0.2 mM, insulin 0.01 mg/ml,
and 3-isobutyl-l-methyl-xanthine 0.5 mM (all from
Sigma). To induce chondrogenic differentiation, cells
were cultured in 1.2% low viscosity alginate beads at a
density of 4 × 106 cells/ml in serum-free chondrogenic
induction medium containing DMEM supplemented
with TGF-β2 10 ng/ml (R&D Systems, UK), L-ascorbic
acid 2 phosphate 25 μg/ml (Sigma), sodium pyruvate 100
μg/ml (Invitrogen), proline 40 μg/ml (Sigma) and ITS+
(diluted 1:100; BD Biosciences, Bedford, MA). All media
contained 50 μg/ml gentamicin and 1.5 μg/ml fungizone.
Cells were cultured in differentiation media for 21 days,
with media changes twice a week. On day 21 of culture,
two wells were harvested for RNA extraction and one well
was used for histochemical evaluation. One well was cul-
tured for 21 days on expansion medium as control condi-
tion for the histochemical stainings.

Gene expression analysis
At harvesting, monolayer cell cultures were suspended in
RNA-Bee™ (TEL-TEST, Friendswood, TX, USA). Alginate
beads were dissolved in 150 μl of 55 mM sodium citrate
in 150 mM sodium chloride per bead (both Fluka, Stein-
heim, Switzerland) and cell pellets were subsequently sus-
pended in RNA-Bee™. RNA was precipitated with 2-
propanol, purified with lithium chloride, and 1 μg total
RNA of each sample was reverse-transcribed into cDNA
using RevertAid™ First Strand cDNA Synthesis Kit (MBI
Fermentas, St. Leon-Rot, Germany). Primers were
designed using PrimerExpress 2.0 software (Applied Bio-
systems, Foster City, CA, USA) to meet Taqman® or
SYBR®Green requirements and were designed to bind to
separate exons to avoid co-amplification of genomic
DNA. BLASTN ensured gene specificity of all primers
listed in Table 1. As osteogenic markers osterix (SP7),
RUNT-related transcription factor 2 (RUNX2), and osteo-
calcin (BGLAP) were studied, while SOX9, aggrecan
(AGC1), collagen 2 (COL2A1), and collagen 10
(COL10A1) were used as chondrogenic markers. Adipo-
genic markers studied were fatty acid binding protein 4
(FABP4) and peroxisome proliferative activated receptor γ
(PPARG). Amplifications were performed as 25 μl reac-
tions using either TaqMan® Universal PCR MasterMix
(ABI, Branchburg, New Jersey, USA) or qPCR™ Mastermix
Plus for SYBR®Green I (Eurogentec, Nederland B.V., Maas-
tricht, The Netherlands) according to the manufacturer's
guidelines. Real-Time RT-PCR (QPCR) was done using an
ABI PRISM® 7000 with SDS software version 1.7. Data
were normalized to GAPDH which was stably expressed
across sample conditions (not shown). Relative expres-
sion was calculated according to the 2-ΔCT formula [25]
using averages of duplo samples.
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Statistical analysis on averages of duplo samples was per-
formed using SPSS 11.5 software (SPSS Inc., Chicago, IL,
USA). Groups on differentiation media were compared
with a Kruskall-Wallis H test and post-hoc Mann-Whitney
U test. For both tests p < 0.05 was considered to indicate
statistically significant differences. The graphs are Box-
Whisker plots, with the box representing the middle two
quartiles (25–75) and the Whiskers the highest and low-
est value. All outlier variables were included in the statis-
tical analyses but excluded in the graphical display.

Histochemical and immunohistochemical stainings
Von Kossa staining
Cells were fixed in formalin, hydrated in milliQ water,
immersed in 5% silver nitrate solution (Sigma) for 10
minutes, rinsed and exposed to light for 10 minutes.
Excess silver nitrate was removed with 5% sodium-thio-
sulphate (Sigma) and cells were rinsed in distilled water,
followed by a counterstaining with azophloxine (Sigma).

Oil Red O staining
Cells were fixed in 10% formalin, treated with 0.3% Oil
red O solution (Sigma) for 15 min, and then repeatedly
washed with tap water.

Collagen type 2 staining
Alginate beads were dissolved in sodium citrate, cytospins
were prepared and stored at -80°C. Cytospins were fixed
in acetone and treated with 1% hyaluronidase (Sigma) for
20 min. Cell monolayers were fixed with 70% ethanol,
treated with 50 mM NH4Cl (Sigma), and permeabilised in
a 0.1% Triton X-100 (Sigma) solution. Cells were incu-

bated with mouse monoclonal antibody against collagen
type 2 (II-II6B3, diluted 1:100; Developmental Studies
Hybridoma Bank) for 2 hours. Anti-mouse Fab fragments
conjugated with alkaline phosphatase (GAMAP, diluted
1:100; Immunotech, Marseille, France) were added.
Finally, alkaline phosphatase conjugated anti-mouse anti-
bodies in combination with a new fuchsin substrate were
added to obtain a pink signal in positive cultures. Coun-
terstaining with Gill's haematoxilin (Sigma) was per-
formed.

Results
Characterization of tendon-derived fibroblasts
Histological examination of the adolescent hamstring ten-
don explants confirmed normal tissue morphology. Spe-
cifically, no degenerative lesions, inflammatory cell
infiltration, (partial) ruptures, chondroid metaplasia, or
calcifications were seen.

During the explant culture period, proliferating cells (Ki-
67 positive) were located between the highly organized
collagen fibres of the tendon tissue and also in the con-
nective tissue of the endotenon. These cells stained posi-
tive for fibroblast-marker D7-FIB. On the other hand,
proliferating cells were also seen in the vascular walls,
staining negative for D7-FIB but positive for α-SMA, a
marker for pericytes and smooth muscle cells (Figure 1).

Cells explanted from the tendon tissue had a characteristic
spindle-shaped fibroblastic morphology. Through the
first four passages in monolayer culture all tendon-
derived cells stained positive for D7-FIB but stained nega-

Table 1: Primer and probe nucleotide sequences of the tested genes

Gene Accession no. Primer Probe

GAPDH NM_002046.2 F: ATGGGGAAGGTGAAGGTCG
R: TAAAAGCAGCCCTGGTGACC

CGCCCAATACGACCAAATCCGTTGAC

RUNX2 NM_001024630.1
NM_00101505.1
NM_0043468.3

F: GCCTTCAAGGTGGTAGCCC
R: CGTTACCCGCCATGACAGTA

CCACAGTCCCATCTGGTACCTCTCCG

BGLAP NM_199173.2 F: GAAGCCCAGCGGTGCA
R: CACTACCTCGCTGCCCTCC

TGGACACAAAGGCTGCACCTTTGCT

PPARG* NM_138712.2
NM_015869.3
NM_005037.4
NM_138711.2

F: AGGGCGATCTTGACAGGAAA
R: TCTCCCATCATTAAGGAATTCATG

SOX9 NM_000346.2 F: CAACGCCGAGCTCAGCA
R: TCCACGAAGGGCCGC

TGGGCAAGCTCTGGAGACTTCTGAACG

AGC1 NM_001135.1
NM_013227.1

F:TCGAGGACAGCGAGGCC
R:TCGAGGGTGTAGCGTGTAGAGA

ATGGAACACGATGCCTTTCACCACGA

COL2A1 NM_033150 F: GGCAATAGCAGGTTCACGTACA
R: CGATAACAGTCTTGCCCCACTT

CCGGTATGTTTCGTGCAGCCATCCT

COL10A1 NM_000493.2 F: CAAGGCACCATCTCCAGGAA
R: AAAGGGTATTTGTGGCAGCATATT

TCCAGCACGCAGAATCCATCTGA

F: forward; R: reverse; * SYBR®Green assay. Commercially available, so-called assays-on-demand (Applied Biosystems, Foster City, CA, U.S.A.) 
were used to detect osterix (SP7; Hs_00541729_m1) and fatty acid binding protein 4 (FABP4; Hs_00609791)-specific mRNA.
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tive for α-SMA (Figure 1). On further characterization by
FACS-analysis 99.1 +/- 1.1 % of the tendon-derived
fibroblasts were CD34 negative and 72.6 +/- 22.9 % were
CD105 positive (average of passage 2 to 5 tendon-derived
cells, n = 4). The BMSCs had 99.7 +/- 0.4 % CD34 negative
cells and 93.8 +/- 4.6 % CD105 positive cells (average of
passage 1 to 5 BMSCs, n = 8).

Adipogenic markers
Light microscopy revealed the presence of vacuoles within
approximately one third of the cells in all adipogenic cul-
tures of tendon-derived fibroblasts. Oil Red O staining
confirmed that these were lipid vacuoles (Figure 2A).
Only cells aggregated into clusters stained positively for
lipid vacuoles. Tendon-derived fibroblasts cultured on
control medium (Figure 2B), on osteogenic, or on chon-
drogenic medium (not shown) did not develop any lipid
vacuoles. Cellular distribution of Oil Red O positive
BMSCs cultured in adipogenic medium was more homog-
enous with approximately 75% of cells staining positively
(results not shown).

In addition to this, culture of tendon-derived fibroblasts
in adipogenic medium significantly upregulated expres-
sion of FABP4 and PPARG compared to those cultured in
osteogenic (both p = 0.009) and chondrogenic medium
(both p = 0.025). Similar findings were seen in the BMSC
cultures although the difference in PPARG expression
between the osteogenic and adipogenic medium condi-
tion did not reach statistical significance in the BMSC cul-
tures (Figure 3). In the BMSC cultures PPARG expression
was significantly higher in adipogenic medium compared
to chondrogenic medium (p = 0.021); FABP4 expression
was upregulated in the adipogenic medium compared to
osteogenic medium (p = 0.021) and chondrogenic
medium (p = 0.021).

Chondrogenic markers
Immunohistochemical staining for collagen type 2 was
performed on tendon-derived fibroblasts cultured in
chondrogenic, adipogenic, osteogenic, and control
medium for 21 days. In all chondrogenic medium condi-
tions approximately 5% of the cells stained positive for

Ki-67, D7-FIB, and α-SMA staining on tendon explants (day 6 of explantation period) and on tendon-derived fibroblasts (TDF) in monolayer cultureFigure 1
Ki-67, D7-FIB, and α-SMA staining on tendon explants (day 6 of explantation period) and on tendon-derived fibroblasts (TDF) 
in monolayer culture. Ki-67 positive (proliferating) cells in the explants were located in the tendinous tissue (A, black arrow), 
in the endotenon (A, white arrow), and in the vascular walls (A, circle). Cells in the tendon tissue and in the endotenon stained 
positive for fibroblastmarker D7-FIB (B). Cells in the vascular walls remained negative for D7-FIB (B) and instead stained posi-
tive for α-SMA, a marker for pericytes and smooth muscle cells (C). All TDFs in monolayer culture stained positive for D7-FIB 
from passage one (D) to passage four (E) and remained negative for α-SMA from passage one (F) to passage four (G).
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collagen type 2 (Figure 4A). Tendon-derived fibroblasts
cultured in control medium (Figure 4B), as well as adipo-
genic and osteogenic medium were immunonegative for
collagen type 2 (not shown). BMSC cultures showed a
similar amount of collagen type 2 staining in chondro-
genic medium (not shown).

Culture of tendon-derived fibroblast in chondrogenic
medium significantly increased expression of chondro-
genic markers COL2A1 and COL10A1 (the latter is con-
sidered to be a marker for hypertrophic cartilage
formation) compared to the osteogenic condition (p =
0.025 for both genes) and adipogenic condition (p =

Expression levels of adipogenic markers in tendon-derived fibroblasts (TDF) and bone marrow-derived stromal cells (BMSC)Figure 3
Expression levels of adipogenic markers in tendon-derived fibroblasts (TDF) and bone marrow-derived stromal cells (BMSC). 
Cells were cultured for 21 days on osteogenic (N = 5 for TDF, N = 4 for BMSC), adipogenic (N = 5 for TDF, N = 5 for BMSC), 
or chondrogenic (N = 3 for TDF, N = 5 for BMSC) induction medium. The relative, GAPDH-normalized, expression levels of 
fatty acid binding protein 4 (FABP4)(A) and peroxisome proliferator activated receptor γ (PPARG)(B) is displayed on the verti-
cal axis. * Indicates a P-value<0.05.

Oil Red O staining on tendon-derived fibroblasts cultured for 21 days in adipogenic medium (A) (note that not all cells but merely clusters of cells formed Oil Red O positive lipid vacuoles inside the cell's main body) or in control medium (B)Figure 2
Oil Red O staining on tendon-derived fibroblasts cultured for 21 days in adipogenic medium (A) (note that not all cells but 
merely clusters of cells formed Oil Red O positive lipid vacuoles inside the cell's main body) or in control medium (B). Like 
cells in control medium, cells cultured in osteogenic or chondrogenic medium were negative (figures not shown).
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0.025 for both genes). Expression of SOX9 and AGC1 in
chondrogenic medium compared to osteogenic and adi-
pogenic medium was not significantly different (Figure
5).

BMSC cultures also showed a significantly higher expres-
sion of COL2A1 and COL10A1 in chondrogenic medium
compared to osteogenic medium (p = 0.014 for both
genes) and adipogenic medium (p = 0.028 for COL2A1
and p = 0.009 for COL10A1). SOX9 expression in BMSCs
showed the same trend as in the tendon-derived fibroblast
cultures, but the differences only reached significance in
the BMSC cultures (osteogenic versus adipogenic medium
p = 0.014 and osteogenic versus chondrogenic medium p
= 0.014). Expression of AGC1 in the BMSCs did not differ
significantly between the three medium conditions. Inter-
estingly, BMSCs cultured in osteogenic medium had sig-
nificantly upregulated COL10A1 compared to the
adipogenic condition (p = 0.027). This phenomenon was
not seen in the tendon-derived fibroblasts (Figure 5).

Osteogenic markers
Von Kossa staining of tendon-derived fibroblasts in the
osteogenic condition showed clustered areas of calcium
deposition, whereas the tendon-derived fibroblast cul-
tures in control medium had no calcium deposition (Fig-
ure 6). Also, tendon-derived fibroblast cultures in
adipogenic and chondrogenic medium remained negative
for calcium (results not shown). Similarly, in BMSC cul-
tures, calcium deposition was found only in the osteo-
genic condition (not shown).

Although we did find expression of osteogenic markers
RUNX2, osterix, and osteocalcin, culture of tendon-
derived fibroblasts in osteogenic medium did not induce
statistically significant upregulation of any of these genes.
Similar results were found by QPCR of these markers in
BMSCs cultured in osteogenic medium (Figure 7). In the
tendon-derived fibroblast cultures SP7 and RUNX2 (both
also known to play an important role in chondrogenic dif-
ferentiation and hypertrophic cartilage formation [26])
were significantly upregulated in the chondrogenic
medium compared to the osteogenic (p = 0.025 for both
genes) and adipogenic medium (p = 0.025 for both
genes)(Figure 7). BMSCs also showed an upregulation of
SP7 and RUNX2 in the chondrogenic medium. RUNX2
upregulation was significant (p = 0.016 for the difference
in gene expression of RUNX2 between adipogenic and
chondrogenic medium in BMCSs), but SP7 upregulation
in chondrogenic medium did not reach significance (Fig-
ure 7). In summary, chondrogenic medium not only stim-
ulated expression of chondrogenic marker COL2A1, but
also of COL10A1, RUNX2, and SP7.

Discussion
This in-vitro differentiation study suggests that a propor-
tion of the cell population explanted from adolescent
human tendon tissue may have adipogenic and chondro-
genic differentiation potential. In adipogenic medium
lipid vacuoles were visible and tendon-derived fibroblasts
showed upregulation of FABP4 and PPARG. In chondro-
genic medium, positive collagen 2 staining was visible
around some of the tendon-derived fibroblasts and the

Immunohistochemical staining for collagen type 2 on tendon-derived fibroblastsFigure 4
Immunohistochemical staining for collagen type 2 on tendon-derived fibroblasts. 5% of the cells cultured for 21 days in alginate 
beads in chondrogenic medium stained positive (A). Cells cultured in monolayer in control medium remained negative (B) as 
did cells in adipogenic or osteogenic media (figures not shown).
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tendon-derived fibroblasts showed upregulation of
COL2A1 and COL10A1. In osteogenic medium Von
Kossa staining showed calcium deposition, although oste-
ogenic markers remained unaltered, as assessed by qPCR.
Compared to the BMSCs, the diffentiation capacity of our
tendon-derived fibroblasts was similar, although some
differences were visible, mainly concerning the number of
Oil Red O positive cells.

To our knowledge, this is the first study evaluating the
intrinsic differentiation potential of human tendon cells
in vitro. Previously, Salingcarnboriboon et al [27] estab-
lished three murine tendon cell lines by clonal expansion
and showed that these single cell clones could differenti-
ate towards multiple mesenchymal lineages upon culture
in appropriate differentiation media. Therefore, they sug-
gested that cells with mesenchymal stem-cell-like charac-

Expression levels of chondrogenic markers in tendon-derived fibroblasts (TDF) and bone marrow-derived stromal cells (BMSC)Figure 5
Expression levels of chondrogenic markers in tendon-derived fibroblasts (TDF) and bone marrow-derived stromal cells 
(BMSC). SOX9 (A), aggrecan (AGC1)(B), collagen 2 (COL2A1)(C) and collagen 10 (COL10A1)(D). See figure 3 for reminder 
of key.
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teristics might exist in murine tendon tissue. Our
experiments cannot distinguish between individual cells
with multilineage potential and a cell population contain-
ing more or less strongly committed cells. We did find that
not all of the tendon-derived fibroblasts appeared to be
capable of differentiating towards other lineages, e.g. not
all fibroblasts but merely clusters of fibroblasts created
lipid vacuoles in adipogenic medium and only a small
proportion of approximately 5% of the cells stained posi-
tive for collagen type 2. In addition to this observation,
only a subpopulation of 72.6 +/- 22.9 % of these tendon-
derived fibroblasts stained positive for CD105 and this
subpopulation might be responsible for the observed dif-
ferentiation potential.

Due to their spindle-shaped morphology in monolayer
culture and because all explanted cells stained D7-FIB
positive in passage one through passage four, we identi-
fied these cells as tendon-derived fibroblasts. Based on the
results of the Ki-67 staining, it could be surmised that this
mixed population may be partly derived from the tendon
tissue and partly from the endotenon. It is possible that
these cells were already preselected for during the explan-
tation procedure, based on cellular motility, chemotactic
responses or plastic adherence characteristics. Within this
culture population, mature tendon-derived fibroblasts
with transdifferentiation capacity or a specific subpopula-
tion of tendon-derived progenitor cells might exist. Sev-
eral authors have found that pericytes isolated from

Expression levels of osteogenic markers in tendon-derived fibroblasts (TDF) and bone marrow-derived stromal cells (BMSC)Figure 7
Expression levels of osteogenic markers in tendon-derived fibroblasts (TDF) and bone marrow-derived stromal cells (BMSC). 
RUNT-related transcription factor 2 (RUNX2) (A), SP7 (B), and BGLAP (C). See figure 3 for reminder of key.

Von Kossa staining on tendon-derived fibroblasts cultured for 21 days in osteogenic (A) or control medium (B)Figure 6
Von Kossa staining on tendon-derived fibroblasts cultured for 21 days in osteogenic (A) or control medium (B). Calcium depo-
sition was seen in osteogenic medium (A), not in control medium (B) or in adipogenic or chondrogenic media (figures not 
shown).
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different tissues can be induced to differentiate into vari-
ous connective tissue phenotypes [8]. It seems unlikely
that the presence of vascular pericytes in tendon tissue,
which might be another multipotent cell source in tendon
tissue [28], can account for our findings. Not only is ten-
don a poorly vascularized tissue, but also the tendon-
derived fibroblasts remained negative for pericyte marker
α-SMA through the first four passages. Furthermore, our
explanted cell population was 98.5 +/- 0.7 % negative for
CD34 on FACS-analysis. It seems unlikely that the small
portion of 1.5% CD34-positive tendon-derived fibrob-
lasts accounts for the results of the immunohistochemical
staining and the changes in gene expression pattern.

A cell population with multilineage potential that might
be present in tendon tissue, is likely involved in tendon
repair. Such a population might also contribute to the
development of tendinosis, as this tendon disorder is
associated with fatty degeneration, glycosaminoglycan
accumulation, and calcifications. In addition to these
internal multipotent cells other cells with multilineage
potential may arrive at the site of overuse or tendon dam-
age through the vascular system and contribute to the
development or repair of tendinosis: upregulation of
VEGF was found in human achilles tendinosis lesions
[29] and VEGF can act as a chemotactic stimulus for mes-
enchymal cells [30]. In-vivo control of differentiation of
cells with multilineage potential might prove useful in the
future for prevention of tendinosis lesions or induction of
in-situ repair of these lesions.

The exact changes in the tendon microenvironment out-
side the cells that play a role in cellular differentiation are
still the subject of many investigations. First, the capabil-
ity of specific growth factors, cytokines, and other inflam-
matory mediators to influence the cellular differentiation
process has been demonstrated. Changes in the concen-
tration of various growth factors have also been found in
tendinosis lesions: for instance, a higher number of cells
expressing TGF-β2 and TGF-βRII (a TGF-β receptor) in
chronic achilles tendinosis lesions [31] and increased
expression of TGF-β1 in patellar tendinosis [32] have
been reported. TGF-β molecules are also used in vitro to
induce chondrogenic differentiation of mesenchymal
progenitor cells [21]. Second, changes in the degree of vas-
cularization of the tissue, as reported in achilles tendino-
sis lesions [33], might influence the tendon cell
differentiation state in vivo. For instance, oxygen tension
influences the redifferentiation potential of dedifferenti-
ated chondrocytes in vitro [34] and hypoxia not only pro-
motes the differentiation of bone mesenchymal stem cells
along a chondrocyte pathway [35], but can also promote
the formation of an adipocyte-like phenotype with cyto-
plasmic lipid inclusions in human MSCs [36]. Third, fol-
lowing repetitive tendon overload and its resulting

microruptures in tendinosis lesions [37], tendon cells
may experience an altered mechanical microenvironment,
which in turn might influence chondrogenic, osteogenic,
or tenogenic differentiation [38].

Our findings demonstrate that an intrinsic differentiation
capacity is present in tendon tissue of adolescent individ-
uals. However, age plays an important role in the response
of musculoskeletal tissues in response to environmental
changes. It has been demonstrated that adult but not juve-
nile cartilage has lost its ability to regenerate (cited by
Hunter [39]) and BMSCs gradually loose their differentia-
tion potential as subjects grow older [40]. Therefore, the
adolescent tendon samples used in this study might not
be representative of tendon tissue in adult tendinosis
lesions. Since tendon cell populations derived from adult
and from late fetal equine tendons have demonstrated
similar levels of a weak progenitor cell ability [41], it
might be justified to speculate that tendon-derived fibrob-
lasts from older subjects may still have some differentia-
tion capacity. However, this certainly needs further
investigation.

A tendon-cell population with intrinsic differentiation
capacity might be used in vivo for repair of lesions and
might play a role in tendinosis. However, extrapolating
results from in-vitro cultures to the in-vivo situation must
be done with tremendous caution, particularly as the
expansion-culture period prior to experimentation may
have led to the loss of the original tendon fibroblast phe-
notype (due to dedifferentiation): the latter being well
known in chondrocyte-cultures [42]. Whether cells in vivo
can be stimulated to display this differentiation potential
remains to be elucidated.

Conclusion
Obtaining insight in the cellular behaviour and pathogen-
esis in tendinosis is crucial in order to develop mecha-
nism-based therapies. Our study suggests that adolescent
tendon tissue has an intrinsic differentiation potential.
This study conducted on human tenocytes corroborates
the findings that cells with mesenchymal stem-cell-like
characteristics might exist in murine tendon tissue. Our
results support the hypothesis that altered tendon-cell dif-
ferentiation might play a role in the pathophysiology of
tendinosis.
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