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Abstract

Background: Dupuytren's disease (DD) is a debilitating fibro-proliferative disorder of the hand
characterized by the appearance of fibrotic lesions (nodules and cords) leading to flexion
contractures of the fingers and loss of hand function. Although the molecular mechanism of DD is
unknown, it has been suggested that transforming growth factor-3, (TGF-f3,) may play an important
role in the underlying patho-physiology of the disease. The purpose of this study was to further
explore this hypothesis by examining the effects of TGF-f3, on primary cell cultures derived from
patient-matched disease and normal palmar fascia tissue using a three-dimensional collagen
contraction assay.

Methods: Fibroblast-populated collagen lattice (FPCL) contraction assays using primary cell
cultures derived from diseased and control fascia of the same DD patients were studied in
response to exogenous TGF-3, and neutralizing anti-TGF-f3, antibodies.

Results: Contraction of the FPCLs occurred significantly faster and to a greater extent in disease
cells compared to control cells. The addition of TGF-f3, enhanced the rate and degree of collagen
contraction in a dose-dependent fashion for both control and diseased cells. Neutralizing anti-TGF-
{3, antibodies abolished exogenous TGF-f3, stimulated collagen contraction, but did not inhibit the
enhanced basal collagen contraction activity of disease FPCL cultures.

Conclusions: Although exogenous TGF-f3, stimulated both disease and control FPCL contraction,
neutralizing anti-TGF-f3, antibodies did not affect the elevated basal collagen contraction activity of
disease FPCLs, suggesting that the differences in the collagen contraction activity of control and
disease FPCL cultures are not due to differences in the levels of endogenous TGF-f3, activity.

Background ital contractures, leading to loss of hand function. Surgical
Dupuytren's disease (DD) is a fibro-proliferative disorder ~ excision of the diseased PF is currently the principal form
of the palmar fascia (PF) characterized by the formationof =~ of management since the lack of a clear etiology has
fibrous nodules and cords [1]. The disease results in dig-
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precluded the development of other effective and rational
forms of treatment.

Since Baron Guillaume Dupuytren's classical description
of the disease in 1831, multiple clinical associations have
been described, however, no clear molecular mechanism
for the disease has been established [2]. Histochemical
studies of DD have demonstrated the presence of myofi-
broblasts [3], increased production of type III collagen [4-
7], and alterations in other extra-cellular matrix proteins
including various fibronectin isoforms [8-14]. These bio-
logical features are characteristic of abnormal growth fac-
tor regulation, specifically fibrogenic cytokines such as
transforming growth factor-beta (TGF-8). Several studies
have documented TGF-B expression in DD palmar fascia
using RT-PCR [15], in-situ hybridization [16], and immu-
nohistochemistry [16-18], while others have shown that
TGF-B can stimulate cell proliferation [18-20] and pro-
mote myofibroblast differentiation in vitro [21]. As a result
of these and other studies it has been suggested that an
aberrant TGF-f activity may be involved in the pathogen-
esis of DD.

In this study, we chose to focus on TGF-f, and its effects
on collagen contraction in vitro using a three-dimensional
fibroblast populated collagen lattice (FPCL) contraction
assay and DD patient-matched disease and control pri-
mary cell cultures. Previous reports have examined the
role of TGF-B in DD by comparing disease fibroblasts to
‘control' fibroblasts obtained from transverse carpal liga-
ment material obtained from patients undergoing carpal
tunnel release (CTR). By contrast, the control fibroblast
cultures used in this study were established from unaf-
fected PF tissue from the same patient, thus providing us
with unique patient- and tissue- matched control cultures.
The observed phenotypic differences between patient/tis-
sue-matched control and disease FPCL cultures, specifi-
cally elevated collagen contraction activity, and B-catenin
and fibronectin (Fn) expression in disease cells [22-24],
raises the intriguing possibility that pro-fibrotic factors,
such as TGF-B,, may be regulating these disease-associated
events in vitro, since TGF-Bs are known to promote fibrob-
last mediated collagen contraction [21,25,26] and up-reg-
ulate collagen, Fn and B-catenin [20,27-30]. As described
in detail below, we have found that exogenous TGF-3,
could significantly stimulate 'normal' and disease FPCL
contraction in a dose-dependent manner. While neutral-
izing anti-TGF-B, antibodies completely blocked exoge-
nous TGF-B, stimulated FPCL contraction they had no
effect on the enhanced basal collagen contraction activity
of disease FPCL cultures.

http://www.biomedcentral.com/1471-2474/5/41

Methods

Patient samples and primary cell cultures

Our study protocol was cleared through the UWO Ethics
Committee for Research Involving Human Subjects. Areas
of diseased fascia and uninvolved normal (control) PF tis-
sue were collected during surgery. DD explant cultures
were initially cultured in starter media consisting of a-
MEM (Gibco, Invitrogen Corporation) supplemented
with 20% fetal bovine serum (FBS, Clontech Laboratories,
Palo Alto, CA), and antibiotics (Penicillin G and strepto-
mycin sulfate) and fungizone (Gibco, Invitrogen Corpo-
ration) as previously described [23]. Established primary
culture lines were maintained in o-MEM + 10% FBS +
antibiotics + fungizone. Culture flasks were incubated at
37°C in a humidified chamber with 5% CO,. Medium
was changed every 4-5 days and the cells sub-cultured
using 0.05% Trypsin-EDTA (Gibco, Invitrogen Corpora-
tion, Grand Island, NY) when confluent.

Fibroblast Populated Collagen Lattice (FPCL) contraction
assay

Collagen contraction was carried out using patient-
matched disease (D) and control (C) primary cultures
(passages 2 - 6) established from patient-matched DD
lesions and uninvolved palmar fascia (control). Collagen
lattices were prepared by mixing cell suspensions with a
neutralized solution of collagen type I matrix (8 parts
Vitrogen100 collagen type I, 2.9 mg/ml, Collagen Corp,
Santa Clara, CA, USA + 1 part 10 x a-MEM + 1 part HEPES
buffer, pH 9.0). The cell-collagen concentrations were
adjusted with sterile phosphate buffered solution (PBS) to
attain a final collagen concentration of 2.0 mg/ml and a
final cell concentration of 8.6 x 104 cells/ml of matrix. The
cell-collagen mixture was then aliquoted into 24 well cul-
ture dishes (0.5 ml/well) that were pre-treated with a PBS
solution containing 2% (w/v) bovine serum albumin
(BSA). Following FPCL polymerization (1 hr, 37°C) cul-
ture medium (0.5 ml) consisting of a-MEM + 10% fetal
bovine serum (FBS) was added atop each lattice. After 2
days of culture the attached FPCLs were mechanically
released from the sides of the culture plates. Digital
images of the contracting FPCL were captured at various
time points over a 5-day assay period using a conven-
tional flatbed scanner. Collagen lattice areas were then
quantified using the Image J program [31]. Each assay was
done in quadruplicate.

TGF-p$, and neutralizing anti-TGF-£, antibody treatments

Commercially available human recombinant TGF-B,
(expressed in NSO murine myeloma cells) was acid acti-
vated in a solution of 4N HCI + 0.1% (w/v) BSA according
to the manufacturer's instructions (Product # T 2815,
Sigma, St. Louis, MO). Acid activated human recom-
binant TGF-f, was then aliquoted and frozen for extended
storage at -70°C. The indicated concentrations of
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activated human recombinant TGF-f3, were added to com-
plete culture media immediately following FPCL
polymerization. Neutralizing anti-TGF-B, antibodies
(R&D Systems, Minneapolis, MN) were added to com-
plete culture media either immediately following FPCL
polymerization or added to the cell suspension prior to
mixing with the neutralized Vitrogen collagen type I solu-
tion. Control FPCL cultures were treated with appropriate
carrier solutions.

Cell proliferation assay

FPCL cultures were assayed using a commercially availa-
ble CellTiter 96® Ay,eous One Solution cell proliferation
assay according to the manufacturer's instructions
(Promega, Madison, WI, USA). This cell proliferation
assay is a colorimetric method that uses a tetrazolium
compound 3-(4,5-dimethylthiazol-2-yl)-5-(3-car-
boxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
salt (MTS) in combination with a stable electron coupling
reagent PES (phenazine ethosulfate). This produces a
chemically stable MTS tetrazolium compound that can be
bio-reduced by cells to form a soluble colored formazan
product [32,33]. Briefly, cells from patient-matched pri-
mary cultures were cultured as stressed-relaxed FPCLs as
described above. Each primary cell line was plated as
quadruplicate FPCL cultures for each of the indicated time
points with 0.5 ml of culture media + TGF-$, (1 ng/ml)
atop each FPCL. At each of the designated contracting
time points 100ul of CellTiter 96 Ay, One solution
reagent was added to the FPCL cultures and incubated for
3 hours (37°C, 5% CO, atmosphere, humidified cham-
ber). FPCL media was then collected and aliquoted into a
96-well culture plate for absorbance reading at 450 and
650 nm (background reference A) using a 96-well BIO-
RAD microplate reader. Media was also collected from
FPCLs containing no cells (negative control) for back-
ground absorbance readings. The assay was conducted
over 5 days during the course of FPCL contraction. A
standard curve was also generated to calculate relative cell
numbers per FPCL (range of 4 x 103-105 cells/FPCL).

Statistical analysis

Student two-tailed t test was used to compare data
between two groups. Values were expressed as mean *
standard deviation of the mean (SDM). P values < 0.05
were considered statistically significant.

Results

TGF-p, stimulates FPCL contraction

We first examined the basal collagen contraction activity
of three independent patient-matched early passage con-
trol and disease primary FPCL cultures. As shown in Fig-
ure 1, disease FPCL cultures contracted collagen faster and
to a greater degree when compared to patient-matched
control FPCL cultures. This is in agreement with previous
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Figure |

Collagen contraction of primary control and disease
FPCL cultures. Digital images of contracting FPCL cultures
were captured and analyzed using Image | software to quan-
tify collagen contraction. The mean FPCL surface area (mm?2)
was plotted over time with each data point representing the
mean * the standard deviation of the mean (SDM) of three
independent patient-matched cell lines. Experiments were
repeated in quadruplicate.

results that show distinct phenotypic differences between
control and disease primary DD cultures [22,24], includ-
ing enhanced collagen contraction by disease FPCL cul-
tures [23]. Next, we explored the role of exogenous TGF-
3, on FPCL contraction. Initial experiments showed a typ-
ical dose-dependent response for TGF-f, stimulated FPCL
contraction (Fig. 2). Because maximum collagen contrac-
tion was achieved in response to 1 ng/ml of TGF-f,, all
subsequent experiments used this dose. As shown in Fig-
ure 3a, we observed enhanced contraction rates and total
collagen contraction for both control and disease cells
treated with exogenous (1 ng/ml) TGF-f,. This enhanced
collagen contraction activity observed in disease FPCL cul-
tures was not due to differences in cell proliferation/via-
bility between control or disease FPCL cultures. In fact,
TGF-B, appears to exert a significant pro-apoptotic effect
on relaxed disease FPCL cultures that is absent in the 'con-
trol' FPCL cultures (Fig 3b). Thus, the amount of collagen
contraction exerted by disease FPCL cultures is more pro-
nounced if one also considers the changes in cell viability
over the course of FPCL contraction.

Neutralizing anti-TGF-/$, antibodies block TGF-£,
stimulated FPCL contraction but do not alter basal FPCL
contraction

Exogenous TGF-B, stimulated collagen contraction in
both control and disease FPCL cultures was inhibited in a
dose-dependent manner by neutralizing anti-TGF-, anti-
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Figure 2

TGF-$3, dose response. The dose response curve (upper
panel) shows the accumulated FPCL contraction (%) over 5
days. The degree of TGF-f3, stimulated contraction was
measured over a large concentration range (>5 orders of
magnitude). The plotted data shows a typical dose-response
relationship, with maximal response elicited by | ng/ml of
TGF-B,. Representative images of contracting FPCL after 5
days are shown for increasing concentrations of TGF-f3,
(lower panel).

bodies. As shown in Figure 4, lower concentrations of
neutralizing antibodies (100 ng/ml) partially inhibited
FPCL contraction, while higher concentrations of neutral-
izing antibodies (1000 ng/ml) completely inhibited TGF-
B, stimulated FPCL contraction, thus confirming the lig-
and-dependent nature of this response in vitro. We also
examined the effect of neutralizing anti-TGF-f, antibodies
on the basal collagen contraction activity of primary dis-
ease and control FPCL cultures. As shown in Figure 5, high
concentrations (1000 ng/ml) of neutralizing anti-TGF-§,
antibodies had no effect on the basal levels of collagen
contraction observed in either control or disease FPCL cul-
tures, suggesting that there is little or no endogenous
active TGF-3, that could account for the FPCL contraction
in vitro. To preclude that more localized interactions
between endogenously produced TGF-, and its cell-sur-
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face receptors may account for the observed increase in
disease FPCL contraction, we also pre-incubated the cells
with neutralizing anti-TGF-3, antibodies prior to forming
FPCL. Regardless, the blocking antibodies had no effect
on the basal levels of FPCL contraction (data not shown).

Discussion

Members of the TGF- family are potent fibrogenic factors
that play an important role in the patho-physiology of
numerous fibro-proliferative disorders, including DD
[34]. The study presented here focused on the effect of
TGEF-B, on collagen contraction using primary FPCL cul-
tures derived from patient-matched disease and control
unaffected PF tissue. Here, we found that disease FPCL
cultures contracted collagen faster and to a greater degree
than patient-matched control FPCL cultures. Although
neutralizing anti-TGF-$, antibodies effectively blocked
exogenous TGF-B, stimulated FPCL contraction for both
control and disease cultures, the same neutralizing anti-
bodies had no effect on the basal collagen contraction
activity of either disease or control FPCL cultures, suggest-
ing that enhanced disease FPCL contraction is not due to
elevated levels of endogenous active TGF-f,. These results,
however, do not exclude the possibility that there may be
differences in the levels of latent TGF-B, produced by
these cell cultures that may be subsequently activated in
vivo. Recent work by Kuhn et. al. (2002) reported reduced
DD FPCL contraction in response to tamoxifen, which
was associated with a decreased TGF-f, production [35].
However, the TGF-B, assayed in this study required an
acid-activation step, suggesting that TGF-f, produced by
these cells is largely in its latent, non-activate form. Thus,
it is possible that TGF-, produced by DD fibroblasts and/
or other resident cell types in vivo may be important to dis-
ease cord contraction, provided appropriate regulators of
latent TGF-B activation are also present and active. How-
ever, it does not explain the enhanced basal FPCL contrac-
tion rates of disease cell cultures, suggesting that other
signalling factors may be regulating this disease cell func-
tion in vitro. It is interesting to note that both TGF-B and
f-catenin signalling pathways show some degree of 'cross-
talk' [29,30,36-38], suggesting that B-catenin plays an
important role in TGF-f signalling. The degree and signif-
icance of signalling 'cross-talk' between [B-catenin and
TGF-B in the context of DD is unknown and needs further
examination.

Although previous DD studies have used different 'con-
trol' primary fibroblast as 'disease-free' controls, namely
fibroblasts derived from transverse carpal ligament mate-
rial obtained from patients undergoing carpal tunnel
release (CTR), they have the disadvantage of being of dif-
ferent anatomical origin than PF derived 'control' fibrob-
last cultures. This is an important consideration given that
fibroblasts exhibit functional heterogeneity depending on

Page 4 of 8

(page number not for citation purposes)



BMC Musculoskeletal Disorders 2004, 5:41

A

FPCL area (mm?)
8

http://www.biomedcentral.com/1471-2474/5/41

—0— Control
—%— Disease

—U— Control + TGF-B,
—&— Disease + TGF-g,

40 -

30 A

20 4

10 -

Cell # (x103)

Figure 3

6 12 24 48 72 96 120

Time (hours)

ctrl + TGF-B,
] ctrl
B disease + TGF-,

[] disease
P =0.0285 P=0.0129
P=10.0205 P=0.0213

Day3 Day5

FPCL contraction in response to exogenous TGF-f3,. Contracting FPCL cultures (= | ng/ml TGF-3,) were analyzed
using Image ] software to quantify collagen contraction. (A) The plotted data points represent the mean surface area + SDM
for three independent patient-matched primary FPCL cultures. Experiments were repeated in quadruplicate. (B) Cell prolifer-
ation/viability assays were performed on contracting FPCL cultures. The plotted bar graph represents the mean cell number +
SDM for the indicated time points for one representative patient-matched disease and control primary culture. Significant dif-
ferences between groups are indicated by the P-values. The stars denote significance differences (P < 0.05) between the same
treatment groups of different time points (white star — Day | vs. Day 3, black star — Day | vs. Day 5).
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Neutralizing anti-TGF-3, antibodies block TGF-f3,
stimulated FPCL contraction. (A) Control and (B) dis-
ease FPCL cultures (£ | ng/ml TGF-3,) were treated with
the indicated concentrations of neutralizing anti-TGF-f3, anti-
bodies. FPCL contraction was analyzed and plotted as the
mean surface area + SDM for quadruplicate cultures per
treatment.

their origin [39-41]. For example, human fibroblasts that
express the cell surface antigen Thy-1 are capable of TGF-
B, stimulated myofibroblast differentiation, while Thy-1
negative fibroblasts appear to be only capable of lipofi-
broblast differentiation [42]. Phenotypic differences have
also been attributed to fibroblasts of different dermal ori-
gins [43]. For example, Chipev and colleagues showed
that TGF-, had a pro-apoptotic effect on non-palmo-
plantar (keloid) fibroblasts and an anti-apoptotic effect
on palmoplantar fibroblasts. Similar to what we have
observed for detached or contracting DD FPCL cultures,
they showed that TGF-B, treated (in the presence of
serum) keloid FPCL cultures underwent the most
extensive apoptosis response upon mechanical release
compared to dermal fibroblasts from different body sites
[43]. Perhaps the similar myofibroblast phenotype attrib-
uted to both DD and keloid fibroblast cultures also dic-
tates a similar apoptotic fate to relaxed FPCL cultures in
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—C— Control
4 Control + 100 ng/ml Ab

200 - —— Control + 1000 ng/ml Ab
—* Disease
180 - —&—Disease + 100 ng/iml Ab

—4- Disease + 1000 ng/ml Ab

FPCL area (mm?2)
£

0 1 3 6 12 24 48 72 9 120
Time (hours)

Figure 5

Neutralizing anti-TGF-f3, antibodies do not inhibit
basal collagen contraction activity of control or dis-
ease FPCL cultures. Disease and control FPCL cultures
were incubated in the absence or presence of the indicated
concentrations of neutralizing anti-TGF-f3, antibodies. Meas-
urements of the contracting FPCL were plotted as the mean
surface area + SDM for quadruplicate cultures per treatment.

response to TGF-fs. Although the loss of tension in these
cultures triggered a mostly uniform loss in cell viability
across all groups, unlike disease FPCL cultures TGF-f, did
not appear to have any significant pro-apoptotic effect on
relaxed 'control' FPCL cultures. In light of these and other
findings, it appears that the patient-matched control
fibroblast cultures employed in these studies may truly
represent a suitable 'control' phenotype, with the added
advantage of having the same PF origins as the disease cell
cultures. While this does not exclude the possibility that
the control cultures may harbour some residual disease
cells, this is not supported by the distinct phenotypic dif-
ferences we have observed between these two types of
patient-matched PF cultures in the current and previous
studies. In these earlier studies, we reported elevated levels
of B-catenin and fibronectin isoforms in disease FPCL cul-
tures [22-24], as well as enhanced disease FPCL contrac-
tion rates which we have subsequently confirmed in these
studies. This together with the distinctive pro-apoptotic
affects of TGF-B, on disease FPCL cultures described here,
further support the notion that the patient/tissue-
matched 'control' cultures have a non-disease phenotype
that is suitable for these types of investigations.

Although the 'synthetic' myofibroblast features of the dis-
ease cells described in previous studies are known to be
stimulated by TGF-f [20,21,25-30,35], our results
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suggests that endogenous TGF-§3, does not play a role in
regulating these phenotypic differences in vitro. Neverthe-
less, aberrant expression of various TGF-f signalling com-
ponents have been previously shown to trigger this
'synthetic' myofibroblast phenotype in other fibro-prolif-
erative disorders, specifically keloids and burn hyper-
trophic scarring [34,44,45], that can to some extent be
inhibited by neutralizing anti-TGF-f, antibodies [46,47].
Hopefully future studies will unravel the extent of these
phenotypic differences between these patient/tissue-
matched control and disease FPCL cultures with respect to
pro-fibrotic factors like TGF-$3,, tension and other impor-
tant intersecting signaling pathways.

Conclusions

Primary disease FPCL cultures contract collagen faster and
to a greater extent than control PF-matched FPCL cultures.
While neutralizing anti-TGF-f, antibodies can block exog-
enous TGF-B, stimulated collagen contraction for both
control and disease FPCL cultures, it had no effect on the
basal contraction rates of either control or disease FPCL
cultures. We, therefore, conclude that the enhanced colla-
gen contraction activity of disease FPCL cultures is not due
to differences in the levels of endogenous active TGF-j,.
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DD, Dupuytren's disease; PF, palmar fascia; CTR, carpal
tunnel release; TGF-B, transforming growth factor-beta;
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4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; a-
MEM, alpha-minimal essential medium; FBS, fetal bovine
serum; Fn, fibronectin; MTS, 3-(4,5-dimethylthiazol-2-
yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
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