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Monosodium urate crystal induced macrophage
inflammation is attenuated by chondroitin
sulphate: pre-clinical model for gout prophylaxis?
Eric W Orlowsky1, Thomas V Stabler2, Eulàlia Montell3, Josep Vergés3 and Virginia Byers Kraus1,2*
Abstract

Background: Chondroitin Sulphate (CS), a natural glycosaminoglycan of the extracellular matrix, has clinical benefit
in symptomatic osteoarthritis but has never been tested in gout. In vitro, CS has anti-inflammatory and positive
effects on osteoarthritic chondrocytes, synoviocytes and subchondral bone osteoblasts, but its effect on macrophages
is unknown. The purpose of our study was to evaluate the in vitro effects of CS on monosodium urate (MSU)-stimulated
cytokine production by macrophages.

Methods: THP-1 monocytes were differentiated into mature macrophages using a phorbol ester, pretreated for
4 hours with CS in a physiologically achievable range of concentrations (10–200 μg/ml) followed by MSU crystal
stimulation for 24 hours. Cell culture media were analyzed by immunoassay for factors known to be upregulated
during gouty inflammation including IL-1β, IL-8 and TNFα. The specificity of inflammasome activation by MSU
crystals was tested with a caspase-1 inhibitor (0.01 μM-10 μM).

Results: MSU crystals ≥10 mg/dl increased macrophage production of IL-1β, IL-8 and TNFα a mean 7-, 3- and 4-fold
respectively. Induction of IL-1β by MSU was fully inhibited by a caspase-1 inhibitor confirming inflammasome
activation as the mechanism for generating this cytokine. In a dose-dependent manner, CS significantly inhibited IL-1β
(p = 0.003), and TNFα (p = 0.02) production from macrophages in response to MSU. A similar trend was observed for
IL-8 but was not statistically significant (p = 0.41).

Conclusions: CS attenuated MSU crystal induced macrophage inflammation, suggesting a possible role for CS in
gout prophylaxis.
Background
Gout is the most common cause of arthritis in men after
osteoarthritis. Its prevalence is on the rise and thought
to affect around 4% of the total US population [1]. Patients
have fewer flares when their serum uric acid is maintained
below 6.0 mg/dl [2]. However, initiation of urate-lowering
therapy can often lead to an increase in the frequency and
severity of flares [3,4]. Consequently, both the European
League Against Rheumatism (EULAR) and the American
College of Rheumatology (ACR) have recommended the
use of prophylactic agents when initiating urate-lowering
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therapy [5,6]. Oral colchicine, low-dose non-steroidal anti-
inflammatory drugs (NSAIDs) and daily corticosteroids
have all been recommended [7], but all are associated with
intolerances or adverse effects [4]. Thus, the identification
of new agents for treating or preventing gout flares would
be of great clinical value.
Gouty inflammation is initiated when monosodium urate

(MSU) crystals are taken up by macrophages or other cells
in the joints [8]. This results in assembly of the NLRP3
inflammasome, a multimeric protein complex responsible
for activating caspase-1, which in turn cleaves pro-IL-1β
leading to production and secretion of active IL-1β [9].
Other factors are upregulated during gouty inflammation,
including IL-8 and TNFα [8].
Chondroitin Sulphate (CS), a natural glycosaminoglycan

of the cartilage extracellular matrix [10], is of clinical
benefit in symptomatic osteoarthritis [11] but results are
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mixed [12,13]. The effects of CS have never been tested in
gout. In vitro, CS has anti-inflammatory and positive
effects on osteoarthritic chondrocytes, synoviocytes
and subchondral bone osteoblasts [14], but its effect
on macrophages is unknown. On the other hand, in vivo,
CS given orally prevents hepatic NF-κB nuclear trans-
location, suggesting that systemic CS may elicit an anti-
inflammatory effect in many tissues besides the joint [14].
There is preliminary evidence in human beings that CS
may be of benefit in other diseases where inflammation is
an essential component such as psoriasis and atheroscler-
osis [14]. The purpose of our study was to evaluate the
in vitro effects of CS on MSU-stimulated cytokine produc-
tion by macrophages.
Methods
Cell culture
We established an in vitro cell culture system using the
human monocytic cell line, THP-1 (ATCC TIB-202),
grown in RPMI 1640 with HEPES and supplemented with
glucose, pyruvate, 2-mercaptoethanol, 10% FBS and peni-
cillin/streptomycin as recommended by ATCC. These
cells were grown to a density of 1.5 × 106 cells/ml in a
75 cm flask and then were induced to differentiate into
mature macrophages using 12-O-tetradecanoylphorbol-
13-acetate (Enzo Life Sciences) at a concentration of
0.5 μM for 3 hours [15]. Following induction, cells were
washed with PBS and then plated into 12-well tissue cul-
ture plates at a density of 6 x105 cells/well and incubated
overnight in normal media. Prior to any activation studies,
cells were washed with PBS followed by the addition of
0.5 ml of serum free Opti-MEM per well.
Macrophage activation studies
Different concentrations of Monosodium Urate (MSU)
crystals (Enzo Life Sciences) in a physiological range
(concentrations of serum uric acid that are possible in
humans, i.e. up to 20 mg/dl) [16,17] were initially tested
to establish conditions for inducing pro-inflammatory
cytokines from activated macrophages. MSU crystals
(2.5 to 20 mg/dl) were added to the differentiated cells
grown in Opti-MEM and incubated for 24 hours in 10%
CO2. Cell culture media were then removed and stored
at −80°C until analyzed by immunoassay for IL-1β (high-
sensitivity assay R&D Systems), and TNFα and IL-8 (run
as part of a human proinflammatory 9-plex by Meso Scale
Discovery, MSD). All samples yielded measurable concen-
trations; 23 of 46 values for IL-8 were out of range high
but could be readily extrapolated as they were within the
linear range of the assay. The intra and inter-assay coeffi-
cients of variation (CV) for IL-1β were 2.85% and 4.87%
respectively as reported by the manufacturer. However, no
CVs were reported by the manufacturer for the MSD kit.
The intra-assay CVs were 4.85% for TNFα, and 2.77% for
IL-8 according to our calculations.
In order to identify the component of IL-1β production

attributable to inflammasome activation, a commercially
available cell-permeable caspase-1 inhibitor (EMD Milli-
pore catalog#400011, sequence: Ac-AAVALLPAVLLALLA
PYVAD-CHO) was used. Cells were pre-treated with vari-
ous concentrations of the inhibitor (0.01-10 μM) for six
hours prior to stimulation with MSU crystals (20 mg/dl).
This high concentration of MSU was tested to provide a
stringent test of caspase inhibition. After stimulation of
macrophages for 24 hours as described above, the cell
culture media were analyzed for IL-1β.
CS inhibition studies
To test for anti-inflammatory effects of CS, macrophages
were pretreated with highly purified bovine chondroitins
4 and 6 sulfate of ≥98% purity, and with an average mo-
lecular weight of ~ 15–16 kDa (Bioibérica, Barcelona,
Spain) for 4 hours prior to the addition of MSU crystals
(10 mg/dl). A range of doses of CS (10–200 μg/ml) that
approximate physiological conditions [18,19] were tested.
Culture media were collected at 24 hours and IL-1β,
IL-8 and TNFα concentrations were analyzed as above.
The IL-1β data represent the aggregate of 7 total rep-
licates over 4 independent experiments; the IL-8 and
TNFα data represent 4 total replicates from 4 separate
experiments.
Endotoxin assay
To test for the presence of endotoxin in the experimental
reagents utilized for these experiments, we used Pyrogene
Recombinant Factor C Endotoxin Assay (Lonza) accord-
ing to the manufacturer's instructions. This assay utilizes a
recombinant Factor C, which when activated by endotoxin
binding reacts with a fluorogenic substrate to produce a
fluorescent signal in direct proportion to the amount of
endotoxin in the sample.
Statistical analysis
Fold activation of cytokines was determined comparing
the negative controls (no added MSU) to MSU with
results expressed as mean % control. CS effects on MSU
induced cytokine concentrations were expressed as a
mean percent of the MSU only condition (set to 100%).
Statistical significance was determined by one-way ANOVA
with Dunnett’s post-hoc test. Linear trend analyses of
these data were performed to assess for a CS dose re-
sponse. Analyses were performed using GraphPad Prism
software (San Diego, CA). Linear trend analyses were
performed using JMP 9 (SAS). Results were considered
significant for p < 0.05.



Figure 1 Exposure of macrophages to high physiological concentrations of monosodium urate (MSU) crystals stimulated IL-1β production.
THP-1 macrophages were exposed to MSU crystals of varying concentrations (range 0–20 mg/dl) for 24 hours. MSU concentrations of≥ 10 mg/dl
consistently induced IL-1β production as shown here in this representative experiment; this prompted us to choose 10–20 mg/dl for all subsequent
experiments. Results are expressed as a percent of the negative control (left bar with no MSU).
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Results and discussion
All cell culture reagents, including the MSU and CS,
were tested for the presence of endotoxin by our labora-
tory or the manufacturer, and all were found to contain
less than 0.03 EU/ml endotoxin. Increasing concentra-
tions of MSU crystals led to increasing IL-1β production
(Figure 1). Specifically, MSU concentrations of 10 mg/dl
and greater increased IL-1β production by macrophages;
thus, concentrations of 10–20 mg/dl were used for sub-
sequent experiments.
To stringently assess the mechanism of IL-1β produc-

tion in macrophages in response to MSU, cells were
stimulated with a high concentration of MSU, 20 mg/dl,
with pre-incubation with varying concentrations of a
caspase-1 inhibitor. IL-1β production was fully inhibitable
by the caspase-1 inhibitor in a dose dependent manner
confirming inflammasome activation as the source of this
cytokine (Figure 2).
Figure 2 The origin of IL-1β from MSU stimulated macrophages was
macrophages were pretreated for 6 hours with varying concentrations of a
MSU (20 mg/dl) for 24 hours. In response to the Caspase-1 inhibitor, IL-1β
THP-1 in the absence of MSU (far right three bars). Results are expressed as
(first bar on left).
To assess the effect of CS on MSU stimulated cytokine
production, we pre-incubated THP-1 macrophages in
the absence and presence of CS for 4 hours followed by
stimulation with MSU 10 mg/dl. This concentration was
chosen as it reliably induced IL-1β production, is repre-
sentative of hyperuricemia, and is associated with a high
incidence of gout [20]. IL-1β, TNFα and IL-8 were in-
duced a mean 7-, 4- and 3-fold respectively by MSU.
CS significantly inhibited IL-1β (p = 0.0029) and TNFα
(p = 0.0174) production from macrophages in response
to MSU (Figure 3). These results were also significant
by linear trend analysis (p = 0.001 and p = 0.009 for
IL-1β and TNFα respectively). Although IL-8 was similarly
inhibited by CS (Figure 3), this trend was not statistically
significant by ANOVA (p = 0.4147) but was significant by
linear trend analysis (P = 0.05). The linear trend analyses
demonstrate a reduction of inflammation by CS in a dose-
dependent manner.
consistent with NLRP3 inflammasome activation. THP-1
Caspase-1 inhibitor (range 0–10 μM) followed by stimulation with
was reduced in a dose-deoendent manner to the level produced by
a percent of the positive control—MSU in the absence of Caspase-1



Figure 3 Chondroitin sulphate (CS) inhibited MSU induced cytokine production. THP-1 macrophages were pretreated for 4 hours with
varying physiological concentrations of chondroitin sulfate (CS, range 0–200 μg/ml) followed by stimulation with MSU (10 mg/dl) for 24 hours.
Media were analyzed for cytokines: a) IL-1β, b) TNF-α, and c) IL-8. Production of IL-1β (p = 0.003) and TNF-α (p = 0.02) were significantly inhibited
by CS while IL-8 (p = 0.41) showed a similar but non-significant trend. *p≤ 0.05, **p ≤ 0.01 and ***p≤ 0.001 generated using One-Way ANOVA
with Dunnett’s Post-Hoc Test. Results are expressed as a percent of the positive control (left bar with MSU, no CS). Representative mean (standard
deviations) raw cytokine concentrations (in pg/ml) for the MSU stimulated conditions without and with 200 mg/dl CS were as follows: IL-1β 348
(184) and 61 (79); TNF-α 359 (440) and 46 (55); IL-8 8502 (193) and 4428 (4009).
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Three cytokines associated with gouty inflammation,
IL-1β, TNFα and IL-8 were all induced by exposure of
activated macrophages to MSU crystals. Macrophage
exposure to CS for 4 hours prior to MSU led to a sig-
nificant dose-dependent decline in production of both
IL-1β and TNFα. Many of the anti-inflammatory effects
of CS are thought to affect the transcription of various
cytokines, such as IL-1β and TNFα. In particular, they
are thought to affect various kinases, which in turn block
the translocation of NFκB to the nucleus [14]. Others
have suggested that NFκB could also affect IL-8 produc-
tion [21]. Martinon et al. demonstrated that MSU crys-
tals lead to IL-β production through activation of the
inflammasome [22]. TNFα is also upregulated by MSU
crystals in an experimental animal model of gouty arth-
ritis, but blocking IL-1β (either pharmacologically or
genetically) lessened this response [23]. In addition, IL-8,
a chemotactic factor responsible for neutrophilic infiltra-
tion, was upregulated when MSU crystals were injected
in the joints of rabbits; this neutrophil response and the
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gout related synovitis were attenuated with the use of an
anti-IL-8 antibody [24].
Based on the literature, the concentrations of CS used

in these experiments are comparable to those suggested
to be within a physiologically achievable range [18,19].
The data presented here suggest there may be a role for
CS in preventing flares of gout due to initiation of uric
acid lowering agents. To gain potential insights into
whether CS might play a role in treatment of active gout
flares, future studies are needed to test the effects of CS
added coincidentally or after MSU stimulation. Given
the low side effect profile of CS, it represents an intriguing
treatment option for these scenarios in gout. In particular,
CS might synergize with other established treatments for
gout thereby making it possible to lower doses or discon-
tinue traditional therapies, particularly in the subset of in-
dividuals with relative contraindications to the traditional
therapies including allopurinol, NSAIDs and colchicine in
the context of renal insufficiency.
A number of meta-analyses have found oral CS to be

both safe and well tolerated [12,13]. However, one must
take into account both the purity and source (i.e. bovine
or shark etc.) as other in vitro studies have shown that
in vitro anti-inflammatory properties of CS can vary based
on the preparation [25-27]. Further studies in humans will
be needed to determine if CS has a role as a treatment
option for patients with gout.
A limitation of our study was the use of THP-1 cells

derived from a human monocytic cell line. They are
often employed in the laboratory setting because of their
ease of use. However, it would be of benefit to repeat
these experiments in primary peripheral monocytes or
primary synovial macrophages. Although we established
that IL-1β, produced by macrophages in this system, was
a product of inflammasome activation, these experi-
ments do not establish the exact target of CS inhibition.
CS may be blocking NFκ-B activation, as established by
others [18], which would block pro-IL-1β transcript ex-
pression. Alternatively, CS could be acting outside of the
cell by blocking the interaction of MSU or extracellular
matrix fragments with cell surface receptors on macro-
phages [28]. Still the anti-inflammatory effects of CS and
other sulphated glycosaminoglycans may be mediated
through sequestering of cytokines as suggested based on
NMR and fluorescent spectroscopy as well as compu-
tational simulation studies [29]. Finally, CS could have
pleiotropic effects on the cell, some of which have yet to
be elucidated.

Conclusions
CS decreased MSU-mediated cytokine production from
activated macrophages. In particular, IL-1β and TNFα were
lowered in a dose-dependent manner by CS. Given the role
of these cytokines in initiating gouty inflammation, CS may
have a role as a prophylactic agent in the treatment
of gout.
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