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Abstract

Background: Mitochondrion has an important role in the osteoarthritis (OA) pathology. We have previously
demonstrated that the alteration of the mitochondrial respiratory chain (MRC) contributes to the inflammatory
response of the chondrocyte. However its implication in the process of cartilage destruction is not well understood
yet. In this study we have investigated the relationship between the MRC dysfunction and the regulation of
metalloproteases (MMPs) in human normal chondrocytes in culture.

Methods: Human normal chondrocytes were isolated from human knees obtained form autopsies of donors
without previous history of rheumatic disease. Rotenone, 3-Nitropropionic acid (NPA), Antimycin A (AA), Sodium
azide and Oligomycin were used to inhibit the activity of the mitochondrial complexes |, II, lll, IV and V respectively.
The mRNA expression of MMPs —1, -3 and —13 was studied by real time PCR. The intracellular presence of MMP
proteins was evaluated by western blot. The liberation of these proteins to the extracellular media was evaluated by
ELISA. The presence of proteoglycans in tissue was performed with tolouidin blue and safranin/fast green.
Immunohistochemistry was used for evaluating MMPs on tissue.

Results: Firstly, cells were treated with the inhibitors of the MRC for 24 hours and mRNA expression was evaluated.
An up regulation of MMP-1 and —3 mRNA levels was observed after the treatment with Oligomycin 5 and 100 pg/ml
(inhibitor of the complex V) for 24 hours. MMP-13 mRNA expression was reduced after the incubation with AA 20 and
60 pug/ml (inhibitor of complex Ill) and Oligomycin. Results were validated at protein level observing an increase in the
intracellular levels of MMP-1 and —3 after Oligomycin 25 ug/ml stimulation [(15.20+8.46 and 4.59+1.83 vs. basal=1,
respectively (n=4; *P<0.05)]. However, AA and Oligomycin reduced the intracellular levels of the MMP-13 protein
(0.70+0.16 and 0.3+0.24, respectively vs. basal=1). In order to know whether the MRC dysfunction had an effect on the
liberation of MMPs, their levels were evaluated in the supernatants. After 36 hours of stimulation, values were:
MMP-1=18.06+10.35 with Oligomycin 25 pg/ml vs. basal=1, and MMP-3=849+4.32 with Oligomycin 5 pg/ml vs.
basal=1 (n=5; *P<0.05). MMP-13 levels in the supernatants were reduced after AA 60 ug/ml treatment (0.50+0.13

vs. basal=1) and Oligomycin 25 pug/ml (0.41+0.14 vs. basal=1); (n=5; *P<0.05). The treatment of explants with
Oligomycin, showed an increase in the positivity of MMP-1 and —3. Explants stimulated with AA or Oligomycin
revealed a decrease in MIMP-13 expression. Proteoglycan staining demonstrated a reduction of proteoglycan levels in
the tissues treated with Oligomycin.

Conclusions: These results reveal that MRC dysfunction modulates the MMPs expression in human normal
chondrocytes demonstrating its role in the regulation of the cartilage destruction.
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Background

Osteoarthritis (OA) is a pathology characterized by the
destruction of the cartilage and joint dysfunction [1,2].
The cartilage has been always described as an avascular
and hypoxic tissue. This is the reason why mitochondria did
not have been extensively studied in this tissue. However,
our group has previously described that the activity of
the mitochondrial respiratory chain (MRC) complexes II
and III is reduced in human OA chondrocytes in culture
compared to healthy chondrocytes [3,4]. In addition, some
haplogroups that codify for genes related to the MRC,
confer a higher predisposition to develop the OA disease
[5]. In addition, some proinflammatory factors, like cyto-
kines IL-1B and TNF-«, produce a decrease in the activity
of the MRC complex I [6]. Among other substances
produced by the tissues in the OA joint, nitric oxide
(NO) has an important role on the mitochondrial activity
[7,8]. Our group described that the NO donor sodium
nitroprusside (SNP), reduced the activity of the MRC
complex IV [9]. Other groups have related the dysfunction
of the MRC complex I to the NO production [10]. In
previous studies, our group has also demonstrated that
the MRC dysfunction could generate an inflammatory
response in the chondrocyte with upregulation of COX-2
and PGE2 production [11-13].

The progressive degradation of the extracellular matrix
(ECM) in the tissues like cartilage, bone and synovial tissue
is one of the most common events in the rheumatic
pathologies [14]. Despite a high number of proteases
contribute to the tissue destruction, the family of metal-
loproteases (MMPs) plays an important role. The MMPs
are endopeptidase zinc and calcium dependent enzymes,
secreted by resident cells in the tissues as well as by invading
cells. Their function is to remodel the ECM in physiological
processes (embryogenesis, cellular migration, angiogenesis)
and in pathological processes like (tumours, rheumatic
pathologies, cardiovascular diseases) [15]. Collagenase 1
or MMP-1, was the first MMP that was described. It is
widely expressed in connective tissues like fibroblasts,
chondrocytes, monocytes, macrophages and oncogenic
cells. It breaks collagen III but also collagen I, II, VII, VIII, X
and gelatine. It activates the pro MMP-2 and -9. MMP-13
or collagenase-3 degrades collagen II and collagen I, III,
IV, IX, X, X1V, gelatine, laminin, aggrecane and fibronectin
[16]. Stromelisin 1 or MMP-3 is expressed in fibroblasts,
osteoblasts, osteblasts and chondrocytes. Its targets are
collagen II, IV, IX, X, XI and gelatine, as well as elastine,
caseine, laminin, fibrinogen and aggrecan. It also activates
other procollagenases (-1, -8, -13) and pro MMP-9 [17].
It is highly expressed in late OA phases. There is a direct
relation between MMP-3 levels and the OA severity grade
[18,19]. Some studies have demonstrated how hyaluronic
acid reduces the MMP-3 expression and the cartilage
destruction [20-22]. Considering the importance of MMPs
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in the integrity of the cartilage, and given the role of the
mitochondria in the chondrocyte physiology, we evaluated
the modulation of MMPs after mitochondrial dysfunction.

Methods

Cell culture and experimental conditions

Cartilage procurement and processing

Normal human knee cartilage from donors (with ages
ranging from 18 to 65 years) with no history of joint
disease was provided by the Tissue Bank and the Autopsy
Service at CHU de La Coruna. Cartilage slices were removed
from the condyles and treated with trypsin 0.5 mg/ml
(Sigma-Aldrich, St. Louis, MO) for 15 min at 37°C. Then,
the cartilage was incubated overnight in an orbital shaker
at 37°C with 2 mg/ml clostridial collagenase (Sigma-
Aldrich) in Dulbecco’s modified Eagle’s medium (DMEM;
Gibco Life Technologies, Paisley, UK). The cells were
resuspended in fetal calf serum (FCS)—enriched DMEM
and used in the first passage. For tissue studies, pieces
of cartilage 6 mm in diameter and 4 mm in height were
cut from cartilage and stimulated in DMEM. The local
ethics committee in Galicia, Spain, approved this study.

mRNA expression studies

mRNA of 5x10° cells per condition, was isolated with
Trizol reagent (Invitrogen, Paisley, Scotland, UK), treated
with Deoxyribonuclease I amplification grade (Invitrogen)
and amplified with a Transcriptor First Strand cDNA
Synthesis commercial kit (Roche Diagnostics,). PCR ana-
lyses for MMPs and the housekeeping gene hipoxantine
phosphoribosiltransferase 1 (HPRT1) were conducted with
the LightCycler 4800 SYBR Green I Master kit using the
Real Time Light Cycler (Roche Diagnostics). The primers
employed were: MMP-1: 5’-gctaacctttgatgctataactacga-3’
(sense) and 5'-tttgtgcgcatgtagaatctg-3” (antisense); MMP-3:
5’-caaaacatatttctttgtagaggacaa-3’ (sense) and 5’-ttcagctatt
tgcttgggaaa-3’ (antisense); MMP-13: 5’ -ccagtctccgaggagaa
aca-3’ (sense) and 5'-aaaaacagctccgcatcaac-3’(antisense);
HPRT1: 5'-tgaccttgatttattttgcatacc-3'(sense) and 5'-cgagc
aagacgttcagtcct-3'(antisense).

PCR data were analyzed using Relative Expression
Software Tool (REST) (Qiagen, Valencia, CA) software,
which provides statistical information for comparing groups
taking into account issues of reaction efficiency and
reference gene normalization.

Western blot

After stimulation, cells (5x10° per well) were lysed in 0.2
M Tris—HCI (pH 6.8) containing 2% SDS, 20% glycerol,
1 pg/ml cocktail inhibitor and 1 mM PMSEF. Protein
concentrations were determined using the BCA reagent
assay (Pierce Chemical Co., Rockford, IL, USA). Protein
extract (30 pg) was resolved on 12.5% SDS—polyacrylamide
gels and transferred to polyvinylidene difluoride membranes
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(Immobilon P; Millipore, Bedford, MA). These membranes
were first blocked for 1 hour at room temperature in Tris
buffered saline, pH 7.4, containing 0.1%Tween 20 (TBST)
and 5% non fat dry milk, and then incubated overnight at
4°C with anti-MMP-1 human rabbit 1:50 (NeoMarkers,
Fremont, California USA), anti-MMP-3 human mouse
1:200 (Chemicon, Temecula, CA, USA) and anti-MMP-13
1:50 human rabbit (Neomarkers) antibody in fresh blocking
solution. After thorough washing with TBST, immunore-
active bands were detected by chemiluminescence using
corresponding horseradish peroxidase—conjugated secondary
antibodies (1:2000, GE Healthcare), enhanced chemilu-
minescence detection reagents (GE Healthcare), and a LAS
3000 image analyzer. Quantitative changes in band in-
tensities were evaluated with ImageQuant 5.2 software
(GE Healthcare). To assure that equal amounts of the
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total proteins were evaluated, membranes were also hy-
bridized with monoclonal anti-human a-tubulin antibodies
(1:2500; Sigma-Aldrich).

Liberation of MMPs

The liberation of MMPs to the cell media was evaluated
by ELISA according to manufacter instructions. 4.5x10°
cells per condition were used in 12 well plates. After 36
hours of stimulation, media was collected and centrifugated
at 800 rpm for 5 min. MMP-1 was studied by ELISA with
a detection range of 6.25-100 ng/mL (GeHealthcare). For
the MMP-3 study (R&D Systems, Abingdon, UK) samples
were diluted 1:1000. The detection rate was 0.156-10 ng/
mL. The MMP-13 study was performed with a detection
range of 0.094-3 ng/ml (GeHealthcare).
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Figure 1 mRNA expression of MMPs-1, -3 and —13 in chondrocytes after MRC dysfunction. Chondrocytes were cultured in 6 well plates in
basal conditions or with Rotenone (10 and 50 pug/mL), NPA (0.5 and 10 mM), AA (20 and 60 pg/mL), Sodium azide (2 and 25 mM) or Oligomycin
(5 and 100 pg/mL) for 24 h. The mRNA was purified and PCR was conducted in order to analyze MMP-1 (A), MMP-3 (B) and MMP-13 expression
(C). Data are represented as mean + SE of 9 independent experiments in duplo.
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MMPs detection in tissue

Tissue sections of 6 mm of diameter were stimulated in
48 well plates and frozen in OCT. Slices of 4 pm were
fixed in acetone for 1 min at 4°C. Anti-MMP-1 (1:100),
anti-MMP-3 (1:50) or anti-MMP-13 (1:50) antibodies were
used for 1 h. After three washing steps with PBS anti-
rabbit or anti-mouse (1:20) antibodies labelled with perox-
idase were used (Dako) for 30 min at room temperature.
After washing, 3,3'-diaminobenzidina (DAB) (Dako) was
applied for 5 min. After dehydratation in alcohols and
mounting DePeX (VWR, Bridgeport, NJ, USA), tissues
were observed in the microscope.

Proteoglycan studies

The levels of proteoglycans were evaluated with toluidin
blue in cartilage slices. After fixing in acetone, tissues
were dipped in toluidin blue 0.2% (Sigma) in sodium
acetate buffer 98 mM, acetic acid 5M pH 4.2, for 20 min.
After a washing step with water, samples were dehydrated
with alcohol solutions (70°C, 96°C, 100°C). After washing
with xylene, DePeX was used for mounting and visua-
lization in the microscope with a Nikon camera (Nikon
Instruments, Melville, NY). Safranine fast green was
also used for proteoglycan detection. For this technique,
FFPE tissues were cut in the microtom and washed to get
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rid of the paraffin. Fast green stained the background for 5
min. After washing for 10 sec in acetic acid and safranin
0.1% for 5 min tissues were dehydrated and mounted.
Proteoglycan quantitation was done with Analisys software
obtaining relative values.

Statistical analyses

The data are expressed as mean + SE. Individual donor
assays were duplicated. The statistical software program
SPSS (version 15.0, SPSS, Chicago, IL, USA) was used to
perform analysis of variance (ANOVA) and Tukey tests.
Differences were considered to be statistically significant
at P<0.05.

Results

Intracellular MMP-1, MMP-3 and MMP-13 expression after
MRC dysfunction

We evaluated the possible modulation at mRNA level
of MMPs -1, -3 and -13 after the induction of the
MRC dysfunction. According to the bibliography, we used
Rotenone 10 and 50 pg/ml to inhibit the MRC complex I,
NPA 0.5 and 10 mM to inhibit the MRC complex II,
Antimycin A (AA) 20 and 60 pg/ml to inhibit the complex
III, Sodium azide 2 and 25 mM to inhibit the complex IV
and Oligomycin 5 and 100 pg/ml to inhibit the activity of
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Figure 2 MMP-1 intracellular protein levels in chondrocytes after MRC dysfunction. A) Human chondrocytes were cultured in 6 well plates,
in basal conditions with AA or Oligomycin for 24 h and intracellular proteins were detected by western blot. Data were expressed as a ratio
(basal=1) represented as mean + SE of 4 independent experiments (*P<0.05). B) Example of a representative experiment.
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the complex V. After 24 hours of treatment, we analyzed
the mRNA expression of MMPs -1, -3 and —13 as Figure 1
shows. Oligomycin 5 pg/ml produced a tendency in the
increase of MMP-1 and -3 expression (Figure 1A, 1B) to
68.10+39.9 and 60.13+29.7 vs. basal=1, respectively (n=9).
On the other hand, the inhibition of the complex III with
AA 20 pg/ml, produced a decrease in the MMP-13 mRNA
expression to 0.34+0.2 vs. basal=1 (Figure 1C). To confirm
these results at protein level, we evaluated the intracellular
protein expression of these MMPs by western blot
(Figures 2, 3 and 4). We stimulated the cells at different
concentrations of AA or Oligomycin according to the
preliminary mRNA results. The positive control used
was IL-1B 5 ng/ml. The treatment of chondrocytes with
the inhibitor of complex V (Oligomycin 2.5, 5, 10 and
25 ug/ml) after 24 hours produced an increase in the
MMP-1 levels (Figure 2A). The levels increased significantly
up to 12.20+3.24 and 15.20+8.46 vs. basal=1, Oligomycin
10 and 25 pg/ml respectively, (n=4; *P<0.05). Figure 2B
represents an experiment of 4. As we expected, AA did
not induce the MMP-1 modulation according to the
mRNA results. In a similar way, MMP-3 was only induced
by Oligomycin. Figure 3A shows these levels: at 24 h
5.65+2.08 and 4.59+1.83 vs. basal=1 for the concentrations
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of 10 and 25 pg/ml, respectively (n=4; *P<0.05). Figure 3B
represents an experiment of 4. As we expected, AA did
not induce the modulation of MMP-1. MMP-13 decreased
after treatment with AA 40 pg/ml and Oligomycin 25
pg/ml (0.70+0.16 and 0.3+0.24 vs. basal=1; n=4; *P<0.05)
(Figure 4A and 4B).

MMPs-1, -3 and —13 liberation in chondrocytes after the
induction of the MRC dysfunction

MMPs after being liberated by cells degrade the ECM.
We measured their abundance in cellular supernatants
after inhibiting the activity of the complexes III and V.
AA (10, 20, 40 and 60 pg/ml) or Oligomycin (2.5, 5, 10 and
25 pg/ml) were added to chondrocyte cultures for 36 h.
After recovering the supernatants, ELISA was performed
to measure the quantity that was liberated to the media.
The results confirmed that MMP-1 also increased after
Oligomycin treatment (Figure 5A) 17.52+10.07 with 10
pg/ml and 18.06+10.35 with 25 pg/ml vs. basal=1; n=5;
*P<0.05). MMP-3 ELISA (Figure 5B) showed the protein
levels increased after Oligomycin 5 pg/ml treatment
(at 36 h, 8.49+4.32 vs. basal=1; n=5; *P<0.05). MMP-13
(Figure 5C) decreased after the MRC inhibition as we
already observed by western blot to 0.63+0.13, 0.50+0.13
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Figure 3 MMP-3 protein levels in chondrocytes after MRC dysfunction. A) Human chondrocytes were cultured in 6 well plates in basal
conditions, with AA or Oligomycin for 24 h and intracellular proteins were detected by western blot. Data were expressed as ratio (basal=1)
representing the mean + SE of 4 independent experiments (*P<0.05). B) Example of a representative experiment.
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Figure 4 MMP-13 protein levels in chondrocytes after MRC dysfunction. A) Human chondrocytes were cultured in 6 well plates in basal
conditions, with AA or Oligomycin for 24 h and intracellular proteins were detected by western blot. Data were expressed as ratio (basal=1)
representing the mean + SE of 4 independent experiments (*P <0.05). B) Example of a representative experiment.

with AA 40 and 60 pg/ml; and 0.41+0.14 with Oligomycin
25 pg/ml vs. basal=1 (n=5; * P<0.05; &P<0.01).

Studies of MMPs in tissue after the induction of the MRC
dysfunction

We tested whether the results were reproduced at tissue
level. We stimulated cartilage explants with AA 20 pg/ml
or Oligomycin 5 pg/ml during 72 h. Positivity for MMP-1
and -3 increased after Oligomycin treatment (Figure 6A,
6B) like we observed at cellular level. MMP-13, decreased
after AA and Oligomycin (6C) stimulation.

Proteoglycan detection after MRC dysfunction

MMPs degrade the cartilage affecting the proteoglycan
integrity and quantity. We evaluated the levels in tissue
sections with toulidin blue staining. Results showed that
Oligomycin 5 pg/ml produced a decrease in the proteogly-
can quantity (Figure 7A). Figure 7B shows tissue explants
treated with the complex III inhibitor (AA 20 pg/ml) for
72 h. Results indicated that the levels of proteoglycans
did not change with AA. However, Oligomycin 5 pug/mL
reduced proteoglycan quantities as safranin staining
shows in Figure 7C (25.00+9.82 vs. basal=32.03+8.97).

Discussion

The mitochondrion is a critic sensor of cell functionality
and survival [23,24]. Several works support the idea that
mitochondrion is linked to ageing and that mtDNA
mutations due to oxidative stress contribute to cell death
[25,26]. There is a direct relation between MRC function,
energy production and ROS levels. The low activity of the
MRC complexes III and V in brain tissues is related to
Down syndrome and Alzheimer [27]. In other diseases like
Parkinson, deficiencies in complex I have been found. In
relation to this, different animal models of Parkinson have
been developed in mice with rotenone [28,29]. In addition,
a deficiency in complexes I, III and complex IV, could
contribute to the development of Hungtington disease
and Frederick ataxia [30,31].

OA and the diseases associated to ageing processes are
known by the active process of cartilage degradation and
chondrocyte death [32]. Considering the cartilage structure,
the mitochondria should not have an important role since
this is an avascular tissue [33]. Synovial membrane and
subchondral bone are the tissues that feed the cartilage.
However 25% of the ATP generated in the cartilage is
produced from the OXPHOS system [34,35]. The main
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Figure 5 Levels of MMPs liberated by chondrocytes after MRC dysfunction. Human chondrocytes were cultured in 6 well plates in basal
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source of O, is the synovial membrane and mitochondria
can use this O, in the aerobic respiration [36]. The role of
mitochondria in OA has been extensively studied [35,37].
The activity of the MRC complexes II and III of OA
chondrocytes is decreased respect healthy chondrocytes.
Besides, cytokines and other OA mediators can regulate
the activity of the MRC. For instance, TNF-a and IL-1p
inhibit the activity of the MRC complex I [38]. This fact
produces a decrease in the ATP levels and in the potential
of the mitochondrial membrane. The last consequences
are the reduction of the proteoglycan levels and cartilage
functionality. Another mediator related to inflammatory
processes is NO which has affinity for the mitochondrial
complex IV reducing the ATP levels and the cell viability
[9,39]. Chondrocytes stimulated with the NO donor 3-
morpholinosydnonimine (SIN-1) increase their apoptotic

population due to the caspase activity [40]. However the
role of the MRC in the MMP regulation has never been
studied.

The use of mitochondrial inhibitors has been extended
to simulate different disorders [41,42]. Inhibitors of the
complex II are used to simulate the Huntington disease
[43,44]. AA and Oligomycin have been used also in the
study of OA. A lower synthesis of collagen, a reduction
of the action of (TGEp) and ATP levels can be observed
after altering the MRC [45]. Our group has described
how AA and Oligomycin increased ROS production, Ca**
transport and NF-«kB activation with the activation of
COX-2 and PGE, production [13].

In our work we have evaluated the relation between
the MRC activity and the ECM remodelling observing that
the dysfunction of the MRC complexes III and V induced
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Figure 6 MMPs evaluation in cartilage explants after MRC inhibition. Cartilage explants from human normal donors were treated with
Oligomycin 5 pg/mL or AA 20 pug/mL for 72 h and MMP-1 (A), -3 (B) and —13 (C) were evaluated by immunohistochemistry. Example of a
representative experiment of 3.

the MMP regulation. MMPs -1 and -3 were up-regulated  expression. Thus other authors have shown that the inhib-
at mRNA, intracellular protein and liberated protein levels ition of p38 phosphorylation in chondrosarcome cells can
after Oligomycin treatment. MMP-13 reduced its expres-  be effective downregulating MMP-13 [47]. Mendes et al.,
sion after the inhibition of complex III and V. Although observed that H,O, generated by IL-1p, is an inductor of
MMP-13 is clue in the first phases of the OA, MMP-1  AP-1 factor which regulate many MMPs (46). Considering
and -3 are more important in OA late phase [46]. MMP-13  that mitochondria is an important source of ROS we
can be regulated by proteins and factors and MMPs -1  could think that the MRC dysfunction would regulate the
and -3 would not be regulated by these members. For levels of MMP. In addition a production of ROS under
example p38 and Runx2 regulate in a positive way MMP-13  the effect of AA and Oligomycin has been described [45].
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Figure 7 Proteoglycan presence in tissues treated with MRC inhibitors. Cartilage explants were treated with Oligomycin 5 ug/mL (A) or AA

20 pg/mL (B) for 72 h and proteoglycanes were stained with touidine blue. Safranine/fast-green was also used to detect proteoglycans with
Oligomycin (C). The figure represents an experiment of 3.

.
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Interestingly in a previous work we have demonstrated
that Oligomycin and Antimycin can produce ROS in
chondrocytes in culture and that this effect can be reversed
after adding radical scavengers to the media [13].

Other authors have shown that ROS produced by the
mitochondria are key regulators of MMP production
and that these interactions are clearly important in disease
pathologies [48,49].

Our results at cellular level were reproduced in tissue
explants were we observed an increase in MMPs -1
and -3 after the inhibition of the complex V and a reduc-
tion of MMP-13 after the dysfunction of the complexes III
and V. In addition, Oligomycin reduced the proteoglycan
levels contributing to the destruction of the tissue. Other
authors have also correlated the role of Oligomycin with
the tissue integrity and proteoglycan synthesis [45]. We
have observed different responses at mRNA, intracellular
and extracellular level depending on the dosage of the
inhibitor we have used. One hypothesis to explain this is
that there is not always a linear relationship between
mRNA, intracellular protein and extracellular protein
expression. Future experiments inhibiting the activity of
complex III and V with siRNA will be performed in
order to understand the relation between levels of MRC
activity and MMP expression/production.

Other authors have demonstrated that the regulation
of the MRC function can directly affect the composition
of the ECM [50]. For instance, De Cavanagh et al. have
hypothesized that the depression of mitochondrial energy
metabolism by ANG II is preceded by ANG II-induced
integrin signaling and this produces the consequent
derangement of the cytoskeletal filament network and/or
ECM organization. However, to our knowledge, this is
the first study that correlates the MRC dysfunction with
the MMP production and the remodelling of the ECM
in human cartilage. The pathways that regulate these
processes should be studied in order to reveal the process
of cartilage destruction in the OA.

Conclusions

These results reveal that the MRC dysfunction modulates
the MMPs expression in human normal chondrocytes
demonstrating its role in the regulation of the cartilage
destruction.
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