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Abstract

Background: Drawing from previous studies, the traditional routine diagnostic microbiology evaluation of samples from
chronic respiratory conditions may provide an incomplete picture of the bacteria present in airways disease. Here, the
aim was to determine the extent to which routine diagnostic microbiology gave a different assessment of the species
present in sputa when analysed by using culture-independent assessment.

Methods: Six different media used in routine diagnostic microbiology were inoculated with sputum from twelve patients.
Bacterial growth on these plates was harvested and both RNA and DNA extracted. DNA and RNA were also extracted
directly from the same sample of sputum. All nucleic acids served as templates for PCR and reverse transcriptase-PCR
amplification of "broad range" bacterial 16S rRNA gene regions. The regions amplified were separated by Terminal
Restriction Fragment Length Polymorphism (T-RFLP) profiling and compared to assess the degree of overlap between
approaches.

Results: A mean of 16.3 (SD 10.0) separate T-RF band lengths in the profiles from each sputum sample by Direct
Molecular Analysis, with a mean of 8.8 (SD 5.8) resolved by DNA profiling and 13.3 (SD 8.0) resolved by RNA profiling.
In comparison, 8.8 (SD 4.4) T-RF bands were resolved in profiles generated by Culture-derived Molecular Analysis. There
were a total of 184 instances of T-RF bands detected in the direct sputum profiles but not in the corresponding culture-
derived profiles, representing 83 different T-RF band lengths. Amongst these were fifteen instances where the T-RF band
represented more than 10% of the total band volume (with a mean value of 23.6%). Eight different T-RF band lengths
were resolved as the dominant band in profiles generated directly from sputum. Of these, only three were detected in
profiles generated from the corresponding set of cultures.

Conclusion: Due to their focus on isolation of a small group of recognised pathogens, the use of culture-dependent
methods to analyse samples from chronic respiratory infections can provide a restricted understanding of the bacterial
species present. The use of a culture-independent molecular approach here identifies that there are many bacterial
species in samples from CF and COPD patients that may be clinically relevant.

Page 1 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19368727
http://www.biomedcentral.com/1471-2466/9/14
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Pulmonary Medicine 2009, 9:14

Background

Sputum culture has been used by the respiratory physician
to provide insight into the bacteria present in many air-
way diseases such as pneumonia, Cystic Fibrosis (CF) and
Chronic Obstructive Pulmonary Disease (COPD) [1,2]. In
COPD for example, the presence of bacteria in the lower
airways has been correlated with exacerbation frequency
[3], airways inflammation [4], and indirectly with decline
in lung function [5], Moreover in CF, the first identifica-
tion of Pseudomonas aeruginosa from the lower airways has
been negatively correlated with decline in lung function
and survival [6,7]. Despite this, the results of conventional
sputum culture and sensitivity tests are often not used to
alter management in the chronic phase of these condi-
tions [8]. To exemplify this, in a review of outcomes fol-
lowing pulmonary exacerbations in the placebo control
arm of a large inhaled tobramycin trial, Smith et al [9]
found CF patients with resistant P. aeruginosa fared no
worse than those with sensitive strains (both groups were
treated with standardised intravenous antibiotics). Fur-
thermore, for such a key diagnostic tool, it would be
hoped that the conventional sputum culture and sensitiv-
ity tests as performed by routine Diagnostic Microbiology
Laboratories would have good measures of inter- and
intra-operator reproducibility. For CF sputum analysis at
least, Foweraker et al have demonstrated this not to be the
case [10].

Thus, despite the central importance of bacteria to pulmo-
nary medicine, this standard tool for bacterial identifica-
tion does not appear to be useful or to perform as well as
would be desired. To environmental microbiologists, this
may not come as a surprise. In environments such as soil
and sea water, most of the bacteria present cannot be cul-
tured [11]. The process of the derivation of pure cultures
in vitro on solidified medium prior to identification, as
first developed by Robert Koch in the late nineteenth cen-
tury [12], is still however the means by which routine
Diagnostic Microbiology analyses clinical samples. Con-
ceptually, there appears to be no reason why bacteria that
inhabit the environment of the human lung should be
necessarily different from this culture bias. Routine diag-
nostic microbiology uses specific growth protocols to iso-
late species considered to be significant in disease. Whilst
this process can provide efficient assays for known aetio-
logical agents, when applied uncharacterised, mixed
infections, it can preclude the identification of novel path-
ogens and species that would not typically be expected in
airway samples. As such, it is important to develop at very
least parallel systems of analysis.

One such approach has used nucleic acids extracted
directly from clinical samples to detect and identify bacte-
rial species. In this culture-independent approach, nucleic
acid extracts serve as templates for the PCR amplification
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of 16S ribosomal RNA genes spanning all Bacteria
("broad range") [13]. This PCR uses conserved regions of
the gene to serve as primers, with the variable sequence
between these primer sites serving to identify the bacterial
species. One such method, Terminal Restriction Fragment
Length Polymorphism (T-RFLP) analysis, resolves multi-
ple bacterial species in a single sample as a discrete set of
bands formed by the species-characteristic lengths of the
first cut position of a single restriction endonuclease in
ribosomal gene PCR products [14]. Through comparison
to predicted cut lengths, the bacterial species in a sample
can be assigned tentatively as a series of species identities.
We have previously used this approach to study the bacte-
rial communities present in CF sputum [15,16], with the
most abundant (or dominant) species present identified
through the analysis of the intensity and width of each
band formed. Also, the presence of metabolically active
bacteria can be detected through the reverse transcription
of 16S rRNA extracted and analysed also by T-RFLP (RT-T-
RFLP). Again, previously we have used this approach to
show that CF sputum samples contain metabolically
active bacteria [17].

In this study, we extend this work to compare the bacterial
species detected in twelve CF and COPD sputum samples
by culture-dependent and culture independent analysis.
Each sample was divided in two. One portion was ana-
lysed directly by T-RFLP and RT-T-RFLP (Direct Molecular
Analysis). The other portion was cultured in vitro on a
selection of media that would form the typical range used
for respiratory samples by a diagnostic microbiology lab-
oratory. To allow comparison of species recovered, all cul-
ture plate growth was also analysed by both T-RFLP and
RT-T-RFLP (Culture-derived Molecular Analysis). The sub-
stantial differences found in terms of species detected by
culture-dependent and independent strategies are dis-
cussed subsequently.

Methods

Sample collection and processing

Sputum samples were obtained from 8 adult CF and 4
COPD patients attending Southampton General Hospital,
Hampshire, UK and Lymington Hospital (Table 1). All
patients were clinically stable at the time of sampling and
had not received antibiotic treatment for 30 days. Samples
divided into two aliquots, one of which was stored imme-
diately at -80°C and other of which was used to inoculate
a range of growth media. Cultures were performed in
accordance with standard Health Protection Agency labo-
ratory practices [18]. The growth media used were blood
agar (referred to here as BLOOD), Cysteine Lactose-Elec-
trolyte-Deficient (CLED), a selective medium for Gram-
positive bacteria (CNA), chocolate agar (CHOC), selective
medium for Pseudomonas species (PYO), selective
medium for fungi and yeasts (SNA) and a selective
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Table I: Background clinical in formation regarding the patients
involved in the study.

patient condition FEV, (% predicted) age
| CF 60% 30
2 CF 57% 45
3 CF 37% 47
4 CF 35% 22
5 CF 49% 55
6 CF 45% 21
7 CF 48% 40
8 CF 20% 22
9 COPD 60% 77
10 COPD 14% 69
1l COPD 16% 74
12 COPD 37% 70

FEV, represents the volume of air that can be forced out in | second
after taking a deep breath, a commonly used measure of lung function.

medium for B. cepacia complex (CEP). All media were
supplied by E & O Laboratories Limited, Burnhouse, Bon-
nybridge, Scotland.

All cultures were handled and incubated in accordance
with routine microbial surveillance practices. Following
incubation, all growth present on the culture media was
scraped off and placed in sterile tubes with 2.5 ml 0.9%
saline (a separate tube being used for each culture plate).
These tubes were stored at -80°C prior to nucleic acid
extraction.

Nucleic acid extraction

Prior to DNA extraction, sputum samples were washed in
sodium phosphate buffer to remove adherent saliva. DNA
and RNA extraction from sputum samples and the cul-
tured organisms was then carried out as previously
described [16].

All reagents, glassware and plastics used in RNA work
were DEPC-treated prior to use. RNA was extracted as fol-
lows: 0.75 ml of Tri Reagent (Sigma-Aldrich, Dorset, UK)
were added to approximately 0.2 ml of each sample and
vortexed for 1 min. Samples were incubated at room tem-
perature for 5 min prior to the addition of 0.2 ml chloro-
form. Samples were vortexed for 15 sec. and incubated at
room temperature for 5 min. Phases were separated by
centrifugation at 12,000 x g for 15 min at 4°C.

Isolation of DNA

0.3 ml of 100% ethanol was added to precipitate the DNA
from the lower phase. The sample was mixed by inver-
sion, incubated at room temperature for 3 min and centri-
fuged at 12,000 x g for 5 min at 4°C. The pellet was
washed in 0.1 M sodium citrate, 10% ethanol solution
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(during each wash the pellet was allowed to stand for at
least 30 min). Pellets were centrifuged at 12,000 x g for 5
min at 4°C and washed twice in 75% ethanol. The DNA
was vacuum dried, with the pellet resuspended in 50 pl
H,O and stored at -20°C.

Isolation of RNA

The upper phase was transferred to a fresh microfuge tube
and 0.5 ml of propan-2-ol was added. Samples were incu-
bated for 10 min at room temperature and RNA was pel-
leted by centrifugation at 12,000 x g for 10 min at 4°C.
The supernatant was removed and the RNA pellet washed
once in 75% ethanol and re-pelleted by centrifugation at
7,500 x g for 5 min at 4°C. Pellets were air-dried for 10
min, resuspended in 30 pl distilled water and incubated
for 10 mins at 55°C. Purified RNA samples were stored as
aliquots at -70°C. Prior to reverse transcription, any resid-
ual DNA was removed using DNAsel (Epicentre, Madi-
son, USA) in accordance with the manufacturer's
instructions, with PCR amplification controls performed
as appropriate.

Reverse transcription

cDNA was generated from the isolated RNA using the
reverse primer 9261 (see below) and AMV reverse tran-
scriptase (Promega, Southampton, UK) in accordance
with the manufacturer's instructions. Double stranded
DNA was generated using 1 pl of this cDNA as template in
a 50 pl PCR reaction containing both primers (8f700 and
926r1). PCR products amplified were verified by Tris-Ace-
tate- EDTA (TAE)-agarose gel electrophoresis on 0.8%
(wt/vol) TAE-agarose gels stained in ethidium bromide
(0.5 mg/L) with images, viewed on a UV transilluminator
(Herolab, Wiesloch, Germany), captured by using a Hero-
lab image analyser with E.A.S.Y STOP win 32 software
(Herolab).

PCR amplification and restriction endonuclease digestion

The oligonucleotide primers used to amplify a region of
the 16S rRNA gene for members of the Domain Bacteria,
8700 (5'-AGA GIT TGA TCC TGG CTC AG-3') and 926t
(5'-CCG TCA ATT CCT TTR AGT TT-3") were as described
previously [14]. Primer 8f700 was labelled at the 5' end
with IRD700 (TAGN, Gateshead, UK); primer 9261 was
unlabeled. PCR mixtures comprised 1x PCR buffer, 1.5
mM MgCl,, each deoxynucleoside triphosphate at a con-
centration of 0.2 mM, each primer at a concentration of
0.2 mM, and 1 U of REDTaq DNA polymerase (Sigma-
Aldrich, Gillingham, UK), in a final volume of 50 ul. The
final concentration of the template DNA used was approx-
imately 50 ng. An initial denaturation step of 94°C for 2
min was followed by 32 cycles of denaturation at 94 °C for
1 min, annealing at 56°C for 1 min, and extension at
72°C for 2 min, with a final extension step at 72°C for 10
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min. Amplification was carried out by using a GeneAmp
PCR System 2400 (Perkin-Elmer, Beaconsfield, UK). PCR
products amplified were verified as described above.

PCR products (ca. 200 ng) were digested by using the
restriction endonuclease Cfol (Roche, Lewes, United King-
dom) for 3 h at 37°C with the reaction buffer supplied by
the manufacturer. All restriction endonuclease digestions
were carried out to complete digestion as shown by com-
paring PCR products after various digestion incubation
times (data not shown). The restriction endonuclease was
inactivated by heating at 90°C for 20 min. An approxi-
mately 100 ng portion of digested PCR products for T-
RFLP analysis was separated by length by using a 25 cm
SequagelXR denaturing polyacrylamide gel (National
Diagnostics) prepared in accordance with the manufac-
turer's instructions, with the addition of 8.3 M urea and
10% (final concentration v/v) formamide, using a LI-COR
IR2 automated DNA sequencer (LI-COR Biosciences) at
55°Cand 1,200 V.

T-RFLP profile analysis

T-RFLP profiles were analyzed using Phoretix 1D
Advanced software v.5.10 (Nonlinear Dynamics, Newcas-
tle upon Tyne, UK). The sizes of the bands resolved by T-
RFLP were determined by comparing their relative posi-
tion with known size markers, comprised of bands equiv-
alent to 75, 100, 150, 200, 250, 300, 350, 400, 450, 500,
600, 700, 800, 900 and 1000 bases of single-stranded
DNA (microSTEP 15a [700 nm], Microzone, Lewes, UK).
Phoretix 1D Advanced software was also used to deter-
mine the volume of each band (with band volume the
product of the area over which a band was detected and
the intensity of signal recorded over that area). Band vol-
ume was expressed as a percentage of the total volume of
bands detected in a given electrophoretic profile. T-RFLP
bands were resolved over the region between 50 and 958
bases. No bands shorter than 50 bases in length were
recorded as they were in the region susceptible to high lev-
els of signal stemming from the IR tag on unattached
8f700IR primer. In this study, the threshold used to detect
bands was 0.01% of the total signal between the 50 and
958 base region.

Results

Direct Molecular Analysis — overall assessment

Examples of the ways in which T-RFLP profiles, generated
either directly from sputum samples (Direct Molecular
Analysis), or from cultures derived from those samples
(Culture-derived Molecular Analysis), differ are shown in
Figure 1. Here, each T-RFLP profile contains a varying
number of T-RF bands of different lengths. T-RF bands
also allow an assessment of the relative abundance of the
species present. Examples of the ways in which profile pat-
terns differ depending on whether they are generated from
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Two examples of pairs of DNA profiles generated
from two sputum samples (A and B), one from
Direct Molecular Analysis and one from the total
pool of colonies isolated from that sputum using rou-
tine surveillance media. Lane | — sample A, Culture-
derived Molecular Analysis, Lane 2 — sample A, Direct Molec-
ular Analysis, Lane 3 — sample B, Culture-derived Molecular
Analysis, Lane 4 — sample B, Direct Molecular Analysis.
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Figure 2

Two examples of pairs of DNA and RNA profiles gen-
erated from two sputum samples (C and D), by
Direct Molecular Analysis. Lane | — sample C, DNA,
Lane 2 — sample C, RNA, Lane 3 — sample D, DNA, Lane 4 —
sample D, RNA. Arrows marked "a" indicate two examples
where bands are present in the DNA profile but absent from
the RNA profile. Arrows marked "b" indicate two examples
where bands are present in the RNA profile but absent from
the DNA profile.

the DNA or RNA component of a sample are shown in
Figure 2. These differences in T-RF band intensities can be
used to obtain a relative measure of metabolic activity.

A breakdown of numbers of T-RF bands resolved in the
DNA-derived and RNA-derived profiles generated from
the sputum samples directly and following cultivation on
different media are shown in Table 2. Overall, a total of
266 T-RF bands were resolved in the DNA and RNA-
derived T-RFLP Direct Molecular Analysis profiles gener-
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ated directly from these sputum samples, representing
104 different T-RF band lengths. The most frequent band
length was identified 19 times, with 66 band lengths
found only once. Of these 266 T-RF bands, a total of 106
were resolved in the DNA-based T-RFLP profiles alone,
representing 65 different T-RF band lengths. 196 T-RF
bands were detected in both the DNA and RNA-derived
profiles, representing 96 different band lengths, and a
total of 160 bands were detected in the RNA-based T-RFLP
profiles alone representing 79 band lengths as shown
schematically in Figure 3.

Direct Molecular Analysis — assessment per sample

On average, 8.8 (Standard Deviation 5.8) and 13.3 (SD
8.0) T-RF bands were resolved from the DNA and RNA
isolated directly from sputum respectively, representing a
mean of 16.3 (SD 10.0) separate T-RF band lengths in the
profiles from each sputum sample. On average, 5.7 (SD
4.1) T-RF bands were detected in both the DNA and the
RNA profile from the sample set as a whole, 3.2 (SD 3.4)
were detected in the DNA profile alone, and 7.6 (SD 6.3)
were detected in the RNA profile alone.

Culture-derived Molecular Analysis

A composite of "all" Culture-derived Molecular Analysis
T-RF bands was formed representing the species detected
on all types of media. Within this, a total of 40 different T-
RF band lengths were resolved. In the sample set, an aver-
age of 2.9 separate T-RF lengths were detected in the pro-
files generated from the CLED agar, 3.5 from PYO agar,
4.3 from chocolate agar, 4.7 from BLOOD agar, 1.3 from
CEP agar, 0.4 from SNA agar, 3.8 from CNA agar. The
highest number of separate band lengths was resolved
from the bacteria cultured on chocolate agar (21), fol-
lowed by BLOOD agar (18), CNA agar (15), PYO agar
(13), CLED agar (10), CEP agar (4) and SNA agar (1). On
average, 8.8 (SD 4.4) separate T-RF bands were resolved
by Culture-derived Molecular Analysis per patient.

Routine diagnostic microbiology

Analysis of "historical" culture-based routine diagnostic
microbiology surveillance data revealed that, for these 12
patients, eight were reported as being infected with Pseu-
domonas spp., with six reported as having (normal) oral
flora. Escherichia coli and Staphylococcus aureus were each
reported in a single case.

Comparing the approaches

The difference in the average number of T-RF bands
detected in the samples between the Direct Molecular
Analysis and Culture-derived Molecular Analysis groups
was determined to be highly statistically significant (P =
0.008, two-tailed paired T-test). For 77.9% (SD 20.9%) of
the T-RF band lengths resolved from the Culture-derived
Molecular Analysis, a band of the same length was
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Table 2: Number of T-RF bands resolved in T-RFLP profiles generated from the culture-independent and culture-based approaches.

Direct Molecular Analysis

Culture-derived Molecular Analysis

Patient  Condition DNA RNA Total CLED PYO CHOC BLOOD CEP SNA CNA Total
T-RFs T-RFs
DNA RNA DNA RNA DNA RNA DNA RNA DNA RNA DNA RNA DNA RNA

| CF 23 23 32 3 3 8 7 8 7 3 3 0 0 0 0 3 3 19
2 CF 3 10 10 3 2 2 2 NA NA 3 2 2 2 0 0 3 3 6
3 CF 3 5 6 2 2 2 2 2 2 2 2 2 2 0 0 2 2 2
4 CF 3 3 3 3 3 3 | 3 5 2 3 2 2 0 0 5 8 I
5 CF 15 18 21 2 2 2 2 4 4 3 6 0 0 0 0 3 2 8
6 CF 7 8 9 2 2 3 3 3 4 4 4 2 2 0 0 2 4 4
7 CF 6 7 7 3 3 2 2 2 2 5 4 0 0 0 0 2 2 6
8 CF 10 19 27 4 4 6 6 4 4 0 0 2 2 2 2 3 5 12
9 COPD 6 9 13 NA NA NA NA 2 2 2 5 NA NA NA NA NA NA 8
10 COPD I 10 17 NA NA NA NA 2 2 5 7 NA NA NA NA NA NA I
I COPD 8 19 19 NA NA NA NA 9 8 3 3 NA NA NA NA NA NA Il
12 COPD Il 29 32 NA NA NA NA 5 5 4 4 NA NA NA NA NA NA 8

CLED — Cysteine Lactose-Electrolyte-Deficient agar, PYO — selective medium for Pseudomonas species, CHOC — chocolate agar, BLOOD — blood agar, CEP — selective medium for B. cepacia

complex, SNA — selective medium for fungi and yeasts, CNA — selective medium for Gram-positive bacteria.
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Figure 3

Venn diagram showing the overlap between the T-RF
bands detected in the DNA and RNA profiles gener-
ated by Direct Molecular Analysis from sputum sam-
ples.

detected at the same position in both the DNA-derived
and RNA-derived T-RFLP profiles from the same sample.
In 15.4% (SD 16.8%) of instances, a band was detected in
the RNA profile alone, and in 6.7% (SD 7.2%) of
instances, a band was detected in the DNA profile alone.
Overall, of all the T-RF band lengths resolved from the
Culture-derived Molecular Analysis, a match to at least
one T-RF from DNA-derived or RNA-derived Direct
Molecular Analysis was 92.5%. For comparison of the
results obtained using the different strategies, see Table 3.

There were a total of 184 instances of T-RF bands detected
in the direct sputum profiles alone, representing 83 differ-
ent T-RF band lengths. Amongst these were fifteen
instances where the T-RF band represented more than
10% of the total band volume for the profile (with a mean
value of 23.6%). These instances were spread between 12
patients and represented 12 different T-RF band lengths.
There were 46 instances of T-RF bands being resolved in
the RNA profiles generated from cultures but having no
corresponding band in the RNA-derived profile generated
directly from the sputum sample. These T-RF bands repre-
sented 34 different band lengths. The degree to which the
different T-RF band lengths were detected in the Direct
Molecular Analysis and Culture-derived Molecular Analy-
sis is illustrated in Figure 4.

The number of T-RF bands resolved in T-RFLP profiles
generated from the culture-independent and culture-
based approaches are shown in Table 2. In four instances,
material cultured from inoculated bacterial media plates
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yielded no T-RF bands in either the DNA or the RNA pro-
files (Patient 8 - BLOOD agar, Patient 1 - CEP agar,
Patient 5 - CEP agar, Patient 7 - CEP agar,). No T-RF
bands were detected in either the DNA-derived or RNA-
derived profiles from any of the SNA (yeast) agar, except
in the case of Patient 8. In both the DNA-derived and
RNA-derived profiles generated from Patient 8, two T-RF
bands, both consistent with Pseudomonas species were
detected. In one instance, a chocolate medium culture was
not available for analysis (Patient 2).

Five different T-RF band lengths (155, 564, 582, 598, and
373 bases) were resolved as the most abundant ("domi-
nant") band in DNA-derived profiles generated directly
from sputum. The first four of these bands are consistent
with those generated from P. aeruginosa, Pseudomonas sp.,
Streptococcus constellatus and Lactobacillus sp., respectively,
as determined by analysis of published sequence data. It
was not possible to assign an identity to the 373 base T-RF
band due to multiple species being predicted to generate
a band of this length. Strategies for resolving this problem
are discussed below. Five different T-RF bands (155, 376,
564, 583, and 592 bases) were resolved in the equivalent
RNA-derived profiles. These T-RF bands are consistent
with those generated from P. aeruginosa, Actinomyces sp.,
Pseudomonas sp., Streptococcus constellatus and Carnobacte-
rium sp., respectively. Overall, eight different T-RF band
lengths were resolved as the most abundant ("dominant")
band in profiles generated directly from sputum. Of these,
only three were detected in profiles generated from the
corresponding set of cultures (155, 373 and 376 bases).

On average, the most abundant T-RF band length detected
in the DNA-derived profiles not resolved in any of the cor-
responding Culture-derived Molecular Analysis repre-
sented 34.0% (SD 29.3%) of the total signal volume. On
average, the most abundant T-RF band length detected in
the RNA-derived profiles not resolved in any of the corre-
sponding Culture-derived Molecular Analysis represented
21.0% (SD 15.5%) of the total signal volume. The average
volumes of bands detected in the DNA-derived and RNA-
derived profiles, but not in the corresponding Culture-
derived Molecular Analysis profiles were 9.0% (SD
17.0%) and 4.9% (SD 7.7%) respectively.

Discussion

The process of bacterial culture in vitro has been shown to
be selective and provides a distorted representation of the
bacteria present in a clinical sample. Diagnostic microbi-
ology has in fact for many years exploited this through the
use of media for the selective growth of particular species
or groups of species whilst excluding others leading to
their isolation from complex contexts. This ability to
exclude species makes diagnostic microbiology a useful
tool when assaying for particular aetiological agents, such
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Table 3: Summary of a comparison of the results of Direct Molecular Analysis (DMA), Culture-derived Molecular Analysis (CMA), and

Routine Diagnostic Microbiology (RDM)

Was the dominant
band detected by
DMA also detected by

Patient Condition Were all species
reported in RDM

represented in DMA?

Was the dominant
band detected by RT
DMA also detected by

Was the dominant
band detected by
DMA also detected

Were there bands
detected by DMA
that were not

RDM? detected by CMA? CMA? CMA?

DNA RNA DNA RNA DNA RNA DNA RNA DNA RNA
[ CF NG N* N N Y Y Y Y Y Y
2 CF Y Y Y Y Y Y Y Y Y Y
3 CF Y Y Y Y Y Y Y Y Y Y
4 CF Y Y Y Y N N Y Y Y Y
5 CF Y Y N Y Y Y Y Y Y Y
6 CF Y Y Y Y Y Y Y Y Y Y
7 CF Y Y Y Y Y Y Y Y Y Y
8 CF Y Y Y N Y Y Y Y Y Y
9 COPD Y Y N N Y Y Y Y Y Y
10 COPD Y Y N/A N/A Y Y Y Y Y Y
I COPD Y Y N/A N/A Y Y N N Y Y
12 COPD Y Y N/A N/A Y Y Y Y Y Y

Totals (%) /12 1112 609 (66.7) 6/9(66.7)  11/12 /12 /12 /12 12/12 12/12

91.7) ©1.7) (91.7) (©1.7) ©1.7) (©17) (100) (100)

* — species not represented in DMA — see text

as those that are known to be responsible for some acute
airway infections. However, when applied to the analysis
of chronic airway infections, such as those associated with
CF and COPD, such approaches may fail to identify the
many opportunistic pathogens that could potentially col-
onise the airways. In an effort however to avoid biases
associated with culture-based analysis, culture-independ-
ent techniques are being increasingly used to characterise
bacteria found in chronic airways diseases. We set out to
determine the extent to which routine diagnostic micro-
biological culture was masking the bacterial species
present in a set of respiratory samples. Here, we report sig-
nificant differences in the composition of bacterial com-
munities in sputa as characterised by Direct Molecular
Analysis and Culture-derived Molecular Analysis per-
formed on the same samples. Differences both in the
number and identity of the organisms resolved, their rela-
tive prevalence and their relative levels of metabolic activ-
ity were identified. Overall, these findings were
considered as a series of questions that a respiratory phy-
sician would ask (Table 3) and are discussed in that fash-
ion as below.

In terms of the bacteria "missed" by culture, the findings
were marked. Overall, there were a total of 184 instances
of bands detected in the Direct Molecular Analysis profiles
but not in Culture-derived Molecular Analysis profiles,
representing 83 different T-RF band lengths. Of course,
this in itself does indicate whether these organisms were
clinically significant, however, two factors suggest that

they might be. Firstly, two of the five T-RF band lengths
identified as dominant in T-RFLP profiles generated from
sputum were not resolved in the profiles generated from
the corresponding cultures. This suggests that in some
cases, species that represent a significant proportion of the
bacteria in the sample might be missed. Secondly, meta-
bolically active bacteria, as detected by RT-T-RFLP profil-
ing, were amongst those responsible for these dominant
T-RF bands. Assuming that these were not acquired in
transit through the upper airway [19], this means that
metabolically active bacteria were present in the lower air-
ways in significant numbers. As such, they are likely to
have elicited an immune response of some form and may
have potential roles as lung pathogens. Furthermore, such
species are likely to be involved in complex inter-species
communication that impacts on the bacterial community
[20,21].

In relation to these marked differences, it is likely that one
group that may be highly represented are those bacteria
that require either anaerobic, microaerophilic or similar
conditions for growth. No diagnostic microbiology serv-
ice that we are aware of would routinely test for the pres-
ence of bacteria requiring anaerobic conditions for growth
in respiratory samples of this kind. Despite this, the
importance of micro-anaerobic environments within the
lower airways of patients suffering from CF is being
increasingly recognised [22,23]. This is all the more
important given the wide range of clinically important
anaerobic species, for example within genera such as
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Figure 4

Venn diagram showing the overlap between the T-RF
bands detected in the profiles generated by Direct
Molecular Analysis and those detected using Culture-
derived Molecular Analysis.

Bacteroides, Fusobacterium, Porphyromonas, Prevotella, and
Peptostreptococcus, that have previously been identified by
16S rRNA clone sequence analysis in respiratory samples
from CF patients [16,24].

Whilst the assignment of species identities to T-RF band
lengths was not the focus of this study, comparison of the
T-RF band lengths generated from the different sample
types allowed assessment of the degree to which data from
culture-dependent and culture-independent methodolo-
gies overlapped. In only three cases, culture-based diag-
nostics generated a T-RF length that was not detected by
molecular means. This is analogous to the situation
regarding the results of the routine diagnostic microbiol-
ogy where there was only one instance of a species being
reported by conventional diagnostics that was not
resolved by direct T-RFLP profiling. On this one occasion,
T-RFLP profiling of Culture-derived Molecular Analysis
resulted in the detection of a band tentatively identified as
being S. aureus. There are many explanations of this
including whether cultivation over-represents this species,
the impact of detection thresholds in T-RFLP profiling,
and possible contamination of growth media. Incorporat-
ing specific PCR based assays e.g. Alarcon et al [25] into
the next phase of work will be valuable in determining the
likely origin of such discrepancies. Equally however, to
form such a small part of all the species present, this again
raises important questions over the clinical significance of
the other species that were much more common in the
sample. Therefore, it must be questioned whether or not
species that are "missed" by culture are really present at

http://www.biomedcentral.com/1471-2466/9/14

levels that make them of clinical significance. In relation
to this, of the band lengths detected as the dominant band
in either the DNA or RNA profiles generated directly from
the sputum, only three of the 8 were detected in any of the
corresponding Culture-derived Molecular Analysis pro-
files. The concept of over representation was taken further.
It was found that the typical band volume of bands
detected in the direct DNA profile, but not in culture, was
approximately 10% of the total lane volume. This means
that some of the most numerically significant species
present in the sample are, in many cases, going undetected
by culture.

The restriction enzyme, Cfol, was selected because it is
able to differentiate between the recognised key species
associated with CF and COPD respiratory infections (P.
aeruginosa, S. aureus, B. cepacia, H. influenzae, S. mal-
tophilia, S. pneumoniae, M. catarrhalis). Whilst other restric-
tion enzymes have been shown to provide greater levels of
resolution [26,27], no single restriction enzyme is able to
resolve all bacterial species. Therefore, it must be recog-
nised that in many instances, T-RF bands of the same
length will be generated from different bacterial species.
This may result in an underestimation of species richness,
lower confidence in ascribing species to T-RF bands on the
basis of T-RF band length alone, and an overestimation of
the proportion of the total bacterial community repre-
sented by these bacterial species. Steps can be taken to off-
set the failure of a particular restriction enzymes to resolve
all species present, including generating multiple profiles
with different restriction enzymes, and such approaches
may need to be applied were the techniques described
here to be applied to a wider study of chronic respiratory
infections.

SNA agar is routinely used to isolate yeasts from respira-
tory samples. Although the T-RFLP profiling used here
was designed to resolve bacterial species alone, SNA cul-
tures were included. The fact that they provided no signal
in all but one instance indicated that this medium was
highly selective for fungal species. Although no attempt
was made to do so in this study, other studies have shown
that fungal communities can be studied by Direct Molec-
ular Analysis [28]. This would clearly be important to
assess more generally in airway specimens.

This study also considered whether the bacteria detected
were metabolically active. Unlike culture-based methods,
the detection of bacteria in clinical samples by DNA-based
methodologies does not indicate whether the bacteria in
question are viable. Although activity does not necessarily
imply pathogenicity, the presence of actively metabolising
bacteria in sputum samples does suggest further investiga-
tion is warranted. The use of IRNA-based analyses to char-
acterise active microbial communities is based on the
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assumption that active or growing cells have increased lev-
els of rRNA relative to dormant, or intact dead cells. Sim-
ilar comparisons have been made of bacteria in
environments as diverse as soil [29], dairy fermentations
[30] and CF sputum [18]. For these respiratory samples,
approximately a quarter of the T-RF bands were detected
in the direct analysis of sputum were found only in lanes
generated from DNA, with 42% were found in both DNA
and RNA and the remainder present in RNA alone. It is
quite possible that those found only as a DNA signal were
from inactive or dead cells. It is also possible that, given
the variation in ribosomal operon numbers between bac-
terial species (from one to 15) [31-33], that this influ-
enced the relative amounts of signal generated for any
given band position. It should be noted that because
rRNA transcripts are many times more common in bacte-
rial cells than are rRNA genes, RNA-based analysis may
provide a greater sensitivity in the detection of uncom-
mon species within samples. This may well explain the
significantly greater number of T-RF bands in RNA-
derived profiles. Molecular based methods are not them-
selves without bias, with such bias known in the amplifi-
cation process which will impact on both PCR and RT-
PCR steps [34,35]. Despite this, whilst these data may be
influenced by these technical issues, the findings suggest
that three quarters of the bacteria present in these respira-
tory samples were metabolically active.

Conclusion

There are still limitations in terms of molecular microbi-
ology. For example, this study did not focus on species
identification, rather on the degree to which culture-inde-
pendent methodologies may preclude the identification
of organisms that could have a causative association with
a particular pathology or disease when applied to chronic
respiratory conditions such as COPD or CF. Whilst some
of the bacteria present in sputum samples may result from
contamination during expectoration, it is also possible
that they represent populations colonising the lower res-
piratory tract. Inclusive, culture-independent approaches,
such those described here, provide a means by which fur-
ther study could determine the degree to which these sit-
uations is the case.

Whilst culture-dependent diagnostics will continue to
play an important role in the detection of known respira-
tory pathogens, the deployment of culture-independent
profiling techniques will help to identify respiratory path-
ogens whose clinical significance is not yet recognised in
these conditions. Clearly however, much more is needed
to improve methodologies and more fundamentally
understand the potential significance of the species
detected in terms of airways disease. In particular, studies
to determine whether the bacterial community profiles

http://www.biomedcentral.com/1471-2466/9/14

are stable over time, and how they change and respond to
antimicrobial interventions, are now needed.
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