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Abstract

strategies.

NPIs.

Background: As seen during past pandemic influenza outbreaks, pharmaceutical interventions (PHIs) with vaccines
and antivirals are the most effective methods of mitigation. However, availability of PHIs is unlikely to be adequate
during the early stages of a pandemic. Hence, for early mitigation and possible containment, non-pharmaceutical
interventions (NPIs) offer a viable alternative. Also, NPIs may be the only available interventions for most
underdeveloped countries. In this paper we present a comprehensive methodology for design of effective NP

Methods: We develop a statistical ANOVA-based design approach that uses a detailed agent-based simulation as an
underlying model. The design approach obtains the marginal effect of the characteristic parameters of NPIs, social
behavior, and their interactions on various pandemic outcome measures including total number of contacts,
infections, and deaths. We use the marginal effects to establish regression equations for the outcome measures,
which are optimized to obtain NPI strategies. Efficacy of the NPI strategies designed using our methodology is
demonstrated using simulated pandemic influenza outbreaks with different levels of virus transmissibility.

Results: Our methodology was able to design effective NPI strategies, which were able to contain outbreaks by
reducing infection attack rates (IAR) to below 10% in low and medium virus transmissibility scenarios with 33% and
50% IAR, respectively. The level of reduction in the high transmissibility scenario (with 65% IAR) was also significant. As
noted in the published literature, we also found school closure to be the single most effective intervention among all

Conclusions: If harnessed effectively, NPIs offer a significant potential for mitigation of pandemic influenza
outbreaks. The methodology presented here fills a gap in the literature, which, though replete with models on NP
strategy evaluation, lacks a treatise on optimal strategy design.

Keywords: Pandemic influenza, Mitigation strategies, Non-pharmaceutical interventions

Background

Influenza pandemics have occurred on average three
times in each century since the 1500s. There is an omi-
nous expectation that a severe pandemic could occur and
infect between 20 to 47 million people in the U.S. alone.
In the absence of any control measures, it was estimated
that it could cause around 200,000 deaths, 700,000 hospi-
talizations, 42 million outpatient visits, and an economic
impact ranging between $71.3 and $166.5 billion in the
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U.S. [1]. More recent economic loss estimates are likely to
be much higher. A potent influenza pandemic emergency
crisis would likely last much longer than most other emer-
gency events, and the resources needed to address the
crisis such as supplies of vaccines, antiviral drugs, health-
care providers, hospital beds and medical supplies would
be limited. Hence, strategic pandemic preparedness is a
major concern, as we must be reasonably assured that
we can contain a pandemic influenza outbreak. Currently
there are many influenza viruses circulating in differ-
ent parts of the world with the potential to mutate into
highly pathogenic forms for which there is no immunity in
the current human population. The most notorious ones
being the avian influenza or bird flu, H5N1 and H7N9.
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WHO has reported 650 confirmed cases of H5N1 infec-
tion since 2003, of which 386 have died (per recent report
of January 2014). There have also been recent reports of
human infection with A(H7N9) since May 2013. WHO
has reported in February of 2014 a total of 112 cases of
H7NO9 including 43 deaths.

In scientific literature, pandemic containment is defined
as keeping the number of new infections under control by
lowering the reproduction number under one (Ry < 1) or
reducing the infection attack rate (IAR) under 10% (IAR <
0.1). Known approaches for pandemic influenza and mit-
igation containment utilize both pharmaceutical inter-
ventions (PHIs) and non-pharmaceutical interventions
(NPIs). PHIs include vaccines and antiviral drugs. NPIs
include social distancing, quarantine, isolation, school and
workplace closure, and travel restrictions.

As seen during the past influenza pandemics, the
most effective mitigation measure is vaccination. How-
ever, the use of vaccination at the early critical stages
of an influenza pandemic has major challenges due to
our inability to accurately predict the nature of the virus
strain. Other limitations include a timely development of
a vaccine, availability and deployment of surge produc-
tion capacity, and distribution strategy and logistics. For
example, during the 2009 HIN1 outbreak, the develop-
ment, production, and distribution of a vaccine took nine
months [2,3].

Antivirals can also offer an effective treatment and con-
tainment measure. However, it would require a substantial
level of stockpile for an effective antiviral prophylaxis
campaign. Such a campaign may be infeasible due to
its prohibitive production and storage costs [4-7]. More-
over, the use of a large-scale antiviral-based prophylaxis
strategy can result in some virus strains becoming antivi-
ral resistant while maintaining infectiousness [8-10]. This
could pose a major threat since, at present, antivirals are
the only means for treating influenza.

NPIs, on the other hand, though often with some delays,
have the advantage of being available at the early stages of
a pandemic outbreak. Application of NPIs, and the result-
ing impact in limiting the early spread of the virus, can
ease pressure on the health services providers while they
develop, procure, distribute, and administer vaccines and
antivirals [11]. NPIs are also likely to be the only effective
containment measures in underdeveloped countries that
may lack adequate resources for reasonable vaccination
and antiviral campaigns [12].

Some of the NPIs (e.g., social distancing) are already
incorporated by many countries in their national pan-
demic preparedness plans [13-17]. Other major organiza-
tions that have also included NPIs in their preparedness
plans and guidelines are the World Health Organization
(WHO) [18] and the Centers for Disease Control and Pre-
vention (CDC) [16]. However, our review of the above
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plans and guidelines reveals that these vary significantly in
when and how to implement the NPIs. The variations can
be seen both in their basic definitions as well as recom-
mendations for declaration thresholds, implementation
stages, target population, and implementation logistics.

Some of the recent papers have used agent-based (AB)
simulation models for pandemic influenza to examine
the efficacy of non-pharmaceutical intervention strate-
gies. A review of these papers reveals that there exists
significant variabilities in the assumptions made in these
studies regarding some of the key model parameters, such
as intervention initiation, duration of the intervention
phases, composition of risk groups, compliance levels,
and other NPI related parameters (e.g., partial/full school
closure, community contact rate increase during school
closure [19]). As a consequence, the reported usefulness
of the NPIs also vary significantly.

Mathematical models have also been employed to ana-
lyze effectiveness of the NPIs [20-25]. However, math-
ematical approaches are not well adapted to modeling
aspects like detailed demographic and geographic fea-
tures, daily schedules of people, the process of individual
to individual transmission, and tracking infection spread.
Hence, mathematical models can only obtain aggregate
estimates of basic reproduction number (Rg) and infec-
tion attack rates (IAR). AB simulation models, on the
other hand, can consider demographic and geographic
features of the region, individual health and family status,
and daily schedules. AB models also account for infec-
tion spread resulting from individual interactions using
a detailed infection-transmission model, and thus yield
better estimates of Ry and IAR.

In what follows, we first give a brief outline of an AB
model. We then discuss/present some of the defining
components of the AB model concerning virus epidemi-
ology, social behavior, and non-pharmaceutical interven-
tions. Thereafter, we discuss the NPI strategy design
approach. We demonstrate the efficacy of the design
approach on simulated outbreaks of pandemic influenza
with different levels of virus transmissibility.

Methods

Our methodology uses an AB simulation model, an earlier
version of which was presented in Uribe et al. [26]. The AB
simulation model tracks each individual in the outbreak
region and their daily activity schedules. In addition, the
AB model considers a variety of mixing groups, a detailed
contact and infection transmission model, disease natu-
ral history, and a number of mitigation and containment
actions.

Agent based simulation model
The AB model begins by creating mixing groups and indi-
viduals. Individuals are created with a set of attributes
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based on demographic data. Adults and children have
the following common attributes: age, gender, household,
health condition (poor, moderate, good), and disease sta-
tus (infected or non-infected). Other attributes for adults
include parenthood and workplace, and for children its
the school type.

Mixing groups include households (characterized by
the number of adults and children), workplaces (offices,
factories, stores, educational institutions, and restau-
rants), entertainment centers, and churches. Hourly activ-
ity schedules are assigned to each individual based on
their attributes. These schedules differ between weekdays
and weekend days.

As the AB simulation progresses through the hours of
the day, the model traces the movement of every indi-
vidual among the mixing groups and track their contacts.
The pandemic influenza is triggered by introducing a
limited number of infected cases into the region. Upon
contact with an infected, a susceptible may become
infected with a probability that is determined by the
infection-transmission model (discussed later). The fol-
lowing are some of the defining components of the AB
model.

Disease natural history

The AB model considers a disease natural history as
depicted in Figure 1. When a susceptible individual
becomes infected, s/he enters the latency and incuba-
tion period simultaneously. Infectiousness starts at the
end of the latency period and symptoms show at the
end of the incubation period. It is considered that some
infected individuals may remain asymptomatic. After the
infectiousness period is over, an individual either recov-
ers or dies with a certain probability. We assume that
recovered individuals develop immunity and are not
susceptible.
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Contact process

The hourly schedule of each individual dictates which
mixing group s/he will belong to at any given hour of
a day. The members in each mixing group in any hour
is comprised of a number of susceptible and possibly
some infected individuals. These numbers determine the
number of contacts, which is obtained using the contact
probabilities given in Germann et al. [27]. Contact prob-
abilities depend on age and the type of mixing group. For
example, an infected child contacting a susceptible child
in a household will have a different probability than an
infected adult contacting a susceptible adult in a work-
place. The infection transmission model, described next,
determines how contacts result in infections.

Infection transmission model

When an individual j becomes infected, s/he enters into
a latency period. At the end of the latency, the period of
infectiousness begins. During this period, infectiousness
first increases and then decreases, which is assumed to
follow a lognormal distribution function [4]

1 —(lnt;é)z O
8, y)= ———|e ¥ ,t>0, 1
S = am

where ¢ denotes the elapsed time of the infectiousness
period in hours, § and y are the distribution parame-
ters. As shown in Figure 2, we use a truncated (at £ = 10
days) version of the lognormal distribution function based
on the assumption that infectiousness does not last more
than 10 days. Hence, the amount of virus shed by the ;%
infected individual during a time interval of infectiousness
is given by the area under the curve f(¢, 6, y) during the
time interval multiplied by p, a calibrated parameter that
determines the virus transmissibility scenario (k = low,
medium or high).

Latency
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Figure 1 Influenza disease natural history. Typical influenza disease natural history showing the progression of the disease from the moment of
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Figure 2 Profile of infectiousness. Typical time varying profile of
influenza infectiousness.

Let at any hour ¢, £ denote the hour of infection of the j*
infected individual. The amount of virus that is ingested
by a susceptible contact i from the j*# infected until hour
ti + 1 is given by VS;(t). It is assumed that the amount
of viral shed is divided equally among the total number of
contacts #;(t) of the j?* infected at hour ¢. Then we have
that

Y i ) RACRIZY i
O @

where +1 in the denominator indicates that the ;¥
infected individual will re-ingest a portion of the virus
shed, and ¢ denotes the truncation coefficient and given
by ¢j = foloﬁ (,8,y) du.

A susceptible individual i may have contacts with a
set {mi () : |mi(t)] > O} of infected individuals during any
hour ¢, where each of the infected individuals is at a differ-
ent day of their infectiousness period. During any contact
period beginning at time ¢ and ending at ¢ 4+ 1 (which we
refer to as hour ), the susceptible individual ; will accumu-
late a viral load equal to the sum of the ingested virus from
each one of its infected contacts. Then the total viral load
of susceptible i accumulated during the hour ¢ is given as

VL) = Y VD). (3)

jemt(t)

Figure 3 presents a pictorial illustration of a suscepti-
ble individual i that has been contacted by three different
infected (j = 1,2,3) during a period of time starting at
t and ending at ¢ + 1. Note that the y axis in the figure
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Figure 3 Viral load accumulation. Graphical representation of viral
load accumulation by a contact from multiple infected in a mixing

group.

denotes a normalized value o (%) J; (t,8,y) such that the

area under the curves represent the total virus shed by the
infected individuals. The virus shedding profile distribu-
tion parameters § and y are also influenced by the virus
epidemiology. At the time ¢, the elapsed period of infec-
tiousness for three infected are 1, £, and 3, respectively.
Infected j = 1 will shed a total amount of virus given by
the area ACDB. Similarly, for infected j = 2 and 3, the
total amount of virus shed will be given by the areas AEFB
and AEGHSB, respectively. The sum of these three areas
represents the total amount of virus shed by the three
infected. The proportion of this total amount that will be
ingested by the susceptible i depends on the number of
other contacts of these three infected during the hour ¢.

We assume that a susceptible individual i, who does not
get infected during hour ¢, keeps accumulating viral load
through the hours of a day until either an infection is
triggered or the day ends. Then, the total viral load accu-
mulation for a susceptible i until hour ¢ of the day is given
by

t
VLA (t) =Y VL'(w). (4)

u=1

We also assume that for a susceptible contact who is not
infected by the end of the day, the value of the total viral
load accumulation becomes zero at the start of the follow-
ing day. To our knowledge, no method currently exists that
would enable us to model the process of viral load deple-
tion in real time inside a human body through immune
response or inability of virus to enter a healthy cell.
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Since any of the numerous virus particles ingested by a
susceptible can trigger an infection, we model the infec-
tion process as a Poisson process with the total accumu-
lated viral load as the rate of infection. Let T* denote the
random variable defined as the time required for a sus-
ceptible contact i to get infected. Then T" is exponentially
distributed with a rate of A{(£) = VLA!(¢).

Then, the probability that the susceptible i will get
infected during the hour ¢ is

P(T' 1) = [1- e VA We], (5)

where & < 1 is an age based factor [4] and it gets closer to
one for susceptible contacts of higher age, as well as young
children.

Non-pharmaceutical interventions (NPIs)

In our AB simulation model, we consider four different
non-pharmaceutical intervention actions. These actions
are case isolation, household quarantine, school closure,
and workplace closure. In this section we discuss each one
of these by providing their definitions, key implementa-
tion parameters, and how they are incorporated in the
simulation.

Case isolation refers to household confinement of symp-
tomatic individuals. The infected diagnosed by a doctor
are expected to obey isolation, when in effect, with a cer-
tain compliance probability. The compliance probability is
assumed to depend on the extent of illness and work sta-
tus. Using expert opinion (from practicing physicians in
Tampa, FL, U.S.A.) we divided the period of infectious-
ness in three phases. Phase 1 consists of the first 2 days
with a 30% probability of being too ill to continue with reg-
ular schedule, phase 2 covers the next 3 days with a 80%
probability, and phase 3 is the remaining 5 days with a 30%
probability.

The probability of obeying isolation also depends on
the work status of an infected [28]. An unemployed
individual has a higher probability of obeying than an
employed. Therefore, case isolation compliance probabil-
ity is obtained as the product of the probability that the
individual is too ill to continue with his/her regular sched-
ule and the probability that the individual will obey the
isolation recommendation.

If an individual complies with isolation, then it is
assumed that s/he stays at home all day. If an individual
does not comply with isolation then s/he follows regular
schedule. If an individual is employed, does not comply
with isolation, and his/her workplace is closed, then the
individual is assumed to stay at home but spend five hours
for errands out of home.

Children (below 18 years of age) are assumed to fully
comply with isolation. A child younger than 13 is assumed
to be supervised by an adult when isolated at home. If
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there is a stay at home adult, that adult takes care of the
child. However, if there are no stay at home adults in
the household, then the AB simulation randomly selects
a working adult member of the household to provide
supervision.

In the AB simulation model, we use three parameters
to characterize case isolation: isolation threshold (time
between disease diagnosis and beginning of isolation), iso-
lation duration (dictated by the disease natural history),
and isolation compliance (influenced by demographics).

Household quarantine is a measure to restrict move-
ment of household members of an infected case. Note that
the infected case is one who has been diagnosed by a doc-
tor and who is in compliance with isolation. Household
quarantine compliance probabilities for uninfected house-
hold members are adopted from [28], which depends
on employment status. If a quarantined household have
members that are 13 years or younger, they stay at home
with a 100% probability under adult supervision.

If an uninfected member of a quarantined household
complies with the measure, her/his schedule changes to
stay at home without any errands. If an individual is
non-compliant and his/her workplace or school (for those
older than 13 years) is not closed, then that individual
continues with the regular assigned schedule. If the work-
place/school is closed, then s/he is assigned a new daily
schedule for staying home with five hours of errands. We
parameterized household quarantine in our AB simula-
tion model using quarantine initiation threshold, dura-
tion, and compliance.

School closure is modeled using a partial school clo-
sure approach. We divide the school into smaller mix-
ing groups consisting of individual classrooms. Children
belonging to these smaller mixing groups (classrooms)
are considered to remain in it all the time except during
the lunch hour when they interact with other classroom
children. A school closes when one or more classrooms
are closed. A classroom is closed when a threshold of
new infected in the classroom is reached. When a school
is closed, students fully comply with closure and stay at
home. Students younger than 13 stay at home with an
adult.

We implemented the above school closure approach
using three key parameters: number of infected cases to
close a class, number of closed classes to close a school,
and closure duration. Note that a class/school opened
after its closure duration could close again if the above
thresholds are met by new infections.

Workplace closure is modeled after school closure,
where a workplace and its various departments are treated
as a school and classrooms, respectively. If an individual’s
workplace is closed, and s/he is neither subjected to iso-
lation or household quarantine nor supervising a child as
discussed earlier, then that individual follows the stay at
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home schedule with five hours of errands. However, if the
individual is subject to isolation or household quarantine,
then the rules of these interventions apply. The partial
closure strategy for schools and workplaces has not been
considered in the published literature.

NPI strategy design approach

We adopted a statistical approach for the design of opti-
mal NPI strategies. We used a highly fractional factorial
experiment design with sixteen (16) NPI parameters as
factors and a number of performance measures includ-
ing total number of infected, total number of deaths,
total number of contacts, and total cost. The experi-
ments were conducted using our AB simulation model.
We first performed screening experiments with all fac-
tors at 2 levels. Factors found to be significant in the
screening experiments were further examined with 3-level
experiments. Using the results of the fractional factorial
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experiments, we developed regression equations linking
the NPI parameters to various performance measures.
These regression equations were then optimized to obtain
NPI strategies.

Table 1 presents a summary of all the factors, their
acronyms, and the units of measurement. Two of the fac-
tors in Table 1 that were not described earlier are as
follows. Global threshold is the number of cases needed
for public health officials to declare an outbreak of pan-
demic influenza in a region requiring deployment of
interventions. Deployment delay is the time needed for
non-pharmaceutical intervention measures to be fully
deployed once a pandemic outbreak is declared.

Table 1 also presents the references for high and low
levels of all NPI factors. Deployment delay (DD), num-
ber of classes to close a school (CCS), and percentage of
departments to close workplaces (PDCW) don’t have any
references cited. We decided to examine DD as a factor

Table 1 Factors and their values considered in the 2'67 factorial experiments

Factor Acronym Measurement unit Low level High level References
Global threshold GT Integer 10 50 [6,29-31]
Deployment delay DD Days 3 7
Case isolation threshold aTr Days 0 1 [4,11,19,27,29,32,33]
Case isolation duration CiD Days 7 10 [4,11,19,27,29,32,33]
Case isolation compliance
for workers CICW Percentage 53 75 [4,19,29,33]
Case isolation compliance
for non-workers CICNW Percentage 57 84 [4,19,29,33]
Household quarantine
threshold HQT Days 0 1 [4-6,27,29]
Household quarantine
duration HQD Days 7 10 [4-6,27,29]
Household quarantine
compliance for workers HCW Percentage 53 75 [4-6,29]
Household quarantine
compliance for non-workers HCNW Percentage 57 84 [4-6,29]
# of cases to close a
class in a school CCC Integer 1 3 [2,4,27,31-34]
# of classes to close
a school CCs Integer 1 3
School closure duration SCD Days 21 42 [2,19,27,29,31-36]
# of cases to close a
department in a workplace CcCbw Integer 3 5 [2,4,32,33,35]
9% departments to close
a workplace PDCW Percentage 30 50
Workplace closure duration WCD Days 7 14 [2,19,32,33,35]
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encouraged by the fact that during the HIN1 2009 pan-
demic, even though school closure was deployed after
a threshold of infected cases was reached, there was a
delay until it was fully implemented. Consideration of
CCS and PDCW is new as the partial closures of schools
and workplaces have not been considered in the published
literature.

Results and discussion

Implementation of NPI strategy design approach

We implemented our design approach on three pan-
demic influenza transmissibility scenarios: low (33% IAR),
medium (50% IAR), and high (65% IAR). We consid-
ered the outbreak region to be the Hillsborough County
of Florida, USA, with population of approximately 1.1
million.

Two-level fractional factorial experiment

We used a 217 factorial design with a total of 512
experiments in which all 16 main factors and all 2-level
interactions were not confounded. We used the results
of this experiment to screen the initial set of factors and
select the significant ones to be included in the subsequent
3-level experiment. We ran 5 replicates (with different
sets of seeds for random variables) for each of the exper-
iments. Each simulation run took on average 15 minutes
on a Dell quad core desktop computer with 8 GB RAM.
Table 1 shows all factors and their values for low and high
levels.

Low transmissibility scenario (33% IAR)

Table 2 presents the effects of the significant main fac-
tors and the 2-level interactions on the total number of
infected as the measure of performance. As evident from
the effects, school closure is the most significant non-
pharmaceutical intervention. An increase from one to
three in number of cases to close a class (CCC) resulted in
a large increase (+8.04%) in the total number of infected.
Doubling the school closure duration (21 days to 42
days) resulted in a large decrease (-3.75%) in the total
number of infected. Since a majority of contacts and
infections happens in schools among children, the above
results were expected, which also support the results pre-
viously reported in the literature [4,11,27]. An outcome
that was not anticipated is concerning the behavior of
the case isolation threshold (CIT). Allowing individual
cases to be isolated at home a full day after becom-
ing symptomatic (instead of immediate isolation) actually
resulted in a decrease in the total number of infected,
instead of an increase. It was observed that immediate
isolation at home of infected cases significantly increased
the number of infections within the household. Conse-
quently, it is more effective to allow an infected case
on the first day of infectiousness to maintain a normal
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Table 2 Effects of the significant main factors and 2-level
interactions on the total number of infected for the low
transmissibility scenario

Factors Effects (on total # infected)

Main Factors Change in total # infected when factor

changes from a low to a high level

DD +0.57%
cr —1.44%
CCC +8.04%
Cccs +1.90%
SCO —3.75%
CCbw +1.28%
WCD —041%

Interactions Effect of change in Factor 1 when Factor 2 is in

Factor1 Factor2 Low Level High Level
cr CCC —0.31% —2.56%
ar SCD —1.96% —0.91%
ar ccow —1.05% —1.82%
CcC ccs +7.36% +8.73%
CcC SCD +10.81% +5.27%

CCDW Ccs +7.19% +8.90%
Cccs SCD +0.95% +2.86%
SCD CCDW —2.55% —4.94%

Legend: DD- deployment delay; CIT - case isolation threshold; CCC - number of
cases to close a class in a school; CCS - number of classes to close a school;

SCD - school closure duration; CCDW - number of cases to close a department in
a workplace; WCD - workplace closure duration.

schedule of work and/or errands in the community,
where the contact probabilities are much lower than at
home.

Significant interactions given in Table 2 can be inter-
preted as follows. For the interaction CIT x CCC, when
CCC is kept in its low level (one), a change in CIT
from its low level (0 day) to high level (1 day) results
in a decrease in the total number of infected by -0.31%.
Whereas, when CCC is in its high level (three), the cor-
responding decrease in the total number of infected is
-2.56%. This represents a more than 8 fold increase in the
reduction in the total infected when CCC is high (three).
It is commensurate with the fact that high level of CCC
causes 8.04% increase in the number of infections. The
other most notable interactions are CCC x SCD and CCS
x SCD. As shown in Figure 4, case isolation threshold
(CIT) has a major impact on the total number of infections
when the number of cases to close a classroom (CCC) in a
school is 3 instead of 1. Also, impact of a higher CCC (=3)
on the total number of infected is much lower when the
closure duration (SCD) is higher (=42). Hence, if shorter
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Figure 4 Interaction effects from the 2-level experiment for the low transmissibility scenario. Graphical representation of the interaction
effects on the total number of infected for CCCxCIT and SCD x CCC obtained from the 2-level experiment for the low transmissibility scenario (CCC -
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school closure duration is desired, then classes should be
closed quicker after an infection is discovered. Another
interesting observation to note from interaction CCS x
SCD (in Table 2) is that if a longer school closure duration
is selected, then it is preferable to close a school sooner
after a class is closed.

After identifying the significant main factors and inter-
actions in the 2-level experiment, with the low transmis-
sibility scenario, we developed a regression model for the
total number of infected. The model has a low R? value
of 0.652. Even after including all other factors and inter-
actions, the R? value rose slightly to 0.6781. Low R? value
indicates that a linear regression over the NPI param-
eters does not sufficiently characterize the variations in
the total number of infected. However, an optimization
of the regression equation resulted in an NPI strategy
(in Table 3) that significantly improved values of the
response measure when compared to a baseline strategy
(with no interventions), and an ad hoc NPI strategy. A
detailed comparison of the optimal strategy (NPI*) with
the baseline and ad hoc (NPI) strategies is presented in
Table 4.

Containment is achieved by the NPI* strategy as the
IAR is lowered from 33.06% (for baseline) to 1.83%. The
NPI* strategy also offered significant reductions in the
CER (case fatality ratio), the number of contacts, deaths,
and infections in all age categories. Figure 5 depicts the
total number of new infections per day during the length
of the pandemic duration with low transmissibility. As evi-
dent from the figure, the NPI strategy not only reduced
the total number of infections, it also significantly reduced

the peak of infections as well as the length of pandemic
duration.

Medium transmissibility scenario (50% IAR)

An analysis of variance driven design approach identi-
cal to that presented above for the low transmissibility
scenario was repeated for an outbreak with a virus of
medium transmissibility (50% IAR). The results for this
scenario are presented in the Additional file 1: Tables S1,
S2 and S3.

Table 3 NPI* strategy to minimize the total number of
infected cases for the low transmissibility scenario (as
obtained from the two-level fractional factorial
experiment based design approach)

Factor Optimal Factor Optimal Factor Optimal
value value value
GT 10 DD 7 aT 1
ciD 10 cIcw 0.75 CICNW 0.57
HQT 1 HQD 7 HCW 0.53
HCNW 0.84 CCC 1 Ccs 3
SCD 21 CcCow 3 PDCW 03
WCD 7

Legend: GT - global threshold; DD - deployment delay; CIT - case isolation
threshold; CID - case isolation duration; CICW - case isolation compliance for
workers; CICNW - case isolation compliance for non-workers; HQT - household
quarantine threshold; HQD - household quarantine duration; HCW - household
quarantine compliance for workers; HCNW - household quarantine compliance
for non-workers; CCC - number of cases to close a class in a school; CCS - number
of classes to close a school; SCD - school closure duration; CCDW - number of
cases to close a department in a workplace; PDWC - percentage departments to
close a workplace; WCD - workplace closure duration.
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Table 4 Comparison of performance measures among the NPI*, the baseline, and ad hoc NPI strategy using results from

the 2-level experiment with the low transmissibility scenario

Performance measure Baseline NPI NPI* Performance measure Baseline NPI NPI*
IAR 33.06% 20.62% 1.83% Infections 0-19 yrs. 225467 156,849 14,345
CFR 0.69% 0.37% 0.03% Infections 20-64 yrs. 91,959 43,135 3,346
Pandemic Duration (Days) 135 350 75 Infections 65-99 yrs. 17,645 8,975 857
Total Contacts 1,177,393 738,716 71,771 Infections Households 37,562 65,107 7,470
Contacts 0-19 yrs. 818,912 618,661 62,920 Infect. MG Types(1-2) 46,600 7,019 535
Contacts 20-64 yrs. 294,046 102,973 7,160 Infect. Schools 249,304 136,043 10,458
Contacts 65-99 yrs. 64,435 17,082 1,691 Infect. MG Types(9-12) 1,605 790 85
Contacts Households 238,684 344,169 40,213 Total Deaths 7,009 3,764 303
Contacts MG Types(1-2) 231,051 37,785 3,185 Deaths 0-19 yrs. 1,041 744 67
Contacts Schools 699,427 352,987 28,013 Deaths 20-64 yrs. 4,095 2,059 156
Contacts MG Types(9-12) 8,231 3,775 360 Deaths 65-99 yrs. 1,873 961 80
Total Infections 335,071 208,959 18,548

NPI* strategy is optimized for the total number of infected.
Legend: IAR - infection attack rate; CFR - case fatality ratio; MG - mixing group.

As in the low transmissibility scenario, school closure
is the most significant intervention (see Additional file 1:
Table S1). An increase in the number of cases to close a
class (CCC) from one to three, resulted in an increase of
15.42% in the total number of infected. Also, an increase
in school closure duration (SCD) from 21 days to 42
days decreased the total number of infected by -5.56%.
Workplace closure factors were also found to be signif-
icant. However, their impacts on the total number of
infected are not as notable as with factors related to school
closure.

Significant interactions (Additional file 1: Table S1),
included the one between global threshold (GT) and
deployment delay (DD). This interaction shows the impor-
tance of surveillance (which impacts GT) and prepared-
ness (which impacts DD). When interventions are not
ready to be deployed promptly after a pandemic declara-
tion (i.e., DD is high), then the necessary surveillance must
be in place to accurately enforce GT and avoid delay in
pandemic declaration.

The regression model for the total number of infected
in the medium transmissibility scenario had an R? value

Number of new infections per day for baseline (no intervention) vs. optimal NPI strategy
obtained from the 2-level experiment for the low transmissibility scenario
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Figure 5 Number of new infections per influenza pandemic day.
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of 0.9144, which is a marked improvement over the low
transmissibility scenario. That is, in the medium transmis-
sibility scenario, the non-pharmaceutical interventions
have a much more significant impact on the total num-
ber of infected. The optimal NPI strategy (NPI*) is shown
in Additional file 1: Table S2. The impact of the NPI*
strategy, as compared to the baseline strategy and an ad-
hoc NPI strategy, on different performance measures, is
shown in Additional file 1: Table S3. The NPI* strat-
egy contains the pandemic by reducing IAR to 3.42%.
Additional file 2: Figure S1 depicts how the NPI* strategy
reduces the total number of infections and the peak of new
infections. It also shows that under NPI*, the outbreak
experiences multiple recurrences of new infections and
thus a longer pandemic duration. The recurrences were
found to coincide with the re-openings of schools and
workplaces.

High transmissibility scenario (65% IAR)

The results from this scenario are presented in Additional
file 1: Tables S4, S5 and S6. As in other scenarios, school
closure is the most significant intervention approach. As
with the medium transmissibility scenario, the results
for the high transmissibility scenario also emphasize
the importance of the dependency between surveillance
and preparedness. The regression model for this sce-
nario has the highest R? value of 0.9508. However,
the optimized NPI (NPI*) strategy though effective in
reducing infections, deaths, and contacts (see Additional
file 1: Table S6) failed to contain the pandemic. Note
that the IAR was reduced to only 16.97%. A pan-
demic is considered to be contained when IAR falls
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below 10%. It was also noted (see Additional file 3:
Figure S2) that for the high transmissibility scenario,
the NPI* strategy greatly extends the pandemic duration
with many recurrences. In such scenarios, a combination
of NPIs with PHIs may provide the best approach for
containment.

Three-level fractional factorial experiment based design
approach

In order to examine the presence of any non-linearity in
the behavior of the significant main factors and inter-
actions, we conducted 3-level fractional factorial experi-
ments. The three scenarios have the following common
factors: GT, DD, CIT, CCC, CCS, SCD, CCDW, and WCD.
Additional file 1: Table S7 presents the values of the
3-levels for the above factors. Though the design can
estimate effects of all main factors, it isn’t capable of esti-
mating all the two-way interactions due to confounding.
Though the results obtained from the 3-level experiment
based design approach for each of the three transmissibil-
ity scenarios are similar to those obtained from the 2-level
ANOVA approach, some interesting nonlinearities were
observed as follows.

It was observed from the low transmissibility scenario
that increasing deployment delay from 5 (level 2) to 7
(level 3) days did not have a noticeable impact on the
total number of infected (Figure 6). Adding a third level to
case isolation threshold helped us to discover that while
the number of infected decreases sharply as the threshold
CIT increased from 0 to 1 day, the trend quickly reversed
(see Figure 7) when the threshold was increased to
2 days.

65,000.00

55,000.00

Total number of infected

45,000.00

5
Deploymant delay (days)
oD

Impact of deployment delay (low transmissibility scenario)

Figure 6 Main factor effect for deployment delay (DD). Impact of deployment delay in low transmissibility scenario (3-level experiment).
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65,000.00

60,000.00

55,000.00

50,000.00

Total number of infected

45,000.00

40,000.00

experiment).

Impact of case isolation threshold (low transmissibility scenario)

Case isolation threshold (days)
ar

Figure 7 Main factor effect for case isolation threshold (CIT). Impact of case isolation threshold in low transmissibility scenario (3-level

1 2

For the medium transmissibility scenario it was
observed that school closure duration beyond 30 days pro-
duced a much sharper decrease in the total number of
infected (see Figure 8). In the high transmissibility sce-
nario, it was observed that a change from 1 to 2 for cases
to close a classroom (CCC) has a very high impact on
increasing the number of infected. However, a further
increase of CCC to 3 has a much smaller impact on the
rate of increase (see Figure 9).

Conclusions

In this paper we have modeled pandemic influenza out-
breaks using an agent-based simulation approach. The AB
model incorporates detailed population demographics,
dynamics of hourly schedules of people, a variety of mix-
ing groups and their contact processes, infection trans-
mission process, and a number of non-pharmaceutical
interventions. Using a statistical (fractional factorial)
experimental design approach, we examined the influence

Impact of school closure duration (medium transmissibility scenario)
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300,000.00
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Total number of infected

280,000.00

270,000.00
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250,000.00

S¢hool closure duration (days)
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Figure 8 Main factor effect for school closure duration (SCD). Impact of school closure duration in medium transmissibility scenario (3-level

experiment).
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experiment).

Impact of cases to close a classroom (high transmissibility scenario)

2 3

Cases to close a classroom (integer)

Figure 9 Main factor effect for cases to close a classroom (CCC). Impact of cases to close a classroom in high transmissibility scenario (3-level

of some of the characteristic parameters of virus epidemi-
ology, social behavior, and non-pharmaceutical interven-
tions on various measures of pandemic impact, such as
total number of infected and total number of deaths in
various age groups. The knowledge gained on the effects
of the main factors as well as the interactions was used
to develop effective NPI strategies. The efficacy of these
strategies was demonstrated on simulated pandemic out-
breaks triggered by influenza viruses with three different
levels of severities of transmissibility. The results show
that a significant mitigation of the harmful effects of a
pandemic influenza outbreak can be achieved through
appropriately designed NPI strategies. Our methodology,
to the best of our knowledge, is the first to consider aggre-
gated impact of NPI and social behavioral parameters and
their interactions on a number of choices of performance
measures for different levels of outbreak severity.

Our findings on the efficacy of NPI strategies are limited
by the fact that our AB simulation model did not include
mass transportation via trains, buses, and airplanes. Con-
sequently we did not incorporate the effect of travel
restrictions, an important component of NPIs, and also
did not consider people arriving or leaving the outbreak
region, which could influence the infection transmission
process. Our contact and infection transmission models
also have room for improvement. We assumed that if an
infected contacts m individuals in a given hour, the virus
shed by the infected will be shared equally by the contacts.
This may not always represent the true process of virus
ingestion by the susceptibles, as spatial proximity of those
involved has not been considered.

Even though the profile of infectiousness of an infected
is considered to vary with time and virus transmissibility,
we assumed the profile to be constant among the popu-
lation and independent of age and health status. Finally,
we assumed that a susceptible who accumulates viral
load, but does not get infected by the last hour of a day,
begins the next day with zero viral load. An immunity
driven dynamic model of viral accumulation in the body
that considers simultaneous ingestion (from contacts) and
depletion would be more realistic. However, to our knowl-
edge, such an immune system response model has not yet
been presented to the literature.

There are many assumptions in our simulation model,
which directly affect the contact and infection processes,
the design of the NPIs, and the NPI responses mea-
sured from the model. Through an extensive review of
influenza pandemic literature, we have provided support
for our assumptions. We have also made model parame-
ter choices based on information available in the literature
from past pandemic outbreaks. Statistical analysis pre-
sented in the paper allowed us to examine the impact
of parameters on various performance measures. Note
that, any new influenza pandemic outbreak it’s likely to
bring a new virus strain and its associated epidemiological
characteristics that are different from the past outbreaks.
Consequently, the actual outcomes of application of NPIs
may differ from the results that are presented in this
paper. However, the methodology is flexible enough to
adopt the changes in assumptions and parameter values to
yield NPI policy guidelines for the public health decision
makers.



Martinez and Das BMC Public Health 2014, 14:1328
http://www.biomedcentral.com/1471-2458/14/1328

Additional files

Additional file 1: Appendix.

Additional file 2: Figure S1. Number of new infections per day for
baseline (no intervention) vs. NPI* strategy obtained from the 2-level
experiment for the medium transmissibility scenario.

Additional file 3: Figure S2. Number of new infections per day for

baseline (no intervention) vs. NPI* strategy obtained from the 2-level
experiment for the high transmissibility scenario.
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