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Abstract

parameters from experimental data difficult.

equation models with fixed-length delays.

Background: For a typical influenza infection in vivo, viral titers over time are characterized by 1-2 days of
exponential growth followed by an exponential decay. This simple dynamic can be reproduced by a broad range
of mathematical models which makes model selection and the extraction of biologically-relevant infection

Results: We analyze in vitro experimental data from the literature, specifically that of single-cycle viral yield
experiments, to narrow the range of realistic models of infection. In particular, we demonstrate the viability of
using a normal or lognormal distribution for the time a cell spends in a given infection state (e.g., the time spent
by a newly infected cell in the latent state before it begins to produce virus), while exposing the shortcomings of
ordinary differential equation models which implicitly utilize exponential distributions and delay-differential

Conclusions: By fitting published viral titer data from challenge experiments in human volunteers, we show that
alternative models can lead to different estimates of the key infection parameters.

Background
In the past decade, mathematical models of viral infection
have been successfully applied to a number of problems
on the periphery of the annual public health problem that
is influenza [1]. In the laboratory, mathematical models
have aided the development of efficient vaccine produc-
tion techniques [2] and improved the quantitative charac-
terization of antiviral drug action [3]. Mathematical
models have also improved our understanding of the
course of the disease within human [4] and animal hosts
[5]. Because these models serve as a bridge between the
microscopic scale (where virus interacts with cell) and the
macroscopic scale (where the infection is manifested as a
disease) they will inevitably be applied in the future to
pressing public health questions such as the estimation of
virulence and fitness for emerging strains, the spread of
drug resistance and, more generally, the connections
between viral genotypic information and clinical data.

The success of a within-host virus infection model
depends on an accurate representation of biological reality.
This allows a model not only to describe the phenomenon
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under consideration, but also to make reliable predictions
about unobserved consequences. For example, in 1995 a
simple model of HIV dynamics was applied to describe
the observed exponential clearance of virus under the
administration of a drug suppressing viral production [6].
The primary result of this work, however, was not the
description of viral clearance itself, but the prediction of
dynamics in the absence of drug, i.e., that high viral clear-
ance must be balanced by high viral production, which in
turn allows for extremely rapid mutation of the virus
strain. This conclusion had important implications for the
development of therapy, specifically the necessity of a
“drug cocktail”. For influenza infections, the primary clini-
cal data available to a mathematical modeler is the viral
titer over the course of an infection, usually obtained by a
daily nasal wash collected from an infected patient. This
data generally follows a simple functional form in time
which can be reproduced by a variety of dynamical mod-
els. Thus, if meaningful information is to be extracted
from such data, the model applied must already be a
trusted simulator of the underlying infection kinetics. In
this paper, we consider evidence from laboratory infection
experiments which must inform the construction of
a mathematical model, focusing specifically on the
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implementation of the time spent by a cell in each of the
various stages of infection.

The basic viral infection model [4,7] assumes interac-
tion of virus with cells in four different states (Figure 1),
and is based on a coarse-grained view of the virus repli-
cation cycle. Cells that have not yet been infected by the
virus, but are susceptible to infection, are considered
target cells (7). The interaction of virus with target cells
leads to these cells becoming latently (L) infected (i.e.,
infected but not producing virus). After infection, a
time, £;, passes — as the virus particle is unpacked, its
genome is delivered to the cell nucleus, replication
begins, and new particles assemble at the plasma mem-
brane — before new virus particles are released and the
cell enters the infectious (/) state. After a subsequent
time, ¢;, the infectious cell halts virus production and
transitions into a state we will refer to as dead (D).

The implementation of a particular dynamical struc-
ture on this basic model requires a more detailed speci-
fication of the biological processes. The infection of cells
(the transition of target cells to latently-infected cells)
has been observed to be a Poisson process where the
rate of infection is proportional to the local virus con-
centration [8] and it is implemented in the model as a
continuous representation of that stochastic process.
Virus production by infectious cells can be assumed to
proceed at a constant rate and the infectivity of free
virus is known to decrease exponentially in time [3,9],
leading to a simple equation for virus dynamics. To
complete the dynamical description, one must specify
how a latently infected cell becomes infectious and for
how long infectious cells produce virus. In other words,
one must specify the distribution of the delays, ¢; and £,
between the states of infection.

In an epidemiological context, the problem of imple-
menting generic delays between infected classes was
first considered by Kermack and McKendrick in their
seminal 1927 work on infectious disease dynamics [10].
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Hethcote and Tudor [11] introduced a general approach
to the problem, using a probability density function for
the time spent in a given state, which has been applied
frequently in the field of mathematical epidemiology
(see, e.g., [12-14] and references therein). Here, we will
apply the same approach to within-host influenza viral
infections, resulting in a model with differential equa-
tions to describe target cell and virus dynamics, and
integral equations to describe the latent and infectious
cell populations (a similar approach was considered for
HIV in [15]).

Mathematically, the simplest choice of delay distribu-
tion is exponential (shown in Figure 2 with a few other
choices), because it reduces the model to a system of
ordinary differential equations (ODEs). For that reason,
it is the most commonly-used model type for both epi-
demiological and within-host problems. In viral infec-
tions, however, the assumption of an exponential
distribution seemingly conflicts with the biological evi-
dence. For example, if the time of latent infection is
chosen from such a distribution, the model would pre-
dict that a significant fraction of cells begin producing
virus almost immediately after infection. In reality, how-
ever, there is always a minimum delay prior to viral
release: endocytosis and the fusion of the viral envelope
with the endosome takes, on average, half an hour [16];
the viral RNA enters the nucleus in most cells within
the next one hour [17]; mRNA is transcribed in the
nucleus, then transported back to the cytoplasm for
translation and newly formed M1 matrix proteins are
observed only three hours after infection, on average,
and hemagglutinin four hours post-infection [17]; newly
formed glycoproteins, matrix proteins and nucleocapsids
then must assemble at the cell membrane, bud off and
be cleaved from the sialic acid receptors [18]. Each of
these steps and their timings depend on virus strain and
cell type, and one can expect significant variation
between cells, but a long delay without viral production
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Figure 1 Basic viral infection model. The cell-virus interactions of infection (8) and viral production (p) are indicated along with the four
possible states in which cells can be found. The lifetimes of the latent and infectious states for a particular cell, t; and t, are considered random
variables.
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Figure 2 Example delay distributions. Four example delay types
defining the time spent by a cell in a given state. The plotted
function, P(t) corresponds to the probability that after some time ¢,
the cell remains in its current state, i.e, has not yet transitioned to
the next state. In each example, f =12 h is the median time of
transition to the next state. While exponential-delays allow for
instantaneous transitions (e.g., 10% of cells will have transitioned
after 1.5 h has elapsed), the other three types enforce a minimum
waiting period for almost all cells before transitioning from one
state to the other (e, P(t) = 1 for 0 < t < ty,n). Enforcing this delay
is more biologically realistic. The function P(t) appears explicitly in
the viral infection model, Equation (1), and allows for generic delays
between states of infection.

is an essential characteristic of the infection cycle. Influ-
enza virus-induced cell death is less well characterized:
the mechanism of cell killing (apoptosis or necrosis)
depends on cell type [19,20], and the timing of apoptosis
in particular is strongly strain dependent [21]. In this
situation, a broad freedom in selecting the distribution
for infectious cell lifespans is warranted.

Despite questions about their biological appropriate-
ness, ODE models have had success in describing in
vivo infection data (for influenza see, for example,
[4,5]). Models with non-exponential delays have been
similarly successful, including those with Dirac delta
function transition distributions, leading to a delay-dif-
ferential model [3,4,22]; and multi-compartmental
ODE models (with n sequential phases of infection)
yielding delays with a gamma-function distribution
[23-25] Here, we consider a set of in vitro experiments
which allows for some discrimination between models,
namely the single-cycle viral yield assay. By fitting
models with different transition distributions (Figure 2)
to single-cycle assay data, we show that the correct
implementation of delays is crucial to the success of a
model in describing these assays. Using these results,
we consider in vivo data from challenge experiments
in humans to explore how the choice of delays affects
the parameter values extracted when fitting the model
to experimental data.
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Methods

Model

The general viral infection model used in this paper is
written, following [11], as

T=-BTV (1a)
L(t) = L(O)P, (¢) + _[; BT(s)V(s)P, (¢ — s)ds (1b)
[ORTOLION WATRIACIE 1)

+ Jt N BT(s))V(s1)- fL(s2 = 1) - Pyt = s5)dsyds, (1)

5,=045,=0

V:péfcv (1d)

where T, L, I are the populations of cells in the target,
latently-infected and infectious (virus-producing) states,
respectively, and N the total number of cells in the sys-
tem. V is the virus concentration, 3 and p are the rates
of infection and virus production, respectively, and c is
the viral clearance rate. The function P;(t) is the prob-
ability that a cell remains in the latent state for at least
a time ¢ before transitioning to the infectious state, and
Py(2) is the probability that a cell remains in the infec-
tious state for at least a time ¢ before transitioning to
the dead state (i.e., before it ceases to release virus). The
transition profiles for different choices for the expres-
sion of P(¢) are illustrated in Figure 2. f; is the probabil-
ity density function for the time a cell will spend in the
latent state before transitioning to the infectious state
(f = —dP;/dz). Note that fi(t) does not explicitly appear
in the model.

Delay distributions
If an exponential distribution is chosen for both transi-
tions (exponential-delay), we have

fL(r):%exp[—ﬂ,PL(r):exp{—ﬂ, and P,(z):exp[—ﬂ, )

where 7; is the average time spent by a cell in the
latent infection state, and 7; is the average lifespan of an
infectious cell. Equations (1a—1d) can then be written as
a system of ordinary differential equations

T=-BTV (3a)
i=p1v-L (3b)
7L
i-2-L & ©
L 71
V= p% —ev. (3d)

When a Dirac delta function is used for both f; and f;
(fixed-delay), such that the times spent by cells in the
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latent state and the infectious state are exactly 7; and 7,
respectively, Equations (1la—1d) reduce to a set of delay
differential equations (DDE) [3].

Biologically, cells transition from one state to another
only after some average time has elapsed. One also
expects to see some variation in these transition times
among cells as many of the processes rely on chains of
stochastic intracellular events. Thus, normal distribu-
tions,

A 7([—1’)2 A t—1 T
fi(t)= zn';)_z exp[ 720‘% :I,P,‘(t)fl 2L|:erf[ 20_’2 ]+erf[ 2:—5 ]:|,
A t—
andP,(t):lz’[erf[ 2;; ]Jrerf[;'ﬂzﬂ,

where 0; and oy are the standard deviations, are a nat-
ural choice (normal-delay). The normalization constants,
A;, are necessary since the distributions must be trun-
cated at zero. If one wishes to avoid renormalization, a
good alternative is a lognormal distribution (lognormal-
delay)

fult) = L EXP[—(IM_IHTL)Z], PL(t);erfc[lm_lm-L],

t\/2ﬂcf 20} 20}

and P;(t) = %erfc [ Int-In7, J

JZGIZ

where erfc(x) is the complementary error function
(i.e., erfc(x) = 1 — erf(x)) and the standard deviations o}
and o; are dimensionless quantities.

To facilitate comparison between the various distribu-
tions, we utilize their median values. For the Dirac delta
and lognormal distributions, the median is simply the
value of the parameter itself, i.e.,

t; =7, and t; =7, (fixed and lognormal). (4)
For exponential distributions, the median is
t; =7,In2 and i; =7,In2 (exponential), (5)

and for the truncated normal, the median is found by
setting its cumulative distribution function to one-half
(there is no simple analytical expression).

Numerical simulation

Numerical evaluation of the model in Equation (1) was
performed using a modified Euler technique. At every
time step of length At, newly infected cells, Ly, = STV
At, were removed from the target population. The pas-
sage of these L, cells through the latent and infectious
states was then calculated for all future times using f;,
P; and P; and added to that of previously transitioned
cells. Virus dynamics at each time step were calculated
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according to the Euler approximation of Equation (1d).
Simulations of single-cycle in vitro experiments were
initialized with L(0) = N; simulations of in vivo infec-
tions were initialized with 7(0) = N and V (0) = Vj,.

Model fitting and parameter extraction

In any model-fitting exercise, a number of considera-
tions must be made to ensure the reliable extraction of
parameter values from experimental data. First, one
must consider the question of parameter identifiability
[36,57,58]: If the experimental system were to exactly
reproduce the dynamics of the model equations, could
the parameters be uniquely identified from the available
observations? A number of techniques have been intro-
duced to address identifiability for ODE models [37,59],
but these are not directly applicable to the more general
system considered here (Equation (1)). Nevertheless, for
each experiment considered here we attempted to
reduce consideration to an identifiable set of parameters.
For the early phase single-cycle viral yield experiments,
we fixed parameter values involving viral clearance and
infectious cell death, and fitted only those parameters
related to viral production and the transition of cells
from the latent to infectious state. In the single-cycle,
single-history experiment, independent information on
viral clearance allowed for that parameter to be fixed in
fitting. For the in vivo volunteer patient infection data,
we have arbitrarily fixed the product of the viral produc-
tion and infection rates in order to obtain a unique
solution in the fitting procedure.

A second consideration when fitting experimental data
is the question of model error: Is the mathematical
model an appropriate representation of experimental
data? To address this question, we performed least
squares fitting of the model equations to the data sets
using the Octave 3.2.4 [60] implementation of the
Levenberg-Marquardt algorithm, leasqr. For all data pre-
sented here, fits were performed to the viral titer data in
log-space and the sum of squared residuals (SSR) was
calculated as Z_(log ylaa _ogymodely2,

In order to C(l)mpare model systems with different
numbers of parameters, we evaluated the Akaike infor-
mation criterion (AIC) for each fit,

k(e +1)

n—hk-—

AIC, = AIC +

(6)

=2k+nln(SS—R)+7Zk(k+l)

n n-k-1’

where k is the number of model parameters, 7 is the
number of data points and AIC, is the “corrected” form
of the AIC for small sample sizes [61].

Finally, to account for measurement error, we calcu-
lated 95% confidence intervals for each reliably extracted
parameter value by fitting 1000 bootstrap replicates [62].
Confidence intervals were not calculated for models fits
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with large error (high SSR and AIC,) or for fits to
volunteer patient infection data, where arbitrary assump-
tions were made to constrain the fitted parameter
values.

Calculation of the basic reproductive number

For each fit to the volunteer patient infection data we
numerically calculated an approximation of the basic
reproductive number, R,. In the ODE model, Equation
(3), linear stability of the disease-free equilibrium is
guaranteed by Ro< 1, where

R, = %. (7)

It can also be shown using the ODE that this quantity is
equal to the commonly-quoted definition of the reproduc-
tive number: the number of secondary infections caused by
one infectious cell, in a completely susceptible cell popula-
tion. For other delay models, where an analytical form is
not readily available, we calculated R, numerically accord-
ing to that statement, i.e, for a given set of parameters, we
disallowed latent to infectious transitions, initialized the
simulation with one infectious cell, and determined the
number of cells in the latent state as ¢t — oo.

Results and discussion
General features of single-cycle viral growth
Single-cycle growth (SCG) viral yield experiments pro-
vide a unique view of viral replication. By initiating
infection with a viral inoculum of high concentration (a
multiplicity of infection (MOI) much larger than one),
all cells are infected simultaneously, and the experimen-
talist effectively synchronizes the cells’ passage through
the phases of latency, viral production and death. The
resulting viral production curve can then be viewed as
that of the average cell. This is in sharp contrast to
“multiple-cycle” yield experiments (MOI < 1), where
only a few cells are initially infected, leading to succes-
sive cycles of infection; the resulting exponential growth
of both infected cells and virus over time effectively
masks the dynamics of a single cell. Virus infections of
humans and animals are similar to this latter experiment
in that they are likely initiated by the infection of a only
a few cells [26,27], leading to the exponential consump-
tion of a large target cell population. Thus, SCG experi-
ments demonstrate an artificial infection dynamic which
would never occur in nature. However, their depiction
of the average virus production of a cell makes them an
invaluable tool for model building and for isolating spe-
cific components or parameters of the viral replication
cycle.

In the original publications of the nine example SCG
data sets plotted in Figure 3 [9,28-32] virus was plotted
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on a logarithmic scale, due to the extraordinary sensitiv-
ity of measurement techniques which can detect infec-
tious virus over nearly 8 orders of magnitude. It is clear
from Figure 3, however, that this perspective masks the
most important features of SCG: a long delay without
significant viral release followed by linear growth of the
virus concentration. This simple dynamic can be sum-
marized in the empirical expression,

V(t) — {(t _T]:‘)p* (t 2 Tz) (8)

0 otherwise,

where rZ and p* can be considered approximations of
the average latent infection period, 77, and the viral pro-
duction rate, p, in the case where viral clearance is low
(i.e., Equation (8) is the solution of Equation (1d) when
I/N =1 and ¢ = 0). The fitted values of ri and p* for
all nine experiments are given in Table 1.

We will consider below the characterization of the
SCG experiment using various dynamical models, but
some simple analysis can be done using only the empiri-
cal relation above. For example, two experiments (Figure
3A-B and Figure 3C-D) considered the growth of influ-
enza A/Udorn/307/72 (H3N2) and a counterpart strain
possessing a single mutation in the NS1 gene (T215A
and R83A, respectively) [28,29]. In each case, the experi-
ment reveals a significant reduction of the approximate
viral production rate p* for the mutant, without a signif-
icant change in the approximate latency period. This
shows that the single-cycle experiment can highlight
important biological characteristics of a virus strain,
with very little mathematical analysis.

Characterizing the latent infection period from single-
cycle growth assays

To determine the type of distribution which should be
used to model the time spent by a newly infected cell in
the latent phase, we performed model fits to two single-
cycle data sets [28,32] which offered frequent sampling in
time and a large range of virus measurements (Figure 4).
Recently we have shown [33] that the ODE assumption
of exponential delays yields a very poor fit to single-cycle
viral yield data. Here, we considered three additional dis-
tributions for the waiting times: fixed-delay, normal-
delay and lognormal-delay. We neglected the influence of
infectious cell death by setting the infectious cell lifespan
to be much longer than the duration of the experiment.
This is an oversimplification of reality, particularly for
later times. However, the lack of data spanning the per-
iod of virus decline, which occurs at later times than
those measured, prohibits any real measure of infectious
cell death. Similarly, this lack of viral decay information
prohibits an effective characterization of the loss of virus
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Figure 3 Single-cycle viral yield examples. Examples of single-cycle growth experiments. Plotted lines are fits to the non-zero data points
using Equation 8 (the last data point in G and | have been excluded from the fits) Virus units (VU), the parameters of the fit, and the details of
each experiment are given in Table 1.

infectivity. Therefore, we fitted the model using two
values of viral clearance, zero and 0.2 h™!. The latter
value represents an approximate upper-bound of the
viral clearance value based on literature reports for in
vitro experiments performed at 37°C [2,3].

The results of model fits to the two data sets are col-
lected in Table 2. The exponential- and fixed-delay

models clearly provide a poorer fit to the data than
those with normal- and lognormal-delays (for the A/
Udorn/307/72 [28] data set, however, the small number
of data points and fewer parameters, with respect to
normal and lognormal models, do not allow for their
formal exclusion based on AIC.). While the exponen-
tial-delay model (ODE) is unable to duplicate any

Table 1 Information on the individual single-cycle viral yield experiments plotted in Figure 3

(Label) Strain Cell Type Mol vuP p* (VU/h) T; (h) ref.
(A) A/Udorn/307/72 (H3N2) A549 3 PFU/mL (82 +03) x 10° 109 + 08 28]
(B) A/Udorn/307/72 (H3N2) A549 3 PFU/mL Q7 +06) x 10° 12+£5 [28]
(©) AUdorn/307/72 (H3N2) A549 5 PFU/mL (3.1 +09) x 10° 6 +3) 29
(D) A/Udorn/307/72 (H3N2)® A549 5 PFU/mL (26 +0.1) x 10° 58 + 04 291
(E) A/Udorn/307/72 (H3N2) MDCK 5 PFU/mL (56 +03) x 10° (6.1 £04) [29]
(F) A/PR/8/34 (HIN1) MDCK 10 TCIDso/mL @=+1)x%x10° 6+3 [30]
(G) A/PR/8/34 (HINT) MDCK 32 PFU (75 + 04) x 10° 98+ 1) 9]
(H) A/X-31 (H3N2) Vera 50 TCIDso/mL (134 +001) x 10° (3.75 + 0.01) 31]
(I) A/NWS/33 (HINT) 1-5C-4 50 PFU/mL (1.26 £ 0.07) x 10° 108 £ 1 [32]

a — The number of cells used in each experiment was ~ 2 x 10° except for (F) and (G) which had 9 x 10° and 3 x 10° cells, respectively.
b — Virus Unit. It should be noted that this unit is inherently experiment-specific, depending on virus strain, cell type and experimental details. Quantities which
depend on VU (e.g., p*) cannot be directly compared between experimental groups.

¢ — NS1-T215A recombinant mutant.
d — NS1-R38A recombinant mutant.
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Figure 4 Model fits to viral titers from single-cycle experiments. Model fits to viral titers from single-cycle experiments by (Left) Hale et. al.
[28] (Figure 3A) and (Right) Sugiura and Kilbourne [32] (Figure 3l). Fitting was performed using an exponential (dot-dashed), delta (dotted),
normal (solid) or lognormal (dashed) distribution for the time spent by newly infected cells in the latent state before transitioning to the
infectious state. Insets show the same fits and data on a linear virus scale (axis ranges are identical to those in Figure 3).

J

feature of the dynamics, the fixed-delay model fits the
data well at late times in the infection when the
dynamics are dominated by linear growth, at least when
viral clearance is neglected. It does a poor job, however,
of describing the early stages of virus release, and is
unable to provide the correct dynamics in the presence
of viral clearance.

Both the normal- and lognormal-delay models provide
an adequate description of the data over the entire
range of values and for both values of viral clearance,
although the SSR and AIC, values are smaller for fits
using a normal distribution. When the fits to the log-
valued virus are viewed in linear-space (inset graphs),
the normal fits appear to be a more reasonable approxi-
mation of the data in that the linear SSRs of these fits,
which depend most sensitively on the larger virus
values, are also smaller. When viral clearance is
neglected, the fitted values of the viral production rate,
p, are close to the approximate values of p* (Table 1).
Non-zero viral clearance leads to a larger fitted produc-
tion rate, as expected. The fitted values for the median
latent infection period, f; , vary depending on the distri-
bution type, but are always as long as the approximate
values of 1—2 for both experiments (10.9 h for [28] and
10.8 h for [32]). The introduction of a non-zero viral

clearance leads to even longer latent infection periods,
ranging from 8 h to 24 h. The fitted standard deviations,
o}, are between 1.5 and 3.0 h for the normal distribu-
tion and between 0.15 and 0.44 for the lognormal
distribution.

Characterizing the infection cycle from a single-cycle,
single-history yield assay

In 1968, an in vitro experiment was performed which, to
our knowledge, is unique in the literature [9]. Like the
experiments presented in the previous sections, a SCG
experiment was prepared: ~ 10” cells were incubated
with a high titer (MOI = 10) of influenza A/PR/8
(H1IN1) virus such that almost all cells were infected
and then the infection medium was removed. Unlike
typical SCG experiments, however, viral titer was not
measured by sacrificing independent wells at each sam-
pling time to titrate their overlay. Instead, the liquid
overlay from the same well was removed in its entirety
and replaced with fresh, virus-free medium and the
infection was allowed to continue. Thus, titrations of
the collected overlay medium provided a measure of the
amount of virus being produced by a single cell culture
at the time of collection. Application of this sampling
protocol to SCG experiments — which we refer to as a
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Table 2 Fits to two single-cycle viral yield experiments (Figure 4)
A/Udorn/307/72 (H3N2) [28]
Dist? ) vy ZEU) p(-LEUL) 7 (h) o 0 SSR AIC
exp P 0 24 x10° 1200 — 830 486 167
o 0) 81 x10° 77 x10° 107 — 107 0.90 66
N ©0) 33x10° 83 x 10° 1.1 15h 1.1 0.039 178
[2.5:44] [59:12.7] [9.8:12.5] [0.8:2.2]
InN ©) 34 x10° 82 x 10° 109 0.15 109 0.041 181
[24:4.1] [5.6:12.8] [9.7:126] [0.08:0.22]
exp 0.2) 0 10% 10% — 10% 579 1738
5 2 27000 18 x 10° 114 — 114 1.73 105
N 02) 48 x 10° 26 % 10° 140 27 h 140 0.068 211
[3.1:7.7] [1.8:4.4] [13.0:15.9] [2.3:33]
InN 02) 53 x10° 52 x 10° 193 037 193 0.144 256
[2.8:10] [1.7:110] [12.5:579] [0.22:0.58]
A/NWS/33 (HINT) [32]
Dist ) vo(EEL)  p( AU w () ol 0 SSR AC
exp ©0) 0 14 x 107 48 x 107 — 33 x10% 830 28
5 ©0) 1300 12 % 10° 109 — 109 2.77 114
N ©) 47 x10° 15 % 10° 127 25h 127 0.090 517
[3.8:5.7] [1.1:2.2] [11.5:14.1] [2.1:3.0]
InN ©) 53 x10° 23 x10° 153 033 153 0.167 436
[4.1:6.6] [1.1:9.2] [11.6:26.1] [0.24:0.47]
exp ©0) 0 45 x 107 9.1 x 10% — 6.3 x 10% 1.0 6.5
5 2 18 x 10° 96 x 10* 79 — 79 211 -150
N 2 93 x10° 38 x10° 144 30h 144 0.099 504
[39:11] [1.1:5.9] [11.6:219] [03:3.3]
InN 0.2) 11 x10° 12 % 10° 238 044 238 0.22 -40.0
[0.79:14] [0.37:6.0] [15.3:109] [032:0.71]

a — Distribution used: exponential (exp), Dirac delta (d), normal (N), and lognormal (InN).

b — Values in parantheses were held fixed

¢ — 95% confidence intervals are given in brackets for the normal and lognormal fits.

single-cycle, single-history yield experiment (SCSH) —
mitigates complications tied to the accumulation of
virus, and brings into focus the viral production of the
cell culture as a series of snapshots over time, all sharing
a common kinetic history.

Using the model in Equation (1), we performed fits to
the SCSH data set [9] (Figure 5), allowing both the
lengths of the latent and of the infectious periods to
vary freely. To simulate the removal of the overlay med-
ium at each sampling time, we reduced the virus con-
centration by a factor of 10% (consideration of larger
reductions showed a negligible influence on the fit). The
first three data points were excluded from consideration
while fitting since these points were likely due to the
desorption of excess virus into the overlay [9], a process
not accounted for in our model. The value of viral clear-
ance was held fixed at 0.26 h™!, based on the results of
an independent mock-infection experiment (Figure 7 of

[9]). Four model types were considered: exponential-,
fixed-, normal- and lognormal-delay. The best-fit virus
curves are shown in Figure 5. The fitted parameter, SSR
and AIC, values for each distribution are reported in
Table 3. As in SCG experiments, the normal-delay and
lognormal-delay models provided adequate representa-
tions of the data, while the fixed-delay (DDE) and expo-
nential-delay (ODE) models did not.

The unique attribute of the SCSH experiment is the
view it provides of the viral production by the average
infected cell over time. To investigate these kinetics, a
transformation of the original data is required. Specifi-
cally, the experimental measure of accumulated virus
AV over an interval At can be converted to an average
virus production rate for that time interval, i.e., the
fraction of infectious cells multiplied by the (constant)
viral production rate of a cell, pI/N. The theoretical
relationship between these quantities is provided by
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Figure 5 Results of a single-cycle, single-history yield experiment[9]with model fits.Top row: Experimentally-measured viral titers (points)
are plotted along with model fits to the data (lines) for four different delay distributions. The left panel shows both the exponential-delay (solid)
and fixed-delay (dashed) model fits. Discontinuities in the model dynamics result from removal of 99.9% of virus at each measurement time
point, duplicating the experimental procedure. Bottom row: A transformation of the experimental data according to Equation (10) (points)
shows the average viral production rate (i.e,, the production rate weighted by the fraction of infectious cells) as a function of time; the model
dynamics for same quantity, pl/N, are over-plotted (lines). The model dynamics plotted in the bottom row were generated using the extracted
parameters from the fits performed to the raw data in the top row. While the exponential and fixed-delay models offer a poor fit to the data,
both the normal and lognormal-delay models adequately describe the data.

the basic equation for viral dynamics, Equation (1d). If
we assume that the number of infectious cells, I,
remains constant over the interval between samplings
of the overlay, this equation can be solved to obtain
accumulated virus as a function of average production
rate and viral clearance, c:

dv 1 a M I o

I+cv=%—>v(z)=v(o)e +C%(1—e )—>AV=C%(1—e Ay, (9)

where we have used the fact that the virus concentra-

tion at the beginning of the time interval is zero. Rearran-
ging this expression, the average viral production over an
interval At centered at time ¢ can then be written

cAV(t)

T (10)

Ew-=

The resulting transformed data is shown in Figure 5.
Viewed in this way, one can explicitly see the growth of
the infectious cell population, including a steep rise
from 4 h to 12 h as cells transition from latent to

infectious, and a long decline between 24 h and 48 h as
infectious cells cease viral production. The model
dynamics for pI/N, generated using parameters from the
fit to the raw data, agree well with the transformed data,
validating the use of Equation (1d) and the assumptions
made in the above transformation.

While the normal-delay and lognormal-delay models
both lead to an adequate description of the experimental
data, a consideration of the fitted parameter values for
the median infectious cell lifespan, ,, reveals vastly dif-
ferent underlying dynamics. In the normal-delay case,
the median infectious lifespan is predicted to be short
(f; = 6.5 h) but the associated standard deviation is
large. The long decay of infectious cells at late times is
therefore explained by a broad distribution in the times
spent by cells in the infectious state. Using the lognor-
mal-delay model, however, the best fit is nearly that of a
fixed-delay (o; << 1), with a long median infectious life-
span (f; =18 h). Under this assumption, the decay of
infectious cells is thus completely determined by the
long tail in the distribution of latently infected cell
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Table 3 Fits to the Gaush & Smith (1968) single-cycle, single-history experiment (Figure 5) [9]

Dist® p(BEL) 7 (h) o 7 (h) o i, (h) t; (h) SSR AIC,

exp 18 x 10° 105 — 105 — 73 73 3.59 213

5 75 % 10° 6.2 — 345 — 6.2 345 —b —

N 54 % 10° 124 46 h 017 97 h 124 6.6 0.79 413
1487 [6.7:14.3] [1.9:58] [0.002:23] [4.3:13.3]

InN 20 x 10° 85 049 182 0 85 182 0.93 383
[1.0:46] [54:108] [0.24:058] [9.6:25.6] [0:041]

a — Delay model used: exponential (exp), fixed (d), normal (N), and lognormal (InN).
b — Using the fixed-delay model, virus titer is zero at all times prior to the appearance of infectious cells such that the SSR measured in log scale cannot be

computed.

¢ — 95% confidence intervals are given in brackets for the normal and lognormal fits.

lifespans. With only a single data set, it is not possible
to discriminate between these two extreme cases: short
infectious lifespans on average with a broad distribution,
versus a long average infectious lifespan with a narrow
distribution of transitions. The results of SCG experi-
ments, where viral titer is observed to grow linearly over
10 to 20 h (Figure 3), suggest that the former is unlikely
since infectious cell death would lead to a turnover in
the viral titer curve. It would be useful to duplicate this
unique experiment in parallel with a typical SCG experi-
ment such that these biologically distinct possibilities
can be distinguished.

Effect of delay assumptions in fitting clinical data

We now consider the effect that the choice of delay dis-
tribution has on estimated parameter values when fitting
a model to viral titer data from human patients experi-
mentally infected with influenza. This type of data — two
examples are shown in Figure 6, for others see [34] —
generally shows an exponential increase of virus followed
by an exponential decrease after the peak, which occurs 1
to 2 d post-infection. An empirical function capturing
these basic characteristics can be written as

B 2v, a
exp[-Ag(t —t,)] +exp[Ay(t — t,)]

v(t)

where A, and 1, are the exponential growth and decay
rates, respectively. V), is the peak value of the viral titer,
and ¢, is the time of viral titer peak. The exact peak
values can be determined by differentiating Equation
(11). Fits of this function to the experimental data,
along with the calculated SSR, are shown in Figure 6.
The simple functional form of the empirical model in
Equation (11) points to a fundamental problem in fitting
a dynamical model to clinical viral data: only four inde-
pendent parameters can be reliably extracted from such
data. A closely related problem is whether or not the
parameters of a given model can be uniquely identified
from a particular experimental measurement, the

question of parameter identifiability [35-37]. It has been
shown, for example, that the ODE model in Equation
(3) is not identifiable when considering viral titer data
alone [37]. Sparse experimental data, where the viral
titer curve is not well-sampled, can introduce additional
complications for model fitting. For example, in the
influenza A/Texas/36/91 (H1N1) viral titer data [38]
presented in Figure 6a, there is only a single data point
(at 24 h) from which the growth rate of viral titer, A,
can be determined.

To mitigate some of these problems, we fitted the four
delay models (exponential-, fixed-, normal- and lognor-
mal-delay) to the clinical data sets in Figure 6 under a
number of constraints. We fixed the values of o; and o;
to those obtained for SCSH experiment (Table 3) to
allow for comparison of model systems with an equal
number of parameters. Then, to allow for unique solu-
tions in the fitting algorithm, we reduced the parameter
space by fixing the product of the viral production and
infection rates, pB, to the value of 1 h™2. This quantity is
a measure of the infectivity of a virus-cell system and is
related to the characteristic infecting time of the system,

2 . P . . .
tinf = X which is time for a single infectious cell to

cause the latent infection of one more in a completely
susceptible cell population [33]. Under these constraints
we were able to compare the effect of different delay
assumptions on the fitted values of viral clearance, c,
and production rate, p ; median latent and infectious
cell lifespans, 7, , and f;, and the basic reproductive
number R, (Table 4).

A comparison of the fitted parameter values shows a
clear delineation between the results obtained under the
assumption of exponentially-distributed delays and those
of the other three models, which enforce longer delays
for all cells. The median lifespan of a latently infected
cell, ¢, , is shorter under the exponential assumption
(3.7 h vs. an average of 7.6 h for the A/Texas/36/91
(HIN1) data set [38] and 6.4 h vs. an average of 9.4 h
for A/Bethesda/1/85 (H3N2) [39]). The same is true for
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Figure 6 In vivo patient data. Viral titer over time for volunteer
patients infected with (a) influenza A/Texas/36/91 (H1N1) [38], and
(b) A/Bethesda/1/85 (H3N2) [39]. The solid curve is a fit of the
empirical model in Equation (11) to each dataset. The fitted
parameter values are given along with the SSR of the fit.

the median infectious lifetime, ¢ ; - Extracted values for
the viral production rate are larger for the exponential-
delay model, by a factor of ~ 2 in one data set and by
an order of magnitude in the other. The estimated basic
reproductive number is smaller for the exponential-
delay model, by a factor of 2—10, than the other three
delay types. The fitted value of the viral clearance, c,
was independent of delay choice for one data set (and
equal to the viral decay rate, 1,), but differed for the
exponential-delay model in the other.

Conclusions

Mathematical models of viral infections within a host or
cell culture have helped shed light on several aspects of
cell-virus interactions [6,40,41]. Most frequently, models
have been used to extract values for the parameters con-
trolling small-scale infection kinetics from experimental
data [4,42,43]. This has allowed mathematical modeling
to play an ever-growing role in virological and
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immunological studies, with an increasing number of
publications in these fields incorporating some amount
of modeling [44-46]. At present, however, modeling work
often lags experimentation and primarily serves an expla-
natory role. It is desirable that models take a more pre-
dictive role in the future, where the simulation of viral
infections may aid, for example, in the prediction of viru-
lence for new strains or the kinetic mechanisms of
untested antiviral therapies. Before models can take on a
predictive role, however, the mathematical implementa-
tion of viral infection dynamics must be tested against a
diverse set of experimental conditions to ensure that bio-
logical reality is faithfully represented.

Here, we have investigated the implementation of the
progress of a cell through the states of infection: from
latently infected to infectious to dead. We have focused
on the characterization of two times: the time a cell is
latently infected but not yet releasing virus, and the
time a cell is infectious (releasing virus) before infec-
tion-induced death. We explored four different distribu-
tions for these state lifetimes: exponential, Dirac delta
(fixed-delay), normal, and lognormal. The validity of
each distribution was assessed by fitting the associated
model to data from single-cycle growth (SCG) viral yield
experiments. These experiments provide a unique view
of the average dynamics of a single cell due to the syn-
chronous infection of all cells. We have shown that
ODE models which implement exponential delays and
DDE models with fixed delays are unable to describe
this experimental data, whereas normal-delay and log-
normal-delay models both provide a good fit to the
data. In addition to the classic SCG experiment, we
have also considered delay dynamics for a “single-cycle,
single-history” (SCSH) experiment [9], which reveals
average cellular virus production as a function of time.
We have shown that, like the SCG experiment, both
normal- and lognormal-delay models provide an ade-
quate description of the dynamics while exponential-
and fixed-delay models do not. The origin of the inabil-
ity of ODEs and DDEs to exhibit single-cycle dynamics
can be seen quite clearly in the experimental data (Fig-
ures 3, 4, and 5): virus production begins only after a
long delay following the infection of a cell, a feature
which ODE models cannot replicate, and the transition
of cells into and out of the infectious phase follows a
smooth distribution which DDE models cannot
reproduce.

The median values of the latent infection period,
determined by fitting normal- and lognormal-delay
models to the data from these SCG experiments, ranged
from 8 h to 24 h, which is significantly longer than the
4 to 6 h values typically quoted in the literature (e.g.,
[2]). There are a number of possible reasons for this dis-
crepancy. First, the latent infection period in the model
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Table 4 Constrained model fits to the human influenza infection data in Figure 6

A/Texas/36/91 (H1N1) [38]

Dist” c(h™ VP P> 7, (h) o 7 (h) o i, (h) t; (h) Ro SSR®
exp 0.19 0022 280 54 — 16.9 — 37 1.7 89 1.00
) 0.059 285 62 102 — 230 — 102 230 390 1.00
N 0.059 0013 100 18 46 h) 121 97 h) 39 134 240 098
InN 0.059 072 99 87 (0.49) 145 ) 87 145 250 1.00
A/Bethesda/1/85 (H3N2) [39]
Dist c(h™ Vo p 7 (h) o 7 (h) o t, 0 t; Ro SSR
exp 0.11 7.0 13 % 10° 9.0 — 22 — 64 15 20 091
5 0.10 284 77 % 10° 99 — 315 — 99 315 320 0.88
N 0.10 106 12 % 10* 926 46 h) 199 9.7 h) 9.7 20.1 200 0.90
InN 0.10 18 80 x 10° 85 (0.49) 304 ) 85 304 300 091

a — Delay model used: exponential (exp), fixed (d), normal (N), and lognormal (InN).

b — Units of p are [V]*h™", where [V] = TCIDso/mL, the units of viral titer.

¢ — The value of pB was held fixed at 1 h™ for all fits; values in parentheses were also eld fixed.

d — SSR’ is the ratio of the SSR to that of the empirical fit.

includes both the typical eclipse period prior to virus
production and any additional time required for viral
release. Second, viral production in a culture is likely
detectable much earlier. For example, under the
assumption of normal delays the median length of the
latent phase was found in the SCSH experiment to be
i, =12.4 h with 6, = 4.6 h. Thus, 6% of cells (~ 600,
000) had already begun releasing virus after only 6 h;
using an alternative definition, the phase of latency
could be declared over much earlier. Finally, the model
describes a system where each cell releases no virus
until the start of the infectious phase at which point
virus is produced at a constant rate common to all cells.
This is obviously a simplified version of reality. In fact,
there is significant evidence from flow cytometry fluor-
escence experiments that different cells produce virus at
different rates, perhaps over several orders of magnitude
[47]; it is also likely that the rate of virus production
varies over the course of its infectious lifespan.

The median infectious cell lifespan, determined in fits
of the normal- and lognormal-delay models to the SCSH
data, ranged from 6 to 18 h, but the application of these
two distributions types implied disparate dynamical sce-
narios. Under the assumption of normal delays, the infec-
tious lifespan was small but the distribution was broad. In
contrast, the lognormal assumption predicted nearly a
fixed infectious lifetime for all cells and the observed
slow decline of infections cells was completely ascribed
to a long tail in the transition from the latent to infec-
tious phase. Biologically, the infectious cell lifespan is
variously characterized in the literature, as is influenza-
induced cell death in general. When cell death is due to
apoptosis, for example in MDCK cell cultures [48], the
median time of cell death ranges from 12 to 48 h after
infection, depending on the influenza strain subtype.

When virus-induced cell death is caused by necrosis, as
in cultures of some lung and intestinal epithelial cells,
this range increases significantly with cells living 2-3 d
post-infection [20,49,50]. The death of cells during an
infection in vivo is obviously much more difficult to mea-
sure. There is some evidence that influenza-induced cell
death is caused by apoptosis [51-53] but details of the
timing and strain dependence are unknown. Future ela-
boration of SCSH experiments, in concert with the type
of analysis performed here, could aid in the quantitative
characterization of virus-induced cell death.

Using the results from our analysis of in vitro experi-
ments, we considered the effect of delay distribution
choice when fitting viral titer data from in vivo infec-
tions (experiments performed on human volunteers). To
allow for the identification of some kinetic parameters,
we restricted the analysis by assuming a fixed value for
the viral infectivity (defined as the product of the infec-
tion and production rates, pff) and used the values for
the parameters o; and o; determined when fitting the in
vitro data. Under these assumptions, we found a clear
difference between the extracted parameter values for
models enforcing a delay in transitions (fixed-, normal-
and lognormal-delay) and the ODE model with expo-
nential transitions. Specifically the ODE predicted larger
virus production rates, shorter latent and infectious
phase lifespans, and a lower value of the basic reproduc-
tive number, Ry (Table 4). Although this result depends
on rather arbitrary assumptions — infectivity may vary
by orders of magnitude and there is little reason to
assume that parameter values determined in vitro
should be the same in vivo — it demonstrates that the
choice of delay distribution has a significant effect on
the conclusions drawn from model-fitting of in vivo
data. This analysis also suggests that while a fixed-delay
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model cannot reproduce the continuous dynamics of
cell transitions observed in single-cycle experiments, it
may be a reasonable substitute for the more complicated
normal and lognormal models in some contexts.

Our analysis of the in vivo experiments demonstrates
the difficulty in extracting reliable information from
viral titer data alone. Consideration of the SSR values
for the model fits to in vivo data (Table 4) shows that
each model adequately describes the data, despite the
arbitrary constraints imposed. This highlights both the
weakness of using viral titer data for model selection
and the difficulty in uniquely identifying parameters
from such data, given a particular model. Precise state-
ments about the parameters controlling an in vivo infec-
tion can only be made by either imposing constraints to
reduce the considered parameter space (as we have
done here), or by obtaining complementary data (for
example information about infectious cell population
dynamics). Collection of infected cell data over the
course of an influenza infection has only recently been
considered in animal models (e.g., [54]) and such data
will likely be unobtainable for human infections. Full
characterization of models using in vitro experiments
will therefore remain an important direction of future
research. The introduction of infection models with an
explicit immune response and the parallel measure-
ments of immune system quantities (which are easier to
obtain than infected cell populations) is a promising
direction not only for a more complete understanding
of the influenza infection but also the complete parame-
trization of these models [5,54,55] This will, of course,
depend on the development of simple models for which
the added complexity is warranted by the available data.

In the past ten years, tools for dynamical measurements
of in vitro viral infections have improved quickly. The mea-
surement of infection within individual cells by fluorescence
microscopy has become routine [47]. The spatial spread of
virus infections on cell culture can be viewed in real time,
both at the level of cellular deformation and at the level of
individual virus particles [56]. Individual virus particles have
been tracked as they enter a cell, and repeated observations
have allowed for a statistical characterization of the timing
of events in the early stages of infection [16]. These detailed
views of the influenza infection will be invaluable for the
construction of the next generation of viral infection mod-
els. Models, in turn, will provide a cohesive picture of the
overall infection process and, crucially, make connections
between the known small-scale details of the virus-cell
interaction and the infection at the level of the organism,
where it is manifested as a disease.

List of abbreviations
ODE: Ordinary differential equation; DDE: Delay differential equation; SSR:
Sum of squared residuals; AIC: Akaike information criterion; AIC.: Akaike
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MOI: Multiplicity of infection; SCSH: Single-cycle, single-history growth;
MDCK: Madin Darby canine kidney; VU: Virus units
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