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Abstract

explored.

Background: During the 2009 H1N1 influenza pandemic, concerns arose about the potential negative effects of
mass public gatherings and travel on the course of the pandemic. Better understanding the potential effects of
temporal changes in social mixing patterns could help public officials determine if and when to cancel large public
gatherings or enforce regional travel restrictions, advisories, or surveillance during an epidemic.

Methods: We develop a computer simulation model using detailed data from the state of Georgia to explore how
various changes in social mixing and contact patterns, representing mass gatherings and holiday traveling, may
affect the course of an influenza pandemic. Various scenarios with different combinations of the length of the
mass gatherings or traveling period (range: 0.5 to 5 days), the proportion of the population attending the mass
gathering events or on travel (range: 1% to 50%), and the initial reproduction numbers Ry (1.3, 1.5, 1.8) are

Results: Mass gatherings that occur within 10 days before the epidemic peak can result in as high as a 10%
relative increase in the peak prevalence and the total attack rate, and may have even worse impacts on local
communities and travelers’ families. Holiday traveling can lead to a second epidemic peak under certain scenarios.
Conversely, mass traveling or gatherings may have little effect when occurring much earlier or later than the
epidemic peak, e.g, more than 40 days earlier or 20 days later than the peak when the initial Ry = 1.5.

Conclusions: Our results suggest that monitoring, postponing, or cancelling large public gatherings may be
warranted close to the epidemic peak but not earlier or later during the epidemic. Influenza activity should also be
closely monitored for a potential second peak if holiday traveling occurs when prevalence is high.

Background

During the 2009 HIN1 influenza pandemic, concerns arose
about the potential negative effects of mass public gather-
ings and travel on the course of the pandemic. The World
Health Organization (WHO), the U.S. Centers for Disease
Control and Prevention (CDC), and many other public
health organizations published recommendations [1-8]
suggesting the public defer non-essential travel to infected
areas and emphasizing taking appropriate precautions (e.g.,
hand hygiene) during traveling, attending and/or hosting
mass gathering events. However, the decisions regarding
cancelling or postponing mass gatherings are left to local
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authorities; travel restrictions are generally not recom-
mended [4,9-13], but some countries have introduced new
travel regulations relating to the 2009 HIN1 outbreaks
[14]. Later in December 2009, when the pandemic
appeared to be subsiding, public health officials contem-
plated whether changes in social mixing patterns due to a
combination of Holiday travel with school and workplace
closures could lead to a subsequent surge of cases ("a third
wave”) similar to those seen in 1918 and 1957 [15,16].
Previous studies have shown the effects of social mix-
ing patterns and distancing measures (such as school
closures and travel restrictions) on the spread of infec-
tious diseases and epidemics [17-26]. A recent study
showed how viral mutation can lead to an additional
epidemic peak [27]. However, few studies have explored
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the potential negative impact of public gatherings and
Holiday travel during an epidemic.

Better understanding the potential effects of changes in
social mixing patterns could help public officials determine
if and when to cancel large public gatherings or enforce
regional travel restrictions, advisories, or surveillance during
an influenza pandemic. Therefore, we developed a computer
simulation model using detailed data from the state of Geor-
gia to explore how various changes in social mixing and
contact patterns, representing mass gatherings and Holiday
traveling, may affect the course of an influenza pandemic.

Methods
Our study utilizes a previously-described spatially and
temporally explicit agent-based simulation model of the
state of Georgia that consists of a population of computer
agents, with each agent representing an individual pro-
grammed with socio-demographic characteristics and
behaviors [27]. Each agent has an assigned household
according to distributions from the 2000 U.S. Census Data
[28]. Agents interact with each other in homes, peer
groups (workplaces and schools), communities, and/or
during mass gathering events and Holiday traveling
[11,29]. The model population consists of five age groups:
0-5, 6-11, 12-18, 19-64, and >65 years. Table 1 lists the
distributions of the size of the households, peer groups
and communities. Figure 1 diagrams the social network
for the model. Each day individuals move among different
locations and homogenously mix within those locations.
At the beginning of each simulation run, all agents in
the population are susceptible. On Day 1, three infected
agents are introduced into the population. Contact with
an infectious agent has a probability of transmission of the
virus to the susceptible agent. A newly infected agent then
progresses through the following stages: Susceptible-
Exposed-Infected-Recovered (SEIR), based on the incuba-
tion and infectious periods of the disease [30]. After being
infected, each individual first progresses through the incu-
bation period, then through the presymptomatic phase,
and then has a probability p4 of remaining asymptomatic
and a probability (I-p4) of becoming symptomatic during
the infectious period. Each symptomatic individual has a
probability p;; of requiring hospitalization (H). Each hospi-
talized individual has a probability py of dying. Individuals
who survive infection eventually assume the recovered
state and are immune to infection. Development of the
disease and contact model is based on methods used by
Ferguson et al. and Wu et al. [11,30]. Table 1 lists the
values and sources of key parameters.

Mass Social Mixing: Large Public Gatherings and Holiday
Travel

To explore the effects of mass social mixing changes
(e.g., large public gatherings and Holiday traveling), we
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divide the year into a “regular” period and a “traveling”
(or “mass gathering”) period. The “traveling” period
starts at day ¢* after the introduction of the initial
infected case and lasts for / days; the remaining days
before and after this “traveling period” comprise the
“regular” period.

During the regular period, agents move back and forth
between households and workplaces or schools [27,31].
They mix in the workplaces or schools during the day
and in their households during the night. Agents also
mix in the communities during the day and night by vis-
iting common areas such as grocery stores, churches,
theaters, etc.

At the beginning of the traveling period, we select p%
of the total agent population (in two different ways, see
below) to change mixing patterns. They mix in a large
group (i.e., “traveling/mass gathering group”) to model
temporal mass gathering locations/events, e.g., airports,
shopping malls, or the annual Georgia Tech versus Uni-
versity of Georgia football game. We consider the fol-
lowing two scenarios:

1. Non-Holiday: p% of the total agent population is
sampled randomly. Agents selected to mix in the “travel-
ing/mass gathering group” only have contact with each
other in the group, and no longer interact with their
family members or classmates/colleagues, or mix in their
usual communities. The (1-p)% agents not in the travel-
ing group retain their usual mixing routines, e.g., mix in
their workplaces or schools during the day and in their
households during the night. This scenario represents
mass public gatherings, e.g., a football game, road race,
concert, convention, or demonstration [32-37], where
one does not necessarily attend the events or travel with
his/her family. The traveling/gathering group can include
event attendees, visitors, and local residents.

2. Holiday: A subset of households is randomly
sampled so that p% of the total agent population is cho-
sen to mix in the “traveling/mass gathering group.” The
agents travel with their family members (i.e., mix in the
household day and night), and also interact with other
agents in the traveling group during the day. However,
they no longer mix in their schools, workplaces or usual
communities. The agents not selected for travel reduce
their peer group mixing activities [21,22]. Schools and a
percentage of workplaces (baseline 50%) are closed dur-
ing the traveling period (/ days) so that agents no longer
mix in these locations. This setting represents travel or
mass gatherings during a holiday, e.g., Thanksgiving or
New Year’s Eve.

When the traveling period ends, all the agents return
to their regular mixing routines.

The calibration procedure involves several steps. First,
we establish the social network group sizes (i.e., house-
holds, workplaces, and schools) based on data listed in
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Table 1 Key Model Parameters
Parameter Description Baseline Values Reference
Pa Probability of infected individual remaining asymptomatic 0.4 for working adults, 0.25 for others [29,30,49,52]
throughout course of infection
PH Probability of symptomatic individual requiring hospitalization  0.18 for ages 0-5, 0.06 for ages 6-64, 0.12 for ages 65 [29,30]
+
Po Probability of hospitalized individual not surviving 0.344 for ages 0-5, 0.172 for ages 6+ [30,53]
Duration of Duration of exposed and presymptomatic stages Weibull distribution with mean 1.48 and standard [30,39]
E+ Ip deviation 047, and offset 0.5
Duration of Duration of presymptomatic stage 0.5 (constant) [30,39]
Ip
Duration of Duration of symptomatic stage Exponential distribution with mean 2.7313 (mean = 7 [30,41,42]
I in the sensitivity analysis)
Duration of Duration of asymptomatic stage Exponential distribution with mean 1.63878 (mean = [3041/42]
Ia 7 in the sensitivity analysis)
Duration of Duration of hospitalization Exponential distribution with mean 14 [30,39]
Iy
Household Number of individuals in each household 1 person: 10.33%; 2 persons 23.55%; 3 persons: [28]
Size 20.45%; 4 persons: 23.00%;
5 persons: 12.79%;
6 persons: 5.91%;
7 persons: 3.97%.
School Number of individuals in each classroom Uniform distribution (9,19) for ages 0-5; uniform [30,31]
Classroom distribution (15,25) for ages 6-11; and uniform
Size distribution (25,35) for ages 12-18
Workplace Number of individuals in each workplace Poisson distribution with mean 20 (maximum 1000) [29,30]
Size
Community  Number of people in each census tract (1615 census tracts in Maximum = 29341, minimum = 218 [28]
Size the state of Georgia)
p% Proportion of the population that attends mass gatherings or 1%, 5%, 10%, and 25% for the non-Holiday scenarios;  [32-37,43,44]

travels during the experiments

25% and 50% for the Holiday scenarios

Initial Ry Reproductive rate (average number of secondary cases 13,15 and 1.8 [11,20,29,30,39]
generated by each infected individual) for each experiment
before social mixing changes are introduced
Resulting Ry Reproductive rate (average number of secondary cases See Tables 2-4
generated by each infected individual) for each experiment
after social mixing changes are introduced
0 Proportion of transmissions that occur at presymptomatic/ 0.3 [30]
asymptomatic stage
® Proportion of infections generated by individuals who are 0.15 (30]
asymptomatic
Y Proportion of transmissions that occur outside the households 0.7 [11]
8 Proportion of transmissions outside the home that occur in 0.5 [11]

the community

The table shows the explanations, values and sources for the key parameters we used in the simulation model.

Table 1, and we assume homogeneous mixing within
each group. Then, studies of previous pandemics pro-
vide the correlation between Ry and the resulting attack
rate. Therefore, for a given Ry, we target the corre-
sponding attack rate, i.e., adjust transmission parameters
until the appropriate attack rate is obtained. This
method has been used in numerous previous studies
[11,17,30,38-42]. Additional details on the transmission
models and the calculation of the parameters during the
regular period and the traveling period are available in
[Additional file 1].

Simulation Runs and Sensitivity Analyses

To study the impact of traveling and mass gathering
events on the course of an influenza pandemic, we test
different scenarios with three initial influenza reproduc-
tive rates (the initial Ry before any social mixing changes
occurred): 1.3, 1.5, and 1.8 (see [Additional file 1] for
more details), which correspond to Rg estimates from
past pandemics in 1918, 1957, 1968, and 2009
[11,20,29,30,39]. Separate scenarios also explore the
effects of using different “traveling/gathering” starting
dates t* (Day 30, 60, 90, 120, 180), “traveling/gathering”
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Figure 1 An example of the contact network. The figure shows
an example of the contact network, i.e, how persons interact with
each other in households, workplaces, schools, communities, and/or
temporary mass gathering locations.

durations / (0.5 day, 1 day, 2 days, and 3 days for the
non-Holiday scenario, 3 and 5 days for the Holiday sce-
nario), and the proportion of the population that tra-
vels/gathers during this period p (1%, 5%, 10% and 25%
for the non-Holiday scenario [32-37], 25% and 50% for
the Holiday scenario [43,44]).

To study the regional impact of traveling and mass
gathering events, we explore various proportions for the
population who participate in traveling/gathering (i.e.,
different p values) in different locations. For example,
similar to the Annual Cherry Blossom Festival in
Macon, Georgia, we assume in one experimental sce-
nario that 50% of the population travels/gathers in Bibb
County and its nearest 5 counties [28], and 9.5% of the
population travels/gathers in other counties (so that for
the entire population p = 10%) under the non-Holiday
setting.

The total number of experimental scenarios is 125 for
the non-Holiday scenario and 60 for the Holiday sce-
nario with 10 replications for each experiment unless
indicated otherwise. The time horizon for each replica-
tion is 365 days.

Results

For the non-Holiday scenario, we focus on the charac-
teristics of peak prevalence and the total attack since
only one epidemic peak appears; for the Holiday scenar-
ios, we focus on whether two epidemic peaks are pre-
sent (i.e., the influenza activity declines first and
increases later). In the non-Holiday setting, we also
examine the impact of transmissions to the traveler and
their family and within regions where gathering occurs.
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Tables 2, 3, 4 report the initial baseline R, (before social
mixing changes are introduced) values, the peak preva-
lence, the total attack rate, and the resulting Ry values
after the mass social mixing changes were instituted for
experiments under the non-Holiday setting.

The Timing of Mass Travel/Public Gatherings t*

As the results from simulating non-Holiday scenarios
demonstrate, when the initial Ry = 1.5, mass traveling or
public gatherings that commence more than 20 days
(e.g., t* = 90, 120, or 180) after the epidemic peak (Day
70 in the baseline scenario with Ry, = 1.5) had little
impact on the peak prevalence or the total attack rate.
Mass traveling or public gatherings that commence well
prior (i.e., more than 40 days) to the epidemic peak (e.
g., t* = 30) have a minor but not significant impact, e.g.,
having 25% of the population traveling increases the
peak prevalence from 2.73% (baseline) to 2.80% (around
2% relative increase in the peak percentage) but does
not affect the overall attack rate much.

However, mass traveling that begins shortly before the
peak prevalence day (e.g., t* = 60, 10 days before
the peak in the baseline case) can significantly increase
the peak prevalence, e.g., 25% of the population travel-
ing for 1 day increases the peak prevalence from 2.73%
(baseline) to 3.04% (around a 11% relative increase) and
increases the overall attack rate from 51.0% (baseline) to
51.7%. This translates to an additional 63,502 individuals
being infected in Georgia [28]. Table 2, 3, 4 show how
different values of ¢* (the starting time of the “traveling/
gathering” period) affect the epidemic under non-
Holiday conditions for all the initial Ry values we tested.

The results of simulating the Holiday setting show
that similar observations hold in that setting. When the
initial Ry = 1.5, mass traveling/gatherings that occur
more than 20 days after the epidemic peak or more
than 40 days before the peak do not lead to a second
epidemic peak; otherwise, two explicit epidemic peaks
can appear under certain scenarios as we demonstrate
in the next section.

Impact of Holiday Traveling on Multiple Peaks

Figure 2 shows the resulting epidemic curves (i.e., the daily
prevalence of infected persons) for the entire state of
Georgia under the Holiday scenario where 25% of the
population mixes in the “traveling group” during a 5-day
traveling period. Figure 2(A) shows the scenario with the
initial Ry = 1.5 when the traveling period starts on Day 60;
Figure 2(B) shows the scenario with the initial Ry = 1.3
when the traveling period starts on Day 90.

Figure 2 shows that the Holiday scenario can generate
two prevalence peaks, while this is not seen in any of
the non-Holiday scenarios we tested. Moreover, various
scenarios with different initial Ry values, traveling
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Table 2 Results from Different Mass Gathering Scenarios (Initial RO = 1.5)
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% population traveling (p) Traveling Period Resulting Ry Peak Prevalence Peak Day Total Attack Rate
Start Duration

p=1% Day 30 0.5 1.50 2.73% 70 51.0%
Day 30 1 1.50 2.76% 70 51.0%

Day 30 2 1.50 2.78% 71 51.0%

Day 30 3 1.50 2.79% 70 51.0%

Day 60 0.5 1.50 2.74% 70 51.0%

Day 60 1 1.50 2.76% 70 51.0%

Day 60 2 1.50 2.74% 70 51.0%

Day 60 3 1.50 2.75% 71 51.0%

p = 5% Day 30 0.5 1.50 2.74% 69 51.0%
Day 30 1 1.50 2.77% 70 51.0%

Day 30 2 1.50 2.77% 70 51.0%

Day 30 3 1.50 2.80% 70 51.0%

Day 60 0.5 1.50 2.74% 69 51.0%

Day 60 1 1.50 2.81% 70 51.2%

Day 60 2 151 2.83% 70 51.2%

Day 60 3 1.50 2.78% 70 51.1%

p = 10% Day 30 0.5 1.50 2.74% 69 51.0%
Day 30 1 1.50 2.78% 69 51.0%

Day 30 2 1.50 2.80% 69 51.0%

Day 30 3 1.50 2.82% 68 51.1%

Day60 05 1.50 2.80% 69 51.0%

Day 60 1 151 2.85% 70 51.3%

Day 60 2 151 2.89% 69 51.4%

Day 60 3 1.50 2.80% 70 51.1%

p = 25% Day 30 0.5 1.50 2.79% 69 51.0%
Day 30 1 1.50 2.80% 68 51.1%

Day 30 2 1.50 2.80% 68 51.1%

Day 30 3 1.50 2.83% 70 51.0%

Day 60 0.5 151 2.90% 69 51.4%

Day 60 1 152 3.04% 69 51.7%

Day 60 2 153 3.12% 69 52.0%

Day 60 3 151 2.96% 71 51.4%

Baseline 1.50 2.73% 70 51.0%

The table shows the total attack rate (i.e., proportion of population that has ever been infected), the peak prevalence day and value in the non-Holiday scenarios,
with several combinations of values for / (duration of the traveling/mass traveling period) and p (the proportion of the population traveling/gathering) when the
initial Ry equals to 1.5. The resulting R, values (after adding the traveling/mass gathering period) are obtained from the baseline scenarios (without traveling/
gathering) to match the peak prevalence and the total attack rate showed in this table. The standard deviation is 0.04-0.09% for the peak prevalence and is

0.17-0.30% for the total attack rate.

durations and proportions of the population on travel
can generate two distinct epidemic peaks when Holiday
traveling occurs within 5-20 days (depending on the
initial Ry values) before the prevalence peak day in the
baseline (no traveling) scenario. The prevalence, the tim-
ings of the two peaks, and the total attack rate depend
on the parameter settings in each scenario.

The appearance of the two epidemic peaks is due to par-
tial “social-distancing”, as a large proportion of the

population no longer mixes in the workplaces/schools
when the Holiday (traveling) begins, causing a momentary
drop in new cases until the Holiday is over and mixing
resumes. To isolate the effects of traveling versus the
reduction in peer group mixings, Figure 3 compares the
epidemic curves for the entire state of Georgia in the fol-
lowing two scenarios using the initial Ry = 1.5: (1) 25%
population on travel during a 5-day Holiday period start-
ing on Day 60 as previously described; (2) the same
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Table 3 Results from Different Mass Gathering Scenarios (Initial RO = 1.3)
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% population traveling (p) Traveling Period Resulting Ry Peak Prevalence Peak Day Total Attack Rate
Start Duration

p=1% Day 60 0.5 130 0.96% 98 32.5%
Day 60 1 130 0.97% 99 32.5%

Day 60 2 130 0.96% 98 32.8%

Day 60 3 130 0.98% 98 32.9%

Day 90 0.5 130 0.96% 97 32.5%

Day 90 1 130 0.97% 98 32.6%

Day 90 2 130 0.98% 97 32.8%

Day 90 3 130 0.98% 97 32.8%

p = 5% Day 60 0.5 130 0.97% 96 32.6%
Day 60 1 130 0.98% 97 32.6%

Day 60 2 130 0.98% 97 32.8%

Day 60 3 130 1.00% 96 32.9%

Day 90 0.5 130 0.98% 97 32.8%

Day 90 1 1.30 0.98% 96 32.7%

Day 90 2 131 1.00% 99 33.1%

Day 90 3 130 0.97% 101 32.7%

p = 10% Day 60 0.5 130 0.98% 96 32.8%
Day 60 1 130 0.98% 96 32.7%

Day 60 2 130 0.99% 95 32.9%

Day 60 3 1.30 1.01% 97 32.9%

Day 90 05 1.30 0.99% 98 32.8%

Day 90 1 131 1.00% 97 33.1%

Day 90 2 131 1.02% 99 33.1%

Day 90 3 130 0.98% 99 32.8%

p = 25% Day 60 0.5 130 0.98% 97 32.8%
Day 60 1 1.30 1.00% 97 32.7%

Day 60 2 1.31 1.05% 94 332%

Day 60 3 130 1.03% 99 32.7%

Day 90 0.5 131 1.04% 98 33.1%

Day 90 1 131 1.07% 99 33.3%

Day 90 2 132 1.11% 99 33.7%

Day 90 3 1.31 1.02% 99 33.0%

Baseline 1.30 0.96% 94 324%

The table shows the total attack rate (i.e., proportion of population that has ever been infected), the peak prevalence day and value in the non-Holiday scenarios,
with several combinations of values for / (duration of the traveling/mass traveling period) and p (the proportion of the population traveling/gathering) when the
initial Ry equals to 1.3. The resulting R, values (after adding the traveling/mass gathering period) are obtained from the baseline scenarios (without traveling/
gathering) to match the peak prevalence and the total attack rate showed in this table. The standard deviation is 0.02-0.05% for the peak prevalence and is

0.22-0.41% for the total attack rate.

number of persons reduce their peer group mixings and
stay at home day and night during a 5-day period starting
on Day 60. The second scenario models social distancing
or household quarantine. As shown in Figure 3, there are
two epidemic peaks in both scenarios; however, the preva-
lence of the second peak in the social-distancing scenario
(2.47%) is lower than that in the traveling scenario (2.86%).
The total attack rate in the former is 50.4%, and 51.7% in
the latter. This is consistent with our previous observation:

traveling/mass gatherings can lead to an increase in the
peak prevalence and the total attack rate, but do not cause
a second peak alone among the experiments we test.

The Duration of the Mass Traveling Period (/) and the
Proportion of the Population Traveling (p) under the
Non-Holiday Setting

Tables 2, 3, 4 also compare the peak prevalence and the
total attack rate in Georgia for different combinations of
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Table 4 Results from Different Mass Gathering Scenarios (Initial RO = 1.8)

% population traveling (p) Traveling Period Resulting Ry Peak Prevalence Peak Day Total Attack Rate
Start Duration
Start Duration
p=1% Day 30 0.5 1.80 5.99% 50 68.4%
Day 30 1 1.80 5.99% 51 68.4%
Day 30 2 1.80 6.00% 50 68.4%
Day 30 3 1.80 6.00% 50 68.4%
Day 45 0.5 1.80 5.99% 51 68.4%
Day 45 1 1.80 6.00% 51 68.4%
Day 45 2 1.80 5.99% 51 68.4%
Day 45 3 1.80 5.96% 51 68.4%
p = 5% Day 30 0.5 1.80 6.01% 50 68.4%
Day 30 1 1.80 6.01% 50 68.4%
Day 30 2 1.80 6.03% 50 68.4%
Day 30 3 1.80 6.10% 51 68.4%
Day 45 0.5 1.80 6.04% 51 68.4%
Day 45 1 1.80 6.05% 50 68.6%
Day 45 2 1.81 6.09% 51 68.7%
Day 45 3 1.80 5.94% 51 68.4%
p=10% Day 30 0.5 1.80 6.03% 51 68.4%
Day 30 1 1.80 6.08% 50 68.4%
Day 30 2 1.80 6.12% 50 68.4%
Day 30 3 1.80 6.17% 51 68.4%
Day 45 0.5 1.80 6.05% 51 68.5%
Day 45 1 1.81 6.20% 50 68.6%
Day 45 2 1.80 6.07% 51 68.5%
Day 45 3 1.80 5.99% 51 68.4%
p = 25% Day 30 0.5 1.80 6.08% 50 68.4%
Day 30 1 1.81 6.16% 50 68.5%
Day 30 2 1.82 6.31% 50 68.6%
Day 30 3 1.82 6.40% 50 68.5%
Day 45 0.5 1.82 6.20% 51 68.8%
Day 45 1 1.83 6.49% 50 69.3%
Day 45 2 1.83 6.58% 51 69.5%
Day 45 3 1.82 6.21% 53 68.6%
Baseline 1.80 5.99% 50 68.4%

The table shows the total attack rate (i.e., proportion of population that has ever been infected), the peak prevalence day and value in the non-Holiday scenarios,
with several combinations of values for / (duration of the traveling/mass traveling period) and p (the proportion of the population traveling/gathering) when the
initial Ry equals to 1.8. The resulting R, values (after adding the traveling/mass gathering period) are obtained from the baseline scenarios (without traveling/
gathering) to match the peak prevalence and the total attack rate showed in this table. The standard deviation is 0.08-0.15% for the peak prevalence and is

0.07-0.18% for the total attack rate.

traveling/gathering duration / and the proportion of the
population that travels/gathers when the initial Ry = 1.3,
1.5, and 1.8 under non-Holiday conditions. As Tables 2,
3, 4 demonstrate, even a half-day event can lead to as
high as an 8% increase in the peak prevalence (e.g., with
25% of the population involved in a half-day event start-
ing on Day 90 and the initial Ry = 1.3). Moreover, 1-day
and 2-day traveling periods result in similar peak

prevalence values to each other (a 3% maximum relative
difference) and very similar total attack rates (a 1% max-
imum relative difference).

However, extending the event duration from 2 to 3
days reduces the peak prevalence and total attack rate
somewhat (although they remain higher than if mass
gathering did not occur) in some scenarios. For exam-
ple, when the initial Ry = 1.5 and 10% of the population
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Figure 2 Epidemic curves in the Holiday scenarios. The figure
shows the daily prevalence of infection (i.e, proportion of the
symptomatic and asymptomatic persons over the entire population)
for the entire state of Georgia under the Holiday setting. Here 25%
of the population travels during a 5-day traveling or mass gathering
period with two initial Ry values: A) Ry = 1.5; B) Ry = 1.3.

is involved in a mass gathering event, the resulting peak
prevalence and total attack rate are 2.89% and 51.4%,
respectively, after a 2-day event starting on Day 60;
however, these values are 2.80% and 51.1%, respectively,
after a 3-day event starting at the same time. Note that
the baseline average infectious period is 3-4 days (see
Table 1); sensitivity analyses show results with infectious
periods of 7-8 days [41,42]. Under the new assumption,

travel starts on day 60 and ends on day 65
social distancing starts on day 60 and ends on day 65
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Figure 3 Epidemic curves in the Holiday and social distancing
scenarios. The figure shows the daily prevalence of infection (i.e,
proportion of the symptomatic and asymptomatic persons over the
entire population) for the entire state of Georgia under the Holiday
and the social distancing settings. Here the initial Ry = 1.5; 25% of
the population travels during a 5-day period starting on Day 60
(solid curve), or reduces their peer group mixings ("social
distancing”) during the same period time (dotted curve).
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when the initial Ry = 1.5, the total attack rate is 49.05%
and the peak prevalence is 4.05% in the baseline sce-
nario without traveling/mass gathering. The total attack
rate becomes 51.2%, 51.3%, and 51.4% when the travel-
ing period starts at 20 days before the epidemic peak (in
the baseline scenario) and lasts for 1, 2 and 3 days,
respectively. The peak prevalence becomes 4.56%, 4.58%,
and 4.60%, respectively.

The proportion of the population traveling/gathering
shows a larger impact on the peak prevalence and the
total attack rate. When the initial Ry = 1.5 and 25% of
the population starts traveling on Day 60 for 1 day, the
peak prevalence increases from 2.73% (baseline) to
3.04% (approximately a 11% relative increase), signifi-
cantly greater than the 4% relative peak prevalence
increase (compared to baseline) when only 10% of the
population travels on Day 60. Smaller mass gatherings
(i.e., 1%-5% of the population) do not result in substan-
tial increases in the peak prevalence and the total attack
rate. Tables 2, 3, 4 show that this observation holds for
other initial Ry values as well.

Risk for Travelers’ Families under the Non-Holiday Setting
To study the potential increase of the infection risk for
the people traveling/gathering and for their family mem-
bers (i.e., the impact of secondary transmissions), we
compare the prevalence and the total attack rate in the
non-Holiday setting to the baseline scenarios, for the
population of travelers/gatherers and their family
members.

When the initial Ry = 1.5 and 10% of the population is
on travel during a 1-day traveling period beginning at
Day 60 (or Day 30), the value of the peak prevalence is
2.97% (or 2.86%, respectively) and the total attack rate is
53.5% (or 53.0%, respectively) among the population of
travelers/gatherers and their family members, while the
peak prevalence in the entire population is 2.85% (or
2.78%, respectively) with a total attack rate 51.3% (or
51.0%, respectively). Please refer to [Additional file 1]
for more details.

The peak prevalence value and the total attack rate for
the persons who travel or attend mass gatherings and
their family members are higher than the corresponding
average values for the entire population when the travel-
ing or mass gatherings occur before the epidemic peak.
Even if the traveling period starts at Day 90 (20 days
after the epidemic peak in the baseline scenario), the
total attack rate for the travelers and their families is
53.0%, still higher than that for the entire state (51.0%).

Regional Impact of Traveling and Mass Gatherings

The aforementioned scenarios assume that the propor-
tion of persons traveling/gathering are uniform through-
out the entire state; however, mass gatherings may
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disproportionately involve residents of certain areas or
neighborhoods (e.g., residents closer to the mass gather-
ing event may be more likely to attend than persons
remote). Therefore an additional set of scenarios
explores the impact of regional differences in traveling
and mass gatherings under the non-Holiday setting. Fig-
ure 4 depicts the scenarios when the initial Ry = 1.5, the
traveling period is 1 day, and 50% of the population in
Bibb County and its nearest 5 counties [28] are mixing
in the traveling group with 9.5% of the population tra-
veling from all other counties (resulting in 10.4% total
of the entire population on travel). Figure 4 shows the
maximum and minimum, the 25% and 75% percentiles,
and the mean of the peak prevalence value and the peak
day for Bibb County (from 50 replications) with travel-
ing starting on Day 30, Day 60, and without traveling
(baseline scenario).

As shown in Figure 4(A), when the traveling/mass
gathering starts on Day 60 and lasts for 1 day, the peak
prevalence in Bibb County can reach as high as 4% in
some experiments (compared to 2.82% in the entire
state). The average peak prevalence is 3.32%, and the
average total attack rate is 50.1%, which are higher than
the baseline value of peak prevalence (2.82%) and total
attack rate (48.9%) for Bibb County.

Moreover, Figure 4(B) indicates that the traveling/
mass gatherings occurring before the peak prevalence
day (e.g., Day 30) can synchronize the timing of the epi-
demic curves in a local county and in the entire state.
In the baseline case, the day when the prevalence peaks
in Bibb County can appear as late as Day 95, which is
25 days after the peak day in the entire state. With tra-
veling/mass gathering occurring on Day 30, the peak
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Figure 4 Peak prevalence value and peak day in Bibb County.
The box plots show the range (with maximum and minimum,
dotted line), 25% (lower gray line) and 75% (upper gray line)
percentile, and the mean value (solid black line) for the peak
prevalence (4A) and the peak day (4B) in Bibb County. Here 50% of
the population from Bibb County and its nearest 5 counties travels
and mixes with 9.5% of the population from other counties in the
traveling group. The initial Ry = 1.5, the traveling period lasts for

1 day, and it starts on Day 30, €0, or no traveling (baseline).
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day in Bibb County is mostly reached before Day 75
(with 75% chance); and furthermore, in some experi-
ments, the peak day can occur as early as Day 56 due to
the early introduction of seed infections to the local
area.

Discussion

Our simulation experiments identified situations where
mass traveling or gatherings that occur shortly before
the epidemic peak may worsen or alter the course of the
influenza epidemic (e.g., resulting in a higher peak pre-
valence and total attack rate and in some cases generat-
ing two epidemic peaks), which may substantially affect
planning and potentially strain healthcare facilities and
resources. This impact can be greatest on the local com-
munities hosting the mass gatherings. Therefore, public
health officials, local authorities, and other decision
makers may consider closely monitoring, postponing or
cancelling public gatherings near the peak of an epi-
demic. Moreover, pandemic surveillance and other
responses should not necessarily be slowed even after a
large decline in influenza activity since a second epi-
demic peak may occur after Holiday traveling. Conver-
sely, our experiments suggest that mass traveling or
gatherings may have little effect when occurring rela-
tively early or past the peak in an epidemic (with high
enough herd immunity achieved [45-48]).

Our study emphasizes the impact of social mixing pat-
terns and the creation and distribution of immune indi-
viduals on the progression of an epidemic. When
individuals mix in households, schools, and workplaces
without major changes, they can generate pockets of
adequate herd immunity to prevent additional transmis-
sion. In other words, if a large percentage of individuals
at one’s workplace and household are immune then
one’s risk of infection may be low, even though many
infectious individuals are still in the population. This is
because individuals tend to stick with their typical social
contacts and do not mix with a majority of the popula-
tion. However, a mass gathering brings together people
that normally would not mix, ie., it brings together sus-
ceptible and infectious individuals that would not have
interacted otherwise, thus potentially worsening the
epidemic.

Additionally, the differences between the durations of
the mass gathering and the pathogen’s infectious period
can substantially alter the impact of mass gathering.
When the mass gathering period is shorter than the
pathogen’s infectious period (e.g., when the mass gather-
ing is 1-2 days versus 3-4 days for the infectious period),
mass gathering creates new infectious individuals who
then return to their households, workplaces, and schools
to infect their standard social networks, thereby worsen-
ing the epidemic. Conversely, when the mass gathering
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lasts as long as or longer than the pathogen’s infectious
period (e.g., when the mass gathering infectious period is
3-4 days and the pathogen’s infectious period is 3-4
days), mass gathering can actually act as a mass immuni-
zation or mass quarantine event, keeping people in one
location while they are infectious and then returning
them to their social networks only after they are immune.
Sensitivity analyses that increase the average infectious
period to 7-8 days [41,42] support this conclusion.

Previous studies have suggested that social mixing pat-
terns play an important role in influenza spread, and
social distancing measures such as school closure may
be able to mitigate an epidemic [9-12,17-26,29,49]. But
few studies have focused on the opposite of social dis-
tancing, i.e., social gatherings, during an epidemic.
There have been studies on the potential effects of
national and international travel restrictions, e.g., border
closures or international air travel restrictions, but less
on local or regional travel [11]. Our study demonstrates
how social mixing dynamics can be captured in a het-
erogeneous population, and it shows the impact on pre-
valence, peak timing, and secondary transmissions
within families or regions.

Certainly, cancelling or postponing mass gatherings
near the epidemic peak can be challenging. As seen dur-
ing the 2009 H1N1 pandemic, it can be difficult to
determine the current and anticipated future status of
an ongoing epidemic. Moreover, changing a previously
scheduled event can have economic and logistic conse-
quences. In some cases, the scheduled date of a mass
gathering can have significance. For example, Memish et
al. [50] discussed the global religious event Hajj (pil-
grimage by Muslims to Saudi Arabia, attracting more
than 2.5 million pilgrims from the whole world every
year), which is difficult to cancel during a pandemic.

The alternative to changing the scheduling of an event
is close monitoring and enforcement of hygienic mea-
sures and precautions during the event. Memish et al.
[50] and Rashid et al. [51] presented several recommen-
dations for local governments to follow, including
screening, surveillance, and most importantly, encoura-
ging attendees from high risk groups (e.g., elderly and
pregnant women) to postpone their participation in the
event. Also, reducing the length and the scale of an
event could be less drastic ways of reducing disease
transmission. Even if an event cannot be cancelled,
knowing that it may increase the overall attack rate and
peak prevalence could help public health decision
makers prepare (e.g., increasing health care resource
availability and surge capacity).

Limitations
Computer simulations by definition are simplifications
of real life. Rather than make decisions, they can identify
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potentially important factors and relationships for deci-
sion makers. Our model does incorporate a number of
assumptions and cannot fully capture every possible fac-
tor or effect. For example, we assume homogeneous
mixing within the traveling/mass gathering group during
the traveling/mass gathering period. In real life, people
may not have contact with every attendee in a mass
gathering. Also, mass gathering events are not equiva-
lent. Some may involve closer and more extended con-
tact than others. The type of venue and location can
play a significant role. Different events can involve
people of different ages, socioeconomic status, and
potentially health status. Although we conducted a
wide-range of sensitivity analyses, it is not possible to
explore every possible combination of parameters.

Conclusions

When they occur close to the peak of an epidemic, mass
gatherings and traveling could worsen the overall attack
rate and the peak prevalence. However, such changes in
social mixing may have little effect when they occur ear-
lier or later in the course of an epidemic. Public health
decision makers may use this information to help decide
whether to postpone, cancel, monitor, or enforce infec-
tion control measures during a mass gathering or Holi-
day season.

Additional material

Additional file 1: Model description and calibration. The additional
file contains the description of the agent-based simulation model and
the detailed calibration for the model. It also contains the calculation of
the prevalence value for the travelers and their family members in the
non-Holiday setting.
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