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and power spectra analysis.
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Background: Recent functional imaging studies on chronic pain of various organic etiologies have shown
significant alterations in both the spatial and the temporal dimensions of the functional connectivity of the human
brain in its resting state. However, it remains unclear whether similar changes in intrinsic connectivity networks
(ICNs) also occur in patients with chronic pain disorder, defined as persistent, medically unexplained pain.

Methods: We compared 21 patients who suffered from chronic pain disorder with 19 age- and gender-matched
controls using 3T-fMRI. All neuroimaging data were analyzed using both independent component analysis (ICA)

Results: In patients suffering from chronic pain disorder, the fronto-insular ‘salience’ network (FIN) and the anterior
default mode network (aDMN) predominantly oscillated at higher frequencies (0.20 - 0.24 Hz), whereas no
significant differences were observed in the posterior DMN (pDMN) and the sensorimotor network (SMN).

Conclusions: Our results indicate that chronic pain disorder may be a self-sustaining and endogenous mental
process that affects temporal organization in terms of a frequency shift in the rhythmical dynamics of cortical
networks associated with emotional homeostasis and introspection.

Keywords: Chronic pain disorder, Somatoform pain disorder, Resting state networks, Intrinsic connectivity networks,

Background

Chronic pain disorder, as defined in the DSM-IV [1], is a
somatoform disorder lasting longer than 6 months in
which the predominant symptoms are bodily complaints
of pain. Psychological factors are thought to be central
to the onset, severity, exacerbation and maintenance of
the complaint. Characteristically, patients with this clin-
ically prevalent disorder have difficulties recognizing and
interpreting emotional signals within themselves; they
perceive these signals as physical symptoms [2]. More-
over, the disorder itself leads to significant neural alter-
ations in regions associated with emotional awareness
[3], affective meaning construction [4], and bodily state
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monitoring [5], such as the medial prefrontal cortex, the
anterior cingulate cortex, and the insula [6].

In addition to studies concerning morphology and
paradigm-based activations, the temporal dimension of
neural processing has recently gained attention [7-9].
This dynamic view of brain functioning emphasizes the
importance of the functional interplay between different
brain regions, with a particular focus placed on altered
resting state connectivity in mental disorders [10]. One
of the strongest disruptors of this complex equilibrium
seems to be pain [11-14]. In a recent study of 10 patients
suffering from nociceptive chronic pain, the spatial co-
herence of the fronto-insular ‘salience’ network (FIN)
was altered in the resting state [15]. Chronic pain
influenced the temporal aspects of functional connectiv-
ity by changing the frequency of the rhythmic oscilla-
tions in the BOLD-signal within the FIN from lower
levels (below 0.12 Hz) to a higher range (between 0.12
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and 0.24 Hz) [15]. Moreover, chronic back pain seems to
disrupt the integrity of the so-called default mode net-
work (DMN) [11], whereas diabetic neuropathic pain
changes the temporal coherence of the DMN [16].

Interestingly, chronic pain not only influences neural
circuits but also tends to operate in a domain-general
manner. Neuropathic diabetic pain, for example, also
changes the spatial functional anatomy of the sensori-
motor network (SMN) [16]. However, the aforemen-
tioned studies [15,16] have focused on chronic pain
conditions without distinguishing between pain that can
be clearly associated with a convincing organic correlate
and somatoform pain (e.g., in chronic lower back pain
[17]) or generalized pain.

Thus, the present study aims to fill this gap, examining
whether chronic pain disorder patients show similar al-
terations in frequency and functional connectivity within
the brain’s functional architecture. We define chronic
pain disorder as pain that is not the result of a clear
organic etiology or that is out of proportion to the inten-
sity of physical findings and that is caused by a well-
classified mental disorder (ICD-10: F45.4x, DSM-IVR:
307.80), characterized predominantly by chronic ongoing
pain [1,18]. Given that there is an endogenous central
process that is observed in chronic pain disorder, we
hypothesize that pain-related resting state networks such
as the DMN, FIN, and SMN will fluctuate at even higher
frequencies in patients than in healthy controls. We also
hypothesize that these networks will show evidence of
disturbed spatial functional connectivity.

Methods
This study was approved by an institutional ethics com-
mittee (Klinikum rechts der Isar, Medical Faculty of
Technische Universitaet Muenchen, Germany) and
was performed in accordance with the Declaration of
Helsinki.

Nineteen healthy controls (mean age: 48.79 years, SD
12.25, 12 females) and 21 German-speaking patients
(mean age: 46.62 years, SD 1249, 17 females) with
chronic pain disorder, defined as a pain-predominant
multisomatoform disorder diagnosed by an experienced
physician using a modified SCID-I interview, provided
informed written consent and participated in the experi-
ment. The main feature of somatoform disorders is “the
repeated presentation of physical symptoms together
with persistent requests for medical investigations, des-
pite repeated negative findings and reassurances by phy-
sicians that the symptoms have no physical basis. If any
physical disorders are present, they do not explain the
nature and extent of the symptoms or the distress and
preoccupation that the patient has with them” [18].
Multisomatoform disorder, a medium-to-severe somatoform
disorder, is defined as three or more medically unexplained,
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currently bothersome, physical symptoms in addition to a
long (= 2 years) history of somatization [19]. Because of the
striking comorbidity of multisomatoform disorder with
major depression and anxiety disorders, it has been sug-
gested that overlapping psychobiological mechanisms medi-
ate depression, anxiety, and somatization symptoms [20].
Compared with mood and anxiety disorders alone, mul-
tisomatoform disorder is associated with comparable im-
pairments in health-related quality of life, a greater number
of self-reported disability days and clinic visits, and the
highest levels of provider frustration [21,22].

The Physical Component Summary (PCS) measure [23]
in our patient group had to be 1 standard deviation or
more below the population norm (< 40), as measured with
the SF-36 (see below). A score less than 40 also meets the
DSM-1V criterion B for “significant distress or psycho-
social impairment due to the somatoform pain” in patients
with pain disorder [1]. As a second precondition, sum
scores on the 15-item Patient Health-Questionnaire
(PHQ-15) had to be above 10, representing at least
medium somatic symptom severity (see below). The
German version of the Brief Pain Inventory (BPI) [24] was
used to estimate the intensity of each participant’s pain.
We reviewed patients’ medical charts and contacted the
treating physicians to rule out possible or unclear organic
explanations for the symptoms of our chronic pain pa-
tients. Patients with insufficient cognitive abilities, severe
and chronic somatic or nervous diseases, unambiguous
nociceptive pain, hypochondriasis, a severe comorbid
mental disorder causing major impairment in social func-
tioning (e.g., schizophrenia or severe substance abuse) or
insufficient German language skills were excluded. All
participants were white, of Caucasian origin, and right
handed, as assessed by the Edinburgh handedness inven-
tory [25]. Additional file 1: Table S6 lists all medications
that patients were currently taking.

Psychometric measurement

Somatoform disorders were diagnosed using a modified
semi-structured psychiatric interview, the German ver-
sion of the SCID-I (Structured Clinical Interview for
DSM Disorders) [26]. The SCID-I is the diagnostic cri-
terion standard and evaluates current (i.e., the 4 weeks
preceding the interview) and lifetime psychiatric status
for major Axis I mental disorders using criteria that cor-
respond to the DSM-IV [1].

The SF-36 is a multipurpose, short form health survey
consisting of 36 questions [27]. It yields an 8-scale pro-
file of functional health and well-being scores, psycho-
metrically based physical and mental health summary
measures, and a preference-based health utility index. It
is a generic measure, as opposed to one that targets a
specific age, disease, or treatment group. Accordingly,
the SF-36 has proved useful in surveys of both general
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and specific population groups. It compares the relative
burden of disease and differentiates the health benefits
generated by a wide range of different treatments [28].
Its German translation has been validated in a variety of
German health care settings [29,30].

The PHQ-15 is a brief, self-administered questionnaire
that has proved useful in screening for somatization and
in monitoring somatic symptom severity in clinical prac-
tice and in research. Scores of 5, 10, and 15 represent
the cutoff points for low, medium, and high somatic
symptom severity, respectively [31,32].

The BPI, based on the Wisconsin Brief Pain Question-
naire, was developed by the Pain Research Group of the
WHO Collaborating Centre for Symptom Evaluation in
Cancer Care to provide information on the intensity of
pain (the sensory dimension) and the degree to which
pain interferes with function (the reactive dimension)
[33]. The validity of the German version [24] and the
ability of the BPI to measure pain in patients without
cancer [34] have been demonstrated.

The applied Beck Depression Inventory I (BDI-I) is a
21-item self-reported instrument that measures cogni-
tive and endogenous aspects of depression on a four-
point scale ranging from 0 to 3. The standard cut-offs
are as follows: 0-9 indicates no depression, 10-18
indicates mild depression, 19-29 indicates moderate
depression, and >30 indicates severe depression. This
questionnaire has undergone extensive reliability and
validation studies [35,36].

The German version of the Trait Anxiety Inventory
(STAI-T) is a valid and reliable 20-item questionnaire
that measures the general level of anxiety on four-point
scales ranging from 1 to 4 [37].

Functional MRI resting state paradigm

Participants were asked to close their eyes and relax but
to remain awake. This portion of the experiment lasted
370 seconds. Following the scanning session, partici-
pants were asked whether they had fallen asleep during
the scan; those who provided a positive or ambiguous
answer were excluded from the study.

Data acquisition and fMRI procedures

Images were acquired with a 3T Philips Achieva Scanner
(Philips Medical Systems, Best, The Netherlands) using a
standard 8-channel SENSE head coil. Thirty-two con-
tiguous slices (no gap), with a steep angulation to
exclude the eyes, were acquired using a gradient echo-
planar (EPI) sequence with the following parameters:
2000 ms repetition time (TR); 35 ms echo time (TE); 82
degree flip angle; 220 mm FOV; 4 mm slice thickness;
80_80 matrix; voxel size 2.75_2.75 mm; SENSE factor 2.
Anatomical images were obtained using a T1-weighted
turbo gradient echo sequence with the following
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parameters: 9 ms TR; 4 ms TE; 8 degree flip angle; 240
mm field of view (FOV); 240_240 matrix; voxel size 1
mm isotrop; 170 slices; no gap.

Data analysis and image processing

Data analysis was performed using SPM5 (Statistical
Parametric Mapping software, Wellcome Department of
Imaging Neuroscience, London, UK; http://www filion.ucl
ac.uk). The first three images for each run were discarded to
allow for equilibration of longitudinal magnetization. The
preprocessing steps included (1) realignment and unwarping
of the images to correct for movement artifacts and related
susceptibility artifacts, (2) coregistration of the anatomical
images to the functional images, (3) segmentation and
normalization of the anatomical images to a standard
stereotactic space (Montreal Neurological Institute, MNI;
Quebec, Canada), (4) application of a normalization trans-
formation to the functional images, and (5) smoothing with
a Gaussian kernel of 8 mm for group analysis.

Connectivity analysis

We performed an independent component analysis (ICA)
by using the “group ICA” function included in the fMRI
toolbox (GIFT version 1.3h; http://icatb.sourceforge.net)
developed for the analysis of fMRI data [38-40]. First, the
individual data were concatenated across time, followed
by the computation of subject-specific components and
time courses. The analysis proceeded in three stages: (1)
data reduction, (2) application of the ICA algorithm, and
(3) back reconstruction for each individual subject [38]. In
the first step (1), data from each subject underwent princi-
pal component analysis to reduce the computational com-
plexity of the analysis. In so doing, most of the content of
the data was preserved. After concatenating the resulting
volumes, the number of independent sources was esti-
mated using the GIFT dimensionality estimation tool
based on the aggregated data and using the minimum-
description-length criteria [41]. The final reduction step,
according to the selected number of components, was
achieved again using principal component analysis. In the
second stage of the analysis (2), we used the Informax algo-
rithm to run the appropriate ICA and a mask based on all
subjects. In the final stage of back reconstruction (3), time
courses and spatial maps were computed for each subject.
The resulting mean spatial maps of each group were
transformed to z scores for display [38].

Individual subject maps of the ICNs were entered into
random effects analyses in SPM5. The results were
thresholded at p = 0.05 and corrected for family wise
error (FWE) with a cluster extent threshold of 50 voxels.

To enhance both the reliability and validity of this
study, the ICNs were compared with networks that were
calculated from a sample of approximately 600 healthy
people in a study previously published by Allen et al.
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[42] that used spatial correlation (multiple regression) in
the GIFT program [38] (see below for details).

For comparison between groups, we used two-sample t-
tests with the available psychometric depression and anx-
iety scores as covariates of no interest. To detect even weak
effects, a more lenient threshold was used for the group
comparison (p = 0.005, uncorrected on the voxel level (z >
2.58), and p = 0.05, corrected for multiple comparisons on
the cluster level, extent threshold k > 10 voxels). Correl-
ation analysis was performed at the same threshold. The
connectivity maps from GIFT were entered into SPM5.
We performed a partial correlation analysis (Pearson cor-
relation) between functional connectivity and the level of
depression on the BDI-I, controlling for the level of anxiety
on the STAI-T. We also performed a partial correlation
analysis between functional connectivity and the level of
anxiety on the STAI-T, controlling for the level of depres-
sion on the BDI-I. Finally, we correlated the average sub-
jective pain during the last week (item 5 on the BPI) with
the functional connectivity using a bivariate correlation.

Power spectra analysis

The GIFT toolbox “spectral group compare” function
was used to calculate power density frequency spectra
for each subject at six equally spaced frequency bins
between 0 and 0.24 Hz at 0.04 Hz intervals (2-sample
t-test, p < 0.0083 = 0.05/6; Bonferroni-correction for 6
frequency bins). Several previous studies have also used
power-spectra analysis (see [15,16,43,44]; please note that
the number of bins and the intervals are different in each
study). The level of depression (BDI-I) and the level of
anxiety (STAI-T) were introduced as nuisance covariates.
Correlation analyses with all psychometric data were
performed at the same threshold.

Results

Pain ratings

Prior to scanning, the German version of the Brief Pain
Inventory (BPI) was used to estimate the intensity of the
patients’ chronic pain during the previous week. On aver-
age, subjects rated their pain as a 7 (SD 2.24) using a Nu-
merical Rating Scale (NRS), which ranged from 0 (“no
pain”) to 10 (“pain as bad as you can imagine”) on item 5
of the BPI. For comparison, in cancer-induced bone pain,
the most common cause of pain in patients with cancer,
the median average pain using the BPI was found to be 4
[45]. All patients suffering from chronic pain disorder ex-
perienced pain throughout the fMRI scan.

Psychometric measurement

Patients with chronic pain disorder showed significantly
higher BDI-I levels in the form of mild depression,
higher trait-anxiety (STAI-T) scores and higher pain
levels on the BPI (item 5) compared with the control
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group (Table 1). The level of depression was significantly cor-
related with the level of anxiety (R = 0.593, p = 0.005). No
relevant correlation was observed between the level of
clinical pain (BPI, item 5) and the level of depression (R = -
0.01, p = 0.996) or the level of anxiety (R = 0.083, p = 0.736).

Functional MRI data - spatial connectivity analysis
(Figures 1 and 2)

The ICA estimation resulted in 29 independent com-
ponents. In accord with published data from other
groups, we identified the following pain-related networks
(Figures 1 and 2, Additional file 2: Table S1, Additional
file 3: Table S2):

1. The anterior default mode network (aDMN), which
comprises cortical midline structures such as the
medial prefrontal cortex and the precuneus
[11,12,16,46]. The aDMN showed the strongest
overlap with component 25 from Allen et al. [42],
which represents the anterior part of the default
mode network (multiple regression value: 0.22).

2. The posterior default mode network (pDMN) of the
precuneus [11,12,16,46]. The pDMN showed the
strongest overlap with component 50 from Allen
et al. [42], which represents the posterior part of the
default mode network (multiple regression value:
0.14).

3. The fronto-insular network (FIN), which comprises
both the insula and the cingulate cortex [15,47].
Component 55 from Allen et al. [42], which
represents the fronto-insular salience network,
showed the strongest overlap with this network
(multiple regression value: 0.22).

4. The sensorimotor network (SMN), which comprises
the pre- and post-central gyrus [48]. The SMN
showed the strongest overlap with component 29
from Allen et al. [42], which represents a
sensorimotor network (multiple regression
value: 0.14).

No significant differences in spatial functional connect-
ivity between the patient and control groups were
detected (Additional file 4: Table S3). Moreover, no signifi-
cant correlation was observed between the psychometric-
ally measured level of pain (BPI), anxiety (STAI-T),
depression (BDI-I) and spatial functional connectivity [42]
in the patient group (Additional file 5: Table S4).

Functional MRI data - power spectra analysis (Table 2,
Figure 3)

Compared to the control group, patients showed
higher power spectra in the aDMN and the FIN, ranging
between 0.20 and 0.24 Hz. No significant correlation
was observed among the level of pain, depression, trait-
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Table 1 Averages and comparisons of group scores
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Patients Controls t-Test -p-
Mean Median sD Range Mean sD Median Range value;
BPI (Iltem 5) 7 6 224 2-9 0 0 0 - 0.000
BDI-I: 17.84 20 9.03 3-37 443 4.70 2 0-16 0.000
STAI-T 47.10 49 124 20-70 3594 8.56 34 23-50 0.002

Two-sample t-tests of average pain intensity (BPI), depression (BDI-l) and trait-anxiety (STAI-T) in patients with chronic pain disorder and healthy controls.

The threshold of significance is p < 0.05.

anxiety and spectral power (Additional file 6: Table S5).
These group differences were not influenced by levels of
depression and trait-anxiety as measured by the BDI-I
and STAI-T, respectively.

Discussion

This study reveals that neural activity within the FIN
and the aDMN in patients with chronic pain disorder
shows significantly shifted frequencies in comparison
with healthy controls. Moreover, a general trend toward
higher power in the 0.20 - 0.24 Hz frequency bin was
evident in patients compared with control subjects.
However, significant changes in the spatial dimensions
of functional connectivity were not detected.

Figure 1 ICNs of the control group. For illustration purposes,
spatial maps were thresholded at P = 0.05, corrected for family wise
error (FWE) with a cluster extent threshold of 50 voxels; aDMN =
anterior default mode network, pDMN = posterior default mode
network, FIN = fronto-insular network, SMN = sensorimotor network.

Our results support the study hypothesis that there is
a shift of the endogenous oscillations of the brain’s rest-
ing state to higher frequencies in patients suffering from
chronic ongoing pain, even when a physical examination
cannot (fully) explain the subjective symptoms and the
patients fulfill the official criteria for chronic pain
disorder.

Furthermore, by demonstrating higher BOLD fluctua-
tions in the FIN and DMN in chronic pain disorder, our
findings expand the results of both Malinen et al. [15]
and Cauda et al. [16]. Other authors have discovered
similar alterations in temporal coherence among patients
suffering from chronic neuropathic pain associated with
obvious organic diseases [49,50]. Compared to previous
studies on the brain’s temporal dynamics in chronic

Figure 2 ICNs of the patient group. For illustration purposes,
spatial maps were thresholded at P = 0.05, corrected for family wise
error (FWE) with a cluster extent threshold of 50 voxels; aDMN =
anterior default mode network, pDMN = posterior default mode
network, FIN = fronto-insular network, SMN = sensorimotor network.
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Table 2 Comparison of power spectra for all ICNs between patients and healthy controls

ICN Group Spectral power at different frequency-bins in percent of the whole power
0.0 - 0.04 Hz 0.04 - 0.08 Hz 0.08 - 0.12 Hz 0.12 - 0.16 Hz 0.16 — 0.20 Hz 0.20 - 0.24 Hz
aDMN Controls 31.732 20.831 12677 15.703 12415 9.881
Patients 29.507 19.989 12.833 12.960 11.932 15.351
p-value (t-test) 0338 0510 0.856 0.015 0.693 0.001
pDMN Controls 29651 22137 13.550 16374 12.520 9312
Patients 29.637 21374 14.290 14.306 11.008 12377
p-value (t-test) 0.993 0.580 0373 0.118 0.175 0.019
FIN Controls 33.751 22.393 12.880 14318 10.797 9.067
Patients 31438 22477 13.702 12.661 9.854 12.728
p-value (t-test) 0.262 0933 0.260 0.179 0378 0.005
SMN Controls 36.671 19.570 14.069 13.729 10.771 7.827
Patients 31.919 21.600 14.297 14.030 9.650 11512
p-value (t-test) 0.117 0.153 0.852 0.839 0.343 0.016

Two-tailed t-test, p < 0.05/6, significant differences are included in bold.

pain, we used a different binning strategy for spectral
analyses. Malinen et al. [15] calculated spectral power at
three frequency bins (0-0.05 Hz; 0.05 - 0.12 Hz; 0.12 -
0.25 Hz), whereas Cauda et al. [16] defined four intervals
of interest (0.008 - 0.02 Hz; 0.02 - 0.05 Hz; 0.05 - 0.1

aDMN
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Figure 3 Power spectra of patients (red) and healthy controls
(green). Intrinsic neural activity within the aDMN and the FIN show
faster spontaneous fluctuations in patients with chronic pain
disorder. Error bars represent the standard error of the mean.
[1=0-004 Hz, 2 =004-008Hz 3=008-012Hz 4=012-0.16
Hz, 5= 0.16 - 020 Hz, 6 = 0.20 - 0.24 Hz].

Hz; 0.1 - 0.25 Hz). In our study, six equally spaced fre-
quency bins were used (0-0.04 Hz; 0.04 - 0.08 Hz; 0.08 -
0.12 Hz; 0.12 - 0.16 Hz; 0.16 - 0.20 Hz; 0.20 - 0.24 Hz).
The main advantage of using 6 bins compared to a
greater number of bins is that it reduces the number of
multiple comparisons (level of significance p < 0.0083 =
0.05/6; Bonferroni-correction for 6 frequency bins). A
lower number of bins, however, might have led to false-
negative results because the spectral changes are rapid,
increasing as a function of frequency. Furthermore,
whereas Malinen et al. [15] used a relatively broad inter-
val for the higher frequencies (0.12 — 0.25 Hz), we were
able to show that the upper end of the high-frequency
interval (between 0.20 and 0.24 Hz), in particular, might
be relevant in chronic pain disorder.

There was no significant correlation between shifts in
frequency of the BOLD-signal and the psychometric
level of anxiety [51], depression [20,52,53] or pain inten-
sity in the patient group of our study. Nevertheless, we
cannot definitely exclude the possibility that changes
were not due to persistent somatoform pain but were
due to other unknown variables. Furthermore, there was
no significant correlation between spectral power and
anxiety [51] or depression [20,52,53] Importantly, a simi-
lar discrepancy between BOLD activations and behav-
ioral measurements was also described in a study
investigating an altered cerebral response to noxious
heat stimulation in patients with somatoform pain dis-
order [6]. Thus, differences between our two groups
may be more easily detected via neuroimaging methods
than through subjective behavioral ratings, in accord
with several other studies [54-57].

Although our study does not demonstrate causal rela-
tionships, several findings suggest a strong relationship
between pain-condition and altered spectral power.
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Somatoform pain is associated with higher autonomic
arousal [58,59], which, in turn, has been associated with
increased activation in the fronto-insular regions [16,60].
Although autonomic activation was not measured dir-
ectly in our study, an altered psycho-vegetative state [57]
might be the behavioral equivalent of increased FIN os-
cillations in chronic pain disorder, as proposed by
Malinen et al. [15]. Remarkably, the FIN and DMN net-
works seem to be involved in affective neuroprocessing:
Whereas the DMN subserves introspection, autobio-
graphic memory, self-referential processing, and social
understanding [61-64], the FIN has been linked with
personal salience, emotional awareness, and bodily state
monitoring [5,47,65]. Moreover, the various bodily com-
plaints in patients with somatoform pain have consist-
ently been associated with a high affective component of
individual pain, which indicates impaired emotional
regulation [66-69]. Given these data, one might synop-
tically speculate that our findings reflect one neurobio-
logical facet of the strong clinical impression that
patients who suffer from chronic pain disorder often
show impaired subjective emotional awareness, affective
meaning construction [4] and social understanding [3].

No significant group differences were detected in the
SMN, although previous studies have shown that
chronic pain leads to functional reorganization, de-
creased gray matter density, and increased metabolism
within the somatosensory cortex [70-74]. One might
speculate that chronic pain disorder relies more on dis-
turbed affective and introspective processing than on the
disturbed somatosensory circuits that occur in patients
who suffer from pain dependent on nociceptive input,
for example, in a patient with posttraumatic osteoarth-
ritis in the sample in Malinen et al. [15].

We did not find changes in spatial functional connect-
ivity, in contrast to Malinen et al. [15], who reported
weaker functional connectivity between the insula and
anterior cingulate cortex in predominantly nociceptive
chronic pain, and Baliki et al. [11], who found dimin-
ished DMN-connectivity in chronic back pain patients.
In contrast to pain caused by diverse peripheral causes,
we presume that chronic somatoform pain, which at
least cannot be fully explained by possible nociceptive
input, is not associated with alterations in the spatial
and functional architecture of the brain’s resting state.

Altogether, chronic pain disorder seems to be associated
with a frequency shift in the anterior default mode net-
work and the salience network to higher (eigen)frequen-
cies. The resting state of the human brain is thought to
serve as a ‘memory of the future” [63,75], which stores be-
havioral algorithms to allow a person to adequately cope
with upcoming environmental events. Therefore, our re-
search on resting state connectivity as a special form of
neuronal oscillations in cortical networks [76] might
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provide a useful neurobiological framework that underlies
one facet of the behavioral changes that impair the daily
lives of patients with chronic pain disorder.

Conclusions

Though our study does not ascribe causation, our results
indicate that patients suffering from chronic pain disorder
show distinct alterations in the temporal organization of
their brains. A persistent peripheral algetic input does not
seem to be pivotal for changes in the functional architec-
ture of the human brain associated with persistent
somatoform pain in patients with chronic pain disorder.

Limitations

The present study is limited because of the lack of mea-
surements of possible sources of physiological artifacts
(e.g., respiration, cardiac function and blood pressure).
However, high agreement with previous findings of alter-
ations in temporal activity in the FIN and the DMN sug-
gests that our results were most likely not confounded
by these factors [15,16]. The analgesic and antidepres-
sant medication administered to most of our outpatients
(Additional file 1: Table S6) could have influenced the
reported frequency shift [77,78]; the enduring influence
of such drugs on BOLD oscillations is currently still un-
known. It is noteworthy that, despite ethical reasons, it
was nearly impossible to convince our patients with
chronic pain disorder to interrupt their psychotropic
medication in this intentionally naturalistic study.

Additional files

Additional file 1: Table S6. Medication of all 21 patients with chronic
pain disorder.

Additional file 2: Table S1. MNI-coordinates of the ICNs in the control
group. Results were thresholded at p = 0.05 and corrected for family wise
error (FWE) on the voxel level with a cluster extent threshold of k = 50
voxels.

Additional file 3: Table S2. MNI-coordinates of the ICNs in the patient
group. Results were thresholded at p = 0.05 and corrected for family wise
error (FWE) on the voxel level with a cluster extent threshold of k= 50
voxels.

Additional file 4: Table S3. MNI-coordinates of the group comparisons.
Results were thresholded at p = 0.005, uncorrected at the voxel-level, and
p < 0.05, corrected for multiple comparisons on the cluster level, with a
cluster extent threshold of k = 50 voxels; p represents p on the voxel-
level.

Additional file 5: Table S4. Correlation between functional
connectivity and psychometric measurement. Results were thresholded
at p < 0.005, uncorrected on the voxel-level, and p < 0.05, corrected on
the cluster level, with a cluster extent threshold of k > 10 voxels; p
represents p on the cluster level; R represents Pearson’s correlation-
coefficient. No significant correlation was detected.

Additional file 6: Table S5. Pearson’s correlation between spectral
power and psychometric measurements *The correlation with depression
(BDH) is controlled for anxiety (STAI-T) and vice versa; the level of
significance is p < 0.05; R represents the correlation-coefficient. No

significant correlation was detected.
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