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Abstract

Background: White matter abnormalities can cause network dysfunction that underlies major depressive disorder
(MDD). Diffusion tensor imaging (DTI) is used to examine the neural connectivity and integrity of the white matter.
Previous studies have implicated frontolimbic neural networks in the pathophysiology of MDD. Approximately 30%
of MDD patients demonstrate treatment-resistant depression (TRD). However, the neurobiology of TRD remains
unclear.

Methods: We used a voxel-based analysis method to analyze DTI data in young patients with TRD (n = 30;
19 males, 11 females) compared with right-handed, age- and sex-matched healthy volunteers (n = 25; 14 males,
11 females).

Results: We found a significant decrease in fractional anisotropy (FA) (corrected, cluster size >50) in the left middle
frontal gyrus (peak coordinates [−18 46–14]), left limbic lobe uncus (peak coordinates [−18 2–22]), and right
cerebellum posterior lobe (peak coordinates [26–34 -40]). There was no increase in FA in any brain region in
patients. We also found a significant negative correlation between mean regional FA values in the three areas and
Beck Depression Inventory symptom scores.

Conclusions: We found significant differences in white matter FA in the frontal lobe, limbic lobe and cerebellum
between TRD patients and controls. These data suggest that abnormalities of cortical-limbic-cerebellar white matter
networks may contribute to TRD in young patients.

Keywords: Treatment-resistant depression, Diffusion tensor imaging, Fractional anisotropy, Voxel-based analysis
method
Background
Major depression is a common condition and a leading
cause of disability worldwide [1]. Approximately 5% of
American adults are affected by depression each year, 30%
of whom fail to respond to two or more types of anti-
depressant, a phenomenon termed treatment-resistant
depression (TRD) [2-7]. The pathogenesis of major
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depressive disorder (MDD) and the pathogenic mechan-
ism of TRD remain unclear. Techniques such as magnetic
resonance imaging (MRI), especially diffusion tensor
imaging (DTI), have revealed white matter abnormalities
in multiple psychiatric disorders [8-10]. The white matter
forms the basis of anatomical connectivity, and disruption
of this connectivity can result in brain dysfunction under-
lying various psychiatric disorders [11,12]. DTI is a useful
tool for examining and quantifying white matter micro-
structure, including the orientation and integrity of white
matter tracts, by detecting the diffusion of water in neural
tissue in vivo [10]. A high fractional anisotropy (FA)
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reflects intact axonal membranes, myelin sheaths, and a
parallel arrangement of neurofibrils. By contrast, a low FA
reflects damaged integrity of the white matter [9].
Previous studies using DTI have mainly focused on

affective disorders including MDD, BD [13,14], and
young and geriatric depression [15,16], and the results
showed the abnormal brain regions include the superior,
middle, and medial frontal gyrus [9,16,17], the subgenual
anterior cingulate cortex (ACC), amygdala [14], hippo-
campus [18], and basal ganglia [19]. These abnormal
brain regions are predominantly located in the limbic-
cortical-striatal-pallidal-thalamic tract (LCSPT) [20,21],
which is considered related to emotional behavior on
the basis of its anatomical connectivity with visceral con-
trol structures that mediate emotional expression [19].
It remains unclear whether the pathogenesis of TRD is

similar to various affective disorders, although there is
some limited DTI evidence that abnormal brain areas in
TRD include the LCSPT circuits, similar to general
affective disorders [22]. In the present study, we used an
explorative voxel-based analysis (VBA) method to inves-
tigate the white matter integrity of TRD patients in
order to determine the specific microstructure alter-
ations in TRD. We hypothesized that the changes in
white matter FA in TRD are similar to general affective
disorders involving abnormalities of the cortical-limbic
or cortical-subcortical circuits, as well as other import-
ant areas related to emotional regulation.

Methods
Subjects
Thirty patients (mean age, 26.87 ± 5.28 years; mean dis-
ease course, 4.68 ± 3.37 years) fulfilled both our diagnos-
tic criteria for a major depressive episode (DSM-IV) and
the TRD criteria. We defined treatment resistance as
failure to respond to at least two different classes of anti-
depressant given for a period longer than 4 weeks at the
maximum recommended dose [23]. The patients were
recruited from the inpatient and outpatient units at the
Institute of Mental Health at the Second Xiangya
Hospital of Central South University, and the sex- and
age- matched healthy controls were recruited in the local
community. After each subject was fully informed of the
study, written informed consent was obtained. The
protocol was approved by the Central South University
ethics committee and the studies were carried out in
accordance with the Declaration of Helsinki. Two expe-
rienced psychiatrists performed patient diagnosis inde-
pendently. We excluded patients with other psychiatric
axis-I or axis-II disorders, neurological disorders, and
other clinically relevant abnormalities in laboratory ex-
aminations. The patients with a counter indication of
MRI were also excluded. The Beck Depression Inventory
(BDI) [24] was used to assess clinical symptoms.
Diffusion tensor imaging data acquisition
The DTI scans were performed at the Magnetic Centre
of Hunan Provincial People’s Hospital. Subjects wore a
standard birdcage head coil when they lay supine in a
3.0-Tesla head scanner (Allegra, Siemens Medical
System). We used foam pads to minimize head motion,
and used ear-plugs to diminish the sounds of the scan-
ner. We collected high-resolution T1-weighted whole-
brain 3-D MRI data with a magnetization-prepared
rapid-acquisition gradient echo sequence (MP-RAGE)
using the following parameters: 144 sagittal slices;
thickness, 1.0 mm; 256 × 256 matrix; field of view,
256 × 256 mm; TE, 3.7 ms; and TR, 2000 ms. We also
collected a diffusion-weighted data set with an echo
planar image sequence using the following parameters:
45 transversal slices; 30 gradient directions; thickness,
3.0 mm; no gap; 192 × 192 matrix; field of view,
240 × 240 mm; TE, 93 ms; TR, 6046 ms; b1, 0; and b2,
1000 s/mm2.

Magnetic resonance imaging data analysis
Diffusion tensor images were pre-processed using previ-
ously published methods[25-27]. The diffusion data set
was pre-aligned to correct for head motion, and the ef-
fects of gradient coil eddy currents were corrected using
software tools from the FMRIB software library (http://
www.fmrib.ox.ac.uk/fsl). The resulting FA images were
transformed into Montreal Neurological Institute stand-
ard space using Statistical Parametric Mapping (SPM2;
Wellcome Department of Cognitive Neurology, London,
UK). For each subject, the b = 0 images were coregistered
with the structural T1 image; the same coregistration
parameters were applied to the FA maps (in the same
space as the b = 0 images). Each individuals’ T1 image was
then normalized to the SPM T1 template (in Montreal
Neurological Institute standard space), and the same
normalization parameters were then applied to the
coregistered FA images. All images were resampled with a
voxel size of 2 × 2 × 2 mm3. The normalized FA images
were smoothed with an 8 mm full-width at half-maximum
Gaussian kernel to decrease spatial noise, and a mean
image (FA template) was created.

Statistical analysis
Two-sample t-tests were performed between 30 TRD
patients and 25 healthy controls on diffusion tensor im-
ages of FA using SPM2 software. An initial threshold of
50 voxels or greater, surviving a false discovery rate
(FDR) threshold of P < 0.05, was set [28]. We retrieved
white matter FA values from these identified clusters
with home-developed software, as previously published
[29]. Data were analyzed using SPSS17.0 software. A
multiple-correlation analysis was performed to estimate
the relationship between the average FA values and BDI
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scores, age, and duration of disease. A statistical thresh-
old of P < 0.05 (two-tailed) was used.

Results
Clinical and demographic characteristics of the subjects
There were no significant age, gender, or marriage-state
differences between patients and healthy control subjects
(P > 0.05) (see Table 1).

Diffusion tensor imaging of treatment-resistant
depression patients
Voxelwise analysis revealed reduced FA in three areas in
the TRD group compared with control subjects (P < 0.001,
uncorrected, cluster size > 50). One area was located
at the left limbic lobe uncus with peak coordinates
[−18 2–22], the second area was located at the left middle
frontal gyrus [−18 46–14], and the third area was located
at the right cerebellum posterior lobe [26–34 -40]. The
three areas survived an FDR threshold of P < 0.05 at
the cluster level or the voxel level (Figure 1 and Table 2).
The left middle frontal gyrus survived FDR correction
at the voxel level (P = 0.018), and the other two areas
survived correction at the cluster level (P = 0.015 and
P = 0.025, respectively). There were no other regions
of reduced or increased FA of statistical significance in
the TRD group compared with the control group. Our re-
sults showed significantly reduced FA values in the left
middle frontal gyrus, left limbic lobe uncus, and right
cerebellum posterior lobe in TRD subjects compared with
controls (P < 0.001; see Figure 2).

Correlation between depressive symptom scores and
fractional anisotropy values in treatment-resistant
depression patients
Significant negative correlations were found between de-
pression symptom scores (BDI) and reduced FA values in
the left middle frontal gyrus, right limbic lobe uncus, and
right cerebellum posterior lobe regions of interest (Figure 3);
the correlation coefficients were −0.379 (P = 0.039), -0.46
(P = 0.009), and −0.450 (P = 0.027), respectively. In
addition, Pearson correlations found no correlations be-
tween FA values in regions of interest of TRD subjects,
and age and disease duration.
Table 1 Clinical and demographic characteristics of patients T

Variable HC (n = 25)

Mean SD

Age(y) 28.24 4.98

Gender (male/female)(n) 14/11

Marriage (single/married)(n) 15/10

Course(y)

BDI

P > 0.05. HC, healthy control; SD, standard deviation; TRD, treatment-resistant depre
Effects of gender on reduced white matter fractional
anisotropy values in the three regions
There were no significant differences between males and
females for reduced FA values in the left middle frontal
gyrus (P = 0.588), left limbic lobe uncus (P = 0.636), and
right cerebellum posterior lobe (P = 0.207; see Table 3).

Discussion
We found significant differences in white matter FA be-
tween TRD patients and healthy subjects in the left mid-
dle frontal gyrus, left limbic lobe uncus, and right
cerebellum posterior lobe. These data suggest that abnor-
mal cortical-limbic-cerebellar white matter circuits may
underlie the pathogenesis of TRD, which is partly consist-
ent with previous studies on affective disorders that impli-
cate abnormalities of the cortical-limbic circuits.
White matter abnormalities in the middle frontal gyrus

and limbic lobe have been reported in numerous studies
using the VBA or TBSS methods, including MDD, BD,
young and geriatric depression, and first-episode and re-
current depression [12,14-17,30-35]; in these studies, ab-
normal cortical-limbic or cortical-subcortical circuits
related to emotional regulation were used to interpret
the mechanisms of affective disorders. In the cortical-
limbic model proposed by Mayberg [36], the dorsal com-
partment includes both neocortical and midline limbic
elements, and is thought to regulate attentional and cog-
nitive symptoms of depression involving apathy and psy-
chomotor retardation, while the ventral compartment,
composed of the limbic, paralimbic cortical, subcortical,
and brainstem regions, is proposed to mediate the vege-
tative and somatic aspects of depression. Depression is
considered to be related to failure of the coordinated
interactions of the dorsal and ventral compartment
[37-39]. In our study, the left middle frontal gyrus and
left limbic lobe uncus belong to the dorsal and ventral
compartments, respectively, and dysfunction of these
two compartments can account for the disturbances of
emotional behavior. Modern brain imaging studies have
supported a pronounced role of cortical-limbic top-
down mechanisms in the regulation of mood and
depression therapy, including the positive effect of cog-
nitive behavioral therapy on depression [40,41].
RD and HC

TRD group (n = 30) P-value

Mean SD

26.77 5.28 0.29

19/11 0.80

16/14 0.92

4.68 3.37

20.47 4.45

ssion.



Figure 1 Areas of decreased fractional anisotropy extending over the left middle frontal gyrus (a), left limbic lobe uncus (b), and right
cerebellum posterior lobe (c) in treatment-resistant depression patients compared with healthy control subjects.
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The prefrontal cortex exerts a potent regulatory influ-
ence over the subcortical systems involved in the regula-
tion of affective states [42,43]. Frontal-subcortical circuits
such as the classic limbic-cortical-striatal-pallidal-thalamic
(LCSPT) circuit, formed by connections between the or-
bital and medial prefrontal cortex, amygdala, hippocampal
subiculum, ventromedial striatum, mediodorsal, and mid-
line thalamic nuclei, and ventral pallidum, are considered
to underlie emotional regulation [20,21]. These circuits
can provide forebrain modulation over visceral control
structures in the hypothalamus and brainstem, and their
dysfunction can regulate the disturbances in autonomic
regulation and neuroendocrine responses that are associ-
ated with mood disorders [8,20,44]. Our results showed
abnormal white matter areas in the middle frontal gyrus
and limbic lobe uncus, and the abnormal brain regions
were located at or near LCSPT circuits. However, we did
not find abnormalities in the classical brain areas such as
the ACC, amygdala, or hippocampus often reported by
previous studies of affective disorders [14,45], which may
be related to our small sample size or rigorous threshold
setting.
Besides the cortical-limbic or cortical-subcortical cir-

cuits, the cerebellum may also play an important role in
emotional regulation. The traditionally held view is that
the core functions of the cerebellum involve coordination,
Table 2 Brain regions with significantly lower fractional aniso

Anatomical region L/R Cluster level P
(corrected)

Size
(voxels)

V
(

Limbic lobe uncus Left 0.015 92 0

Middle Frontal gyrus Left 0.083 66 0

Cerebellum posterior
Lobe

Right 0.025 89 0

Uncorrected P < 0.001, 50 voxels minimum extent. FDR, false discovery rate; MNI, M
balance, and the motor component of speech regulation
[46,47]. Recently, neuroanatomical studies have shown
that the cerebellum is important for cognitive regulation
through bidirectional pathways between the cerebellum
and cortical structures, and cerebellar lesions can result in
cerebellar-cognitive-affective syndrome, including execu-
tive, visual spatial, and linguistic impairments, and
affective dysregulation. The cerebellum has extensive ana-
tomic connections with many brainstem and forebrain
structures. Several cerebellar-cerebral pathways are likely
to be involved in emotional behavior, with several path-
ways emanating primarily from the cerebellar fastigial nu-
clei and terminating in various limbic structures including
the hippocampus, amygdala, septal nuclei, mammillary
bodies, and hypothalamus. Other potentially important
pathways emanate from the ventrolateral dentate nucleus,
travel to the thalamus (including dorsomedial nucleus),
and terminate in the prefrontal cortex [48]. Doron et al.
(2009) tracked connections between the cerebral peduncle
and left hemispheric masks of the superior frontal gyrus,
precentral gyrus, middle frontal gyrus, orbital frontal cor-
tex, and two regions of the inferior frontal gyrus,
supporting the relationship of the cerebellum with cogni-
tion and affection regulation [49]. In addition, the vermis
of the cerebellum is recognized as an anatomical part of
the limbic cerebellum, and vermis lesions often cause
tropy

oxel level P
FDR-corrected)

Voxel level P
(uncorrected)

MNI (mm)
x y z

Voxel
Z

.232 0.000 −18 2 −22 4.13

.018 0.000 −18 46 −14 5.21

.125 0.000 26 −34 −40 3.98

ontreal Neurological Institute.



Figure 2 Fractional anisotropy values are significantly decreased at the left middle frontal gyrus, left limbic lobe, and right cerebellum
posterior lobe. P < 0.001. HC, healthy control; TRD, treatment-resistant depression.
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neuropsychiatric disorders. A study based on single pho-
ton emission computed tomography also suggested a
functional impact of cerebellar lesions on cortical func-
tioning through disruption of cerebellar-cerebral connec-
tions, indicating a role of the cerebellum in emotional
processing [50]. Furthermore, abnormal cerebellar func-
tion was reported to be a potential marker of vulnerability
to recurrent depression [51]. Based on these studies and
our results showing abnormal white matter connections at
the left middle frontal gyrus, the left limbic lobe uncus,
and the right posterior lobe of the cerebellum, both the
cortical-limbic circuit and the cerebellum may contribute
to TRD.
Evidence from clinical findings supports the posterior

lobe, rather than the anterior lobe, as the cerebellar
region of specialization for cognitive and affective
processes [52]. With cerebellar damage, there is a ten-
dency toward lateralization in cognitive processing, and
right-sided cerebellar lesions often show typical left-
hemispheric dysfunctions, including disorders in execu-
tive functions, logical reasoning, and language skills [50].
Our results show white matter abnormalities in the left
middle frontal gyrus, limbic lobe uncus, and right cere-
bellum posterior lobe are consistent with the tendency for
Figure 3 Significant negative correlation between BDI scores of TRD
left limbic lobe, and right cerebellum posterior lobe. BDI, Beck Depressi
lateralization [48]. The lateralized cerebral specialization is
different between emotional experience and expression,
and evidence suggests that positive, approach-related
emotions are associated with functions of the left cere-
bral hemisphere regions, whereas negative, withdrawal-
related emotions are associated with right hemisphere
mechanisms [48]. Our results were focused on the left
cerebral and right cerebellum posterior lobe, and sug-
gest that TRD may be related to emotional-expression
and cognitive-processing disorders.
Numerous studies have demonstrated that the cerebel-

lum is involved in cognitive functions, especially the
posterior lobe of the cerebellum, which is considered to
be related to executive function, working memory, and
language processing [46,47,50]. The left middle frontal
gyrus is considered an important region for working
memory, executive functions, logical reasoning, language
skills, and information processing [50,53-55]. In our
study, white matter abnormalities were observed simul-
taneously at the right posterior lobe of the cerebellum
and the left middle frontal gyrus, which may enhance
the impaired cognitive functions in TRD, and the poorer
cognitive functions may be the basis of treatment
resistance.
patients and reduced FA values in the left middle frontal gyrus,
on Inventory; FA, fractional anisotropy; TRD, treatment-resistant depression.



Table 3 Gender differences of mean fractional anisotropy
in regions of interest

Anatomical region Gender n Mean SD P-value

Left limbic lobe uncus male 19 0.182 0.022

female 11 0.186 0.023 0.636

Left middle frontal gyrus male 19 0.248 0.021

female 11 0.243 0.030 0.588

Right cerebellum posterior lobe male 19 0.324 0.055

female 11 0.351 0.055 0.207

P > 0.05. SD, standard deviation.
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In one VBA study of eight refractory depression pa-
tients and nine controls, a significant reduction in FA
was observed in the frontal lobe, ACC, and temporal
lobe in depression patients [22]. However, the sample
size of this study was small, and the results did not sur-
vive correction, with a threshold set by P < 0.005 and
cluster size >30 voxels. In the present study using the
same methods, a larger sample size, and a threshold of
P < 0.001 and cluster size >50, we found that the cerebel-
lum was also involved in the pathogenesis of TRD. Using
the voxel-based method may produce Type I errors, al-
though our results survived a FDR threshold of P < 0.05
at the cluster level or the voxel level.
We also found a negative correlation between depres-

sive symptom scores and FA values in three areas in
TRD patients, further supporting the possibility that
damaged white matter integrity was related to disease
severity. We did not find a correlation between FA
values and age or disease duration, as previously
reported [25,27]. These data suggest that reductions of
FA in TRD may be related to patient clinical presenta-
tion, and less associated with other factors. There is also
evidence that gender may influence white matter FA
values [56]. However, we found no differences in FA be-
tween males to females in TRD patients in the three sig-
nificant clusters, suggesting that male and female TRD
patients exhibit the same pathogenesis.
There are some potential limitations of this study. First,

the sample size is small, and these results require replica-
tion and further clarification in a larger patient population.
Second, new methods such as TBSS should be used in the
future to track the precise connections between the cor-
tex, limbic area, and cerebellum, and to examine in more
detail the network associated with affection regulation.
The VBA as an explorative method is useful for discover-
ing unanticipated or unpredicted neuroanatomical areas,
although it can lead to pseudopositive results. Finally,
more advanced statistical methods and a more powerful
correction should be performed, as our small sample size
limited the correction.
Conclusions
Our DTI results demonstrate, for the first time, a role of
the cerebellum in the pathogenesis of TRD. We suggest
that the changes in white matter FA in TRD patients are
similar to MDD, implicating abnormalities of the
cortical-limbic circuits, but are also associated with the
cerebellum. The pathogenesis of TRD may be related to
abnormalities of cortical-limbic-cerebellar white matter
networks. Future studies with larger sample sizes and
better methods such as TBSS are required to replicate
these results.
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