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Abstract

Background: The objective of this report is to describe the methods used to develop and validate a computerized system to analyze Humphrey
visual fields obtained from patients with non-arteritic anterior ischemic optic neuropathy (NAION) and enrolled in the Ischemic Optic
Neuropathy Decompression Trial IONDT). The IONDT was a multicenter study that included randomized and non-randomized patients with
newly diagnosed NAION in the study eye. At baseline, randomized eyes had visual acuity of 20/64 or worse and non-randomized eyes had visual
acuity of better than 20/64 or were associated with patients refusing randomization. Visual fields were measured before treatment using the
Humphrey Field Analyzer with the 24-2 program, foveal threshold, and size Il stimulus.

Methods: We used visual fields from 189 non-IONDT eyes with NAION to develop the computerized classification system. Six neuro-
ophthalmologists ("expert panel") described definitions for visual field patterns defects using 19 visual fields representing a range of pattern
defect types. The expert panel then used 120 visual fields, classified using these definitions, to refine the rules, generating revised definitions for
13 visual field pattern defects and 3 levels of severity. These definitions were incorporated into a rule-based computerized classification system
run on Excel® software. The computerized classification system was used to categorize visual field defects for an additional 95 NAION visual
fields, and the expert panel was asked to independently classify the new fields and subsequently whether they agreed with the computer
classification. To account for test variability over time, we derived an adjustment factor from the pooled short term fluctuation. We examined
change in defects with and without adjustment in visual fields of study participants who demonstrated a visual acuity decrease within 30 days of
NAION onset (progressive NAION).

Results: Despite an agreed upon set of rules, there was not good agreement among the expert panel when their independent visual
classifications were compared. A majority did concur with the computer classification for 91 of 95 visual fields. Remaining classification
discrepancies could not be resolved without modifying existing definitions.

Without using the adjustment factor, visual fields of 63.6% (14/22) patients with progressive NAION and no central defect, and all (7/7) patients
with a paracentral defect, worsened within 30 days of NAION onset. After applying the adjustment factor, the visual fields of the same patients
with no initial central defect and 5/7 of the patients with a paracentral defect were seen to worsen.

Conclusion: The IONDT developed a rule-based computerized system that consistently defines pattern and severity of visual fields of NAION

patients for use in a research setting.
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Background

The Ischemic Optic Neuropathy Decompression Trial
(IONDT) was a randomized clinical trial designed to test
the safety and efficacy of optic nerve decompression sur-
gery (ONDS) combined with careful follow-up for treat-
ment of non-arteritic anterior ischemic optic neuropathy
(NAION), as well as to document the natural history of
NAION [1]. Using visual acuity as the primary outcome
measure, the IONDT demonstrated that ONDS is not
effective and may be harmful [2].

For NAION, characterized clinically as causing visual field
loss, conclusions about treatment efficacy and natural his-
tory based on visual acuity outcomes alone may be inad-
equate. For this reason, change in the visual field, as
measured by the Humphrey Visual Field Analyzer (HVF),
was a planned secondary outcome in the IONDT. The
Humphrey Visual Field Analyzer® (Zeiss Humphrey, San
Leandro, Ca, USA) provides a standardized testing envi-
ronment, quantitative assessment of threshold sensitivity
to spots of light at fixed points throughout the visual field,
and data regarding reliability of patients' responses.

In the IONDT, we found no difference between visual
fields from ONDS and careful follow-up groups at 6
months using the HVF global measure, "mean deviation"
(MD). However, MD by itself may be an insufficient
measure for assessment of visual fields in eyes with
NAION. For example, the classical patterns of defect
encountered in NAION may shift without changing aver-
age loss or there may be important changes in sensitivity
within small areas of the visual field corresponding to
nerve fiber bundle defects. These changes in area or size
may not be detected when averaged into the MD measure,
warranting a more detailed analysis of the quantitative
visual field testing.

Development and validation of a system for classifying
and assessing change in visual fields is complex due to the
lack of "gold standards". Glaucoma trials have utilized a
number of approaches for evaluating progression, but the
algorithms seldom include classifications based upon the
defect type. [3-6] Although the Optic Neuritis Treatment
Trial (ONTT) investigators categorized visual field defects,
they did not use strict definitions for classification and
patterns of field loss were qualitatively rather than quan-
titatively determined [7].

Despite a variety of anticipated challenges, in the IONDT
we set out to develop a rule-based computerized system
for classifying and analyzing visual fields. Our intent was
to create logic-based computer algorithms that reliably
reproduced the clinical classifications of visual field
defects encountered in NAION so as to evaluate the
IONDT visual fields. The computer algorithm is intended
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for use in a clinical research setting where standardization
of classification is required.

Methods

IONDT protocol

We have previously described the IONDT eligibility crite-
ria, randomization procedure, and visit protocols in detail
[1]. Briefly, patients aged 50 years or older were eligible
for randomization into surgical or careful follow-up
groups if they had symptoms and signs characteristic of
NAION for 14 days or less in one eye. Patients with visual
acuity of 20/64 or less in the study eye comprised the "reg-
ular entry" group, while patients otherwise eligible but
with visual acuity better than 20/64 were enrolled only if
visual acuity decreased to 20/64 or worse within 30 days
of onset of symptoms ("late entry" group). Patients with
acuity better than 20/64 and otherwise eligible and
patients who refused randomization were followed as part
of a non-randomized group. Institutional review boards
at participating institutions approved the protocol and all
participating patients provided signed informed consent.

We completed visual field testing of study and non-study
eyes of all enrolled patients at baseline, for both rand-
omized and non-randomized eyes. In the IONDT, auto-
mated perimetry was performed by trained certified visual
field technicians using the HVF, 24-2 program with stim-
ulus size 11, full threshold strategy, and with foveal sensi-
tivity measured concurrently. Visual fields for the study
eye were measured before those for the non-study eye. For
randomized patients, visual fields were obtained at the
baseline examination; if randomization took place more
than 24 hours after baseline, visual fields were re-meas-
ured. Clinical Centers measured visual fields prospec-
tively. For randomized patients, this was at the 3, 6, and
12-month visit, at study closeout (minimum of 5 years of
follow-up), and at approximately annual intervals
between the 12-month and closeout visits. Visual fields
for non-randomized patients were obtained at the base-
line examination, at either 6 or 12-month visit or both,
closeout, and at approximately one-year intervals between
the 12-month and closeout visits. All patients were fol-
lowed for at least 5 years. Visual field data were evaluated
as a secondary outcome measure and not utilized for deci-
sion-making during the conduct of the trial.

Methods used to develop the computerized visual field
classification system

Development of classification system

In 1994, we formed a Visual Field Committee (VFC),
which included an "expert panel" of six IONDT neuro-
ophthalmologists (AA, SMC, SEF, LNJ, GK, SAN) with
expertise in the interpretation of visual fields, five meth-
odologists (KD, JK, PL, RWS, PDW), and a programmer
(LL). The number of experts required on the panel was
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decided after a statistical computation determined that
the chance of six experts agreeing on ten patterns by guess-
ing would be 0.00001. A majority of the experts needed to
agree to categorize a field defect as a specific pattern. The
chance of this degree of concordance occurring by guess-
ing alone was 0.01215. For any field in which the agree-
ment among panelists was not significantly better than
guessing, the field was considered 'non-classifiable'.

The VFC established the protocol for developing visual
field defect categories, training and evaluation of the
expert panel, developing and testing of a computerized
classification system, and defining progression using this
system. The Committee based the sequence of steps that
would be used to develop and validate the computerized
expert system (see Figure 1) after Molino and associates
[8]. The expert panel formulated the definitions of the var-
ious types of field defects, (e.g. normal, absolute defect,
diffuse depression), all of which were based solely on data
available within the 24-2 visual field.

We used 189 visual fields to develop the computer based
classification system, none of which were associated with
patients enrolled in the IONDT. Eighty-one visual fields
were included from patients with NAION who were
screened but not eligible for the IONDT. Reasons for inel-
igibility included refused enrollment, age < 50 years,
onset of symptoms unknown or > 14 days, unable to read
English, myocardial infarction within last 6 months, a vis-
ual condition precluding reliable visual acuity measure-
ment, and current anticoagulant or corticosteroid use.
One hundred eight visual fields from NAION patients not
screened or enrolled in the IONDT, and seen at Doheny
Eye Institute (n = 24), Emory University (n = 50), or the
University of Missouri's Mason Eye Institute (n = 34) were
also used to develop the computer-based system, follow-
ing institutional review boards approval at each institu-
tion. All visual fields used to develop the computer-based
classification system had been evaluated for reliability
and had < 3 fixation losses, < 3 false positive responses,
and < 3 false negative responses.

The expert panel first formulated initial operational defi-
nitions of visual field defects corresponding to the 52
points in the 24-2 Humphrey scale (see Figure 2). Global
guidelines included the following rules:

1. If a field is classified as normal or absolute (no percep-
tion of stimuli), no other classification may be made.

2. A depressed point is defined as equal to, or greater than,
4 dB loss.

3. Fields are classified even though they appear unreliable
from the HVF indices (i.e., short term fluctuation).

http://www.biomedcentral.com/1471-2415/6/34

4. Severity is based upon subjective judgment. Only the
arcuate/altitudinal category may have more than one
severity with a separate severity assignable to the arcuate
and the altitudinal components.

Definitions were refined through an iterative process
using an "evaluation set" of visual fields until consensus
was reached, as follows:

The VFC director reviewed the 189 visual fields to select
19 with one or more representative defects (evaluation
set), and then sent the evaluation set to each of the 6
expert panelists, along with instructions, a grading form,
and proposed definitions for 13 types of defects and for
levels of severity. Members of the expert panel independ-
ently reviewed the fields and definitions, and, after tele-
phone and face-to-face meetings, agreed upon modified
definitions of pattern defects.

The VFC Director used the modified pattern defect defini-
tions to re-classify the 19 visual fields in the evaluation
set. Each member of the expert panel independently
reported the degree to which s/he agreed with the classifi-
cation of each field, choosing from among the following
choices: excellent, good, uncertain, poor, or bad. At the
same time, the panelists were instructed to categorize the
severity (density) of each defect as mild, moderate, severe,
or absolute (Table 1). Because there was again lack of
agreement among the expert panel on the classification,
the group met face-to face to discuss and revise the exist-
ing definitions for a second time. Disagreements were
resolved by allowing three categories of field defects:
peripheral, paracentral, and central as well as a category of
"other" which could be used only for visual fields that
were impossible to fit into any other specific category.

Using the revised definitions derived from the evaluation
set, the VFC then sent a "training set" of 97 masked, rep-
resentative, non-IONDT NAION fields to the expert panel
for classification. To assess the ability of the panelists to
apply the rules reliably, 11 duplicate fields from the train-
ing set and 12 fields from the evaluation set were included
for a total of 120 fields.

At least five of six (83%) panelists independently agreed
on the defect classification for 55 of 120 fields comprising
the training set. Agreement on classification of the
remaining 65 fields was achieved through a series of four
interactive reconciliation meetings of the expert panel,
held either by teleconference or in person. These discus-
sions resulted in further refinement and finalization of the
pattern definitions and consensus on classification of all
fields in the training set.
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Instructions to
Panel

Materials Sent
to Panel

Evaluation Set Classify fields based
on Panel Chair’s

initial instructions

"

Training Set  Classify fields based
on panel-refined

definitions

"

Validation Set Classify fields based
on panel-finalized

definitions

"

Computer-
classified
Visual Fields

Agree or disagree
with computer
classification

Figure |
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Results

Initial field definitions
(Table 1)
(“panel refined”)

Definitions finalized
and used to create
rules for computer
classification (Table 2)

Disagreement among
panel members and
with computer on
classification (Table 3)

Agreement with
computer classification
(Table 4)

Fields Provided
to Panel

19 non-IONDT
visual fields,
representative
examples of visual
field defects

120 (97 with 23
duplicates) non-
IONDT
unclassified visual
fields

95 (73 with 22
duplicates) non-
IONDT
unclassified visual
fields

95 (73 with 22
duplicates) non-
IONDT expert
system classified
visual fields

Sequence of steps utilized by the Visual Field Committee to develop rules for analysis of visual field defects by the computer-

ized system.
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A' 1 2 3 4
5 6 7 8 9 10
11 12 13 14 |15 16 17 18
19 bs 20 21 |22 23 24 25 26
27 bs 28 29 |30 31 32 33 34
35 36 37 38|39 40 41 42
43 44 45 | 46 47 48
49 50 | 51 52
B.

19 bs 21 20 | 22 21 22 21 22

20 22 22 22 | 22 22 22 23

22 22 22 |22 23 22

22 22 |22 22

Figure 2

A Schematic of a 52-point (program 24-2) Humphrey
Visual Field for a left eye. The point indicator number for
each point measured is shown with its position in a visual
field. "bs" indicates the two points that make up the blind
spot. Points for the right eye are a mirror image, i.e., points
are read right to left for each row. B Example of a Hum-
phrey Visual Field with an inferior altitudinal field
defect. This example of a visual field shows the difference
between the values in decibels of each point in the linear
array between a single visual field and those of age-matched
controls. Differences in bold are those defining an inferior
altitudinal defect.

The final classification system included "normal" and 13
different rule-based field or defect types, shown in Table
2. Severity was restricted to mild, moderate, and severe,
and was defined subjectively.

The computer-based expert system
The VFC Director (SEF) and programmer (LL) translated
the rules for the defect definitions and the general rules

http://www.biomedcentral.com/1471-2415/6/34

into a point-by-point set of algorithms applied using log-
ical statements included with standard Excel software
(computer-based expert system).

Software structure

The computer-based expert system, constructed as a rule-
based system on an Excel® platform, run under Windows
98°% evaluated each field quadrant by quadrant. Quad-
rants were then analyzed in combination as needed to
encompass definitions of all identified types of defects.
The programmer translated each rule into a logical state-
ment that could be found true or false, taking the form "if
... then". A truth table was utilized to define specific types
of field defects, based upon definitions of the expert
panel. Two forms of logical statements were used to iden-
tify pattern defects. The first statement was based upon
average dB loss within a quadrant. If the average loss did
not meet the criteria for depression (i.e., 4 dB) then the
alternative statement, based on the number of disturbed
points within a quadrant, was used to determine the pres-
ence of pattern defects. Thus, the number of disturbed
points was used primarily to find mild defects that were
missed by averaging.

For instance, if the average dB loss was greater in the
periphery than in the central field by 5 dB, then an arcuate
defect was defined as present in that quadrant (see defini-
tion in Table 2). If the central dB loss was greater by 5 dB
than the periphery, then a central defect was present. If no
pattern defect was found by averaging, then disturbed
point algorithms were used to find mild or smaller pattern
defects within a quadrant or defect-appropriate combina-
tion of quadrants. A fixed predetermined number of dis-
turbed points had to be within the boundary of a pattern
defect for that defect to be considered present. For exam-
ple, a superior arcuate defect is defined as four depressed
points within one or both upper quadrants (see definition
in Table 2).

Some pattern defects were determined by the presence or
absence of other defects. For example, if there were supe-
rior and inferior altitudinal defects and a central scotoma,
then the pattern was defined as diffuse depression. If there
was both a paracentral scotoma and a central scotoma,
then the pattern was defined as a central scotoma alone.

Average dB loss within a pattern defect and number of dis-
turbed points was used to classify a defect as mild, moder-
ate, or severe. The severity classification of the expert
panel was used to define the boundaries for each type of
defect. Table 3 shows how severity for an altitudinal defect
was determined using 23 altitudinal defects in the training
set identified by the expert panel. Severity for other defects
was similarly determined (number and type of defect used
to determine severity scores: 9 paracentral scotomas; 26
arcuate defects; 20 diffuse depression defects; and 3 nasal
step defects). Classification as an absolute defect (i.e. no
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Table I: Agreement between six expert panel members' and director's classification for 19 non-IONDT visual fields in the Evaluation

Set

Stated agreement with director

Excellent Good Uncertain Poor Bad
Director's classification No. (%) No. (%) No. (%) No. (%) No. (%)
Normal 5(83) I (17)
Absolute defect 6 (100)
Mild diffuse depression 3 (50) 1 (17) 2 (33)
Severe diffuse depression 1 (17) 4 (66) I (17)
Mild superior altitudinal 3 (50) 3 (50)
Moderate superior and inferior altitudinal 4 (67) 1 (17) 1 (17)
Severe superior altitudinal 6 (100)
Mild inferior altitudinal 2 (33) 4 (67)
Moderate inferior altitudinal 1 (17) 3 (50) 2 (33)
Severe inferior altitudinal and moderate superior arcuate 5(83) 1 (17)
Moderate superior arcuate 4 (67) 1 (17) 1 (17)
Severe superior and inferior arcuate 2 (33) 2 (33) 1 (17) 1 (17)
Mild inferior arcuate 6 (100)
Moderate inferior arcuate 4 (67) 1 (17) 1 (17)
Severe inferior arcuate 4 (67) 2 (33)
Moderate inferior nasal step 5(83) 1 (17)
Mild paracentral scotoma 2 (33) 1 (17) 3 (50)
Moderate central scotoma 4 (67) 2 (33)
Severe central scotoma 3 (50) 3 (50)

response to the brightest stimulus at all points tested on
the 24-2 HVF) required use of actual sensitivity rather
than relative sensitivity loss.

Definition of change across time

Calculation of SF-

To measure change in visual field defects over time (i.e.,
from baseline to a follow-up visits) we planned to analyze
visual fields at multiple time points and compare defect
type and severity. We anticipated that change in an indi-
vidual's visual field could entail change in defect type,
defect severity, both defect type and severity, identifica-
tion of a new defect at follow-up not observed at baseline,
or disappearance of a defect observed at baseline.

Because spurious changes in visual fields caused by
patient learning effects or by short term fluctuation were
possible, we decided to use the Humphrey global index
short term fluctuation (SF), a measure of intra-test varia-
bility, as a standard by which to determine the normal
variation within an individual's visual fields over a fixed
time period. SF is determined by measuring the difference
between two threshold measurements at 10 different
points across the entire field during the same test. The
average of these differences constitute the SF. Clinically, a
small SF (1 to 2 dB) indicates a reliable field [9]. To esti-
mate the normal variation of an individual's visual fields
measured at baseline and follow-up, we used a pooled
estimate, SF, for both visits, calculated as follows:

2 2
Sk = 1-96[ \/(SFbaseline + SFfollowup) ]

where SF, is half of the 95% confidence interval on the
pooled estimate of SF across both visits, SFy,.jine is the SF
measured for the visual field at baseline and SFyy gy 1
the SF measured at follow-up (i.e., from the visual field
obtained at the 6 month visit for determining change
from baseline to the 6 month visit or from the visual field
obtained at the 12 month visit for change from baseline
to the 12 month visit).

When there was an apparent change in defect type from
baseline to follow-up we removed the effect of normal
variation by using the value of SF to "adjust" the follow-
up visit Humphrey visual field at key points used by the
computerized expert system to differentiate between
defects types. The adjustment was made in the direction
that would decrease the probability of detecting a change
in defect type from baseline to follow-up. The adjusted
data was then reclassified. For example, if an individual
had visual fields classified as having a superior arcuate
defect at baseline and a superior altitudinal defect at the
follow-up visit, that patient's SF for these visits was sub-
tracted from the points that distinguish an arcuate from
an altitudinal defect in the computerized expert system,
i.e., paracentral points 21 and 22, in the follow-up field.
This adjusted follow-up visual field was then re-classified.
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Table 2: Panel-finalized definitions of visual field patterns and defects

Type pattern or defect

Definition

Normal

Absolute defect

Diffuse defect

Superior altitudinal

Inferior altitudinal

Superior arcuate

Inferior arcuate

Superior nasal step

Inferior nasal step

Central scotoma

Paracentral scotoma

Superior arcuate/altitudinal

Inferior arcuate/altitudinal

Other

No quadrants depressed or only a few points in no specific pattern. One depressed point in a location surrounding the
blind spot is normal unless it is part of another defined field defect.

No response (sensitivity = zero) was recorded for all points in all quadrants or if only one point is less than or equal
to 9 dB sensitivity and all other points are zero. If the retest is zero, then the point sensitivity is zero. Foveal sensitivity
must be equal to zero.

Entire visual field equally depressed including fixation as defined as presence of both a superior and an inferior
altitudinal defect that are equally depressed and a central scotoma

Upper half of field equally depressed as defined as all points in the superior two quadrants approximately equally
depressed, excluding those temporal to the blind spot (i.e. points | | and 19 on the visual field map). Depression
should extend down to horizontal meridian including approximate equal involvement of the superior paracentral
points (points 21 and 22 on the visual field map).

Lower half of field equally depressed as defined as all points in the inferior two quadrants approximately equally
depressed, excluding those temporal to the blind spot (i.e. points 27 and 35 on the visual field map). Depression
should extend up to horizontal meridian including approximate equal involvement of the superior paracentral points
(points 29 and 30 on the visual field map).

Peripheral defect (at least four peripheral points must be depressed within one quadrant) that appears in either or
both superior quadrants with relative sparing of either one or both of the superior paracentral points, or either one of
the superior paracentral points is less depressed in comparison to the superior periphery in either quadrant and it is
not a nasal step. Superior periphery is defined as all points in the superior two quadrants except points 2| and 22.

Peripheral defect (at least four peripheral points must be depressed within one quadrant) that appears in either or
both inferior quadrants with relative sparing of either one or both of the inferior paracentral points, or either one of
the inferior paracentral points is less depressed in comparison to the inferior periphery in either quadrant and it is not
a nasal step. Inferior periphery is defined as all points in the inferior two quadrants except points 29 and 30.

An isolated superior nasal quadrant defect which preferentially involves the peripheral points (points 18,25, and 26)
adjacent to the horizontal meridian. Cannot be part of a superior arcuate defect and there cannot be an arcuate defect
in the superior temporal quadrant. Superior nasal points adjacent to the vertical meridian (points 3,8,15 and 22) are
relatively spared.

An isolated inferior nasal quadrant defect which preferentially involves the peripheral points (points 33,34 and 42)
adjacent to the horizontal meridian. Cannot be part of an inferior arcuate defect and there cannot be an arcuate
defect in the inferior temporal quadrant. Inferior nasal points adjacent to the vertical meridian (points 30, 39, 46, and
51) are relatively spared.

Decreased sensitivity of the fovea by 5 dB relative to the least depressed point in the rest of the field or the foveal
sensitivity is less than 10 dB.

Focal depression of the visual field not corresponding to any other pattern and located within the paracentral region
(points 20,21,22,28,29,30) adjacent to the blind spot, but sparing fixation (i.e. no central scotoma). One isolated,
depressed paracentral point next to the blind spot (point 20 or 28) is not a paracentral scotoma. If there is a central
scotoma and, as defined, a paracentral scotoma, then the defect is categorized as a central scotoma.

Both superior paracentral points (points 2| and 22) are equally depressed, but the superior periphery is more
depressed than the paracentral. Superior paracentral points must differ substantially from the inferior paracentral
points (points 29 and 30) i.e. no central or paracentral scotoma involving these points.

Both inferior paracentral points (points 29 and 30) are equally depressed, but the inferior periphery is more depressed
than the paracentral Inferior paracentral points must differ substantially from the superior paracentral points (points
29 and 30) i.e. no central or paracentral scotoma involving these points

Pattern defect that does not fit any of the above definitions e.g. shifted field. Use this category only if you are certain
that you cannot categorize the defect using the other |3 categories
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Table 3: Classification of severity of 23 visual fields with altitudinal defects from training set

Field parameters

Qualitative severity (as classified by panel) n

Mild | 6.2
Moderate 5 18.2
Severe 17 274

Average dB loss within defect

95% CI Average number points in defect 95% CI
5
12.9 to 23.5 25 24.3 to0 25.7
26.3 to 28.5 26 25.8 to0 26.2

If the adjusted visual field was still classified as having a
superior altitudinal defect, then the superior portion of
the follow-up field would be classified as having changed
from baseline, from a superior arcuate to a superior altitu-
dinal defect. On the other hand, if the adjusted follow-up
visual field was classified as having a superior arcuate
defect, then the follow-up visual field was classified as
"not changed" with a superior arcuate defect for both vis-
its. This general approach was used to distinguish an arcu-
ate from an altitudinal defect, and a central from a
paracentral defect.

Change in severity was also determined after applying SF.
but was only evaluated in fields whose defects were classi-
fied as not changed.

Results

Validation of the classification scheme

A set of 95 non-IONDT NAION visual fields was sent to
the expert panel as a "validation set"; of these, 22 were
masked duplicates chosen systematically from the origi-
nal training set (every fifth field listed in ID numeric
order). The level of agreement on classification of these
fields among the expert panel and the corresponding
agreement of the computer with the panel members' clas-
sifications is shown in Table 4. Reliability of individual
panel members in re-classifying defects in the 22 dupli-

cate visual fields from the evaluation set averaged 57%
(range; 32% to 77%), despite a common set of definitions
derived and finalized by consensus.

Figures 3 through 7 show representative visual fields used
in the validation process and illustrate the type of disa-
greement that was found. Figure 3 shows an example of
visual fields for which the expert panel members inde-
pendently arrived at pattern and severity classifications
that were exactly the same as the computerized classifica-
tion. Figure 4 shows a visual field in which the members
agreed among themselves but not with the computer clas-
sification, and Figures 5, 6 and 7 show fields for which
there was little agreement among the expert panel during
independent classification.

We then used an alternative validation approach, whereby
the panelists were asked to agree or disagree with the com-
puter's classification. We changed the question posed to
panel members from one of application of the rules to
classify the defects in this visual field to "does the consist-
ent application of consensus-derived rules applied by the
computer program result in a classification of this visual
field that is clinically acceptable?" There were only 4 of 95
instances in which the majority (= 50%) of the panelists
did not believe that the computer classification was clini-
cally acceptable (Table 5). Specific differences were

Table 4: Agreement among members of the expert panel and agreement of computer with expert panel in independent classification

of visual fields in the validation set

95 visual fields in validation set

Fields for which expert panel
agrees on classification

Fields for which computer classification agrees
with majority of panel members

Expert panel members agreeing on No. (%) No. (%)
classification

6 of 6 panelists agree 7 @) 7 @)

5 of 6 panelists agree 14 (15) 10 (n

4 of 6 panelists agree 23 (24) 16 17)

3 of 6 panelists agree 22 (23) 16 (17)

Total fields for which > 3 panelists agree 66 (69) 50 (53)

Total visual fields 95 (100) 95 (100)
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Figure 3

Example of visual field associated with excellent agreement among members of the expert panel and compu-
terized classification. All members of the expert panel independently classified the defect in this visual field as a moderate
inferior arcuate scotoma, and the computer algorithm applied the same classification. In addition, all members of the expert
panel concurred with the computerized classification when asked if the computer classification was a valid clinical classification.
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Figure 4

Example of good agreement among members of the expert panel, and moderate agreement with computer
classification. Five members of the expert panel classified the defects in this visual field as a moderate superior arcuate and a
moderate inferior arcuate, while the other member classified the defects as a moderate nasal step and inferior arcuate. None
agreed with the computer classification, moderate superior arcuate and severe inferior nasal step. Five members of the panel
concurred with the computerized defect pattern classification, although only three agreed with the severity classification. Dis-
senting members thought that defects were either both severe or both moderate. The remaining member thought that the
defects were best described as moderate superior and inferior arcuate scotomas.
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Figure 5

Example of poor agreement among members of the expert panel, but agreement with computer classifica-
tion. Three members of the expert panel initially and independently classified the defects in this visual field as a moderate
superior arcuate and severe inferior altitudinal scotoma. One member classified the superior defect as an arcuate-altitudinal,
while two other members thought this visual field also had a moderate central scotoma in agreement with the computerized
classification. When asked if the computer classification was a valid clinical classification, all members of the expert panel con-
curred with the computerized classification (moderate superior arcuate, severe inferior altitudinal and moderate central

scotoma).
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Figure 6

Example of poor agreement among members of the expert panel, and good agreement with computer classi-
fication. No member of the expert panel initially and independently classified the defects in this visual field in exactly the same
way as any other member. Classifications included a mild inferior altitudinal with or without a moderate central scotoma and
with or without a mild superior arcuate, or as a paracentral scotoma with or without a mild to moderate inferior arcuate
scotoma. When asked if the computer classification was a valid clinical classification, all members of the expert panel concurred
with the computerized classification (mild to moderate inferior arcuate and moderate central scotoma).
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Figure 7

Example of poor agreement among members of the expert panel, and poor agreement with computer classi-
fication. Only two members of the expert panel initially and independently classified the defects in this visual field in exactly
the same way, i.e., as a mild superior altitudinal, moderate inferior altitudinal, and severe central scotoma. Other classifications
included a superior arcuate, inferior arcuate or paracentral scotoma. Only two members of the panel concurred with the com-
puter classification (mild superior arcuate, moderate inferior altitudinal, and severe central scotoma). Two members believed
that the inferior defect was an arcuate rather than altitudinal defect, one member believed that the field represented overall

diffuse depression with a superior arcuate.
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Table 5: Agreement with computer-based classification of 95
visual fields in the validation set among six members of the
expert panel

Visual field
In agreement with computer No. (%)
Six of six panelists agree 59 (62)
Five of six panelists agree 24 (25)
Four of six panelists agree 8 8)
Three of six panelists agree 2 2)
Two of six panelists agree 2 2)
Total visual fields 95 (100)

(1) Identification of an additional mild superior altitudi-
nal defect by the computer, but not the panel members for
one field;

(2) Classification by the computer of one field as having
a severe diffuse defect and as a combination of three sep-
arate defects (superior arcuate, inferior arcuate, and cen-
tral scotoma) by the expert panel;

(3) Classification by the computer as an altitudinal or
arcuate defect and by the expert panel as an arcuate or alti-
tudinal, respectively in 2 visual fields.

Figure 7 is an example of the third type of disagreement
listed. Although two members of the panel concurred
with the computer classification (superior arcuate, infe-
rior altitudinal, and central scotoma), two members clas-
sified the inferior defect as an arcuate and one member
classified the superior defect as an altitudinal defect. One
member believed that only a superior arcuate was present.
Investigation revealed that if the computer algorithm were
modified to allow concordance with the panel members,
other classification errors would result; therefore, these
discrepancies were allowed to stand. Thus, there was
majority agreement of the expert panel and the computer
classification in 91 of 95 (96%) fields.

http://www.biomedcentral.com/1471-2415/6/34

Validation of change

To test our approach to define change, we examined the
"change" in the study eye visual field from baseline to the
randomization visit for IONDT late entry patients. It is
reasonable to expect that a majority of late entry patients
experienced a change in the central visual field in addition
to the measured change in visual acuity. Table 6 shows the
unadjusted number and type of central defects observed
in visual fields of 47 IONDT late entry patients at the base-
line and randomization visits. Using data without any
adjustment for normal variation, we found that 14 of 22
(63.6%) of the patients who had neither a paracentral nor
central defect at baseline developed a central defect by the
randomization visit. In addition, all 7 patients who
started with a paracentral defect developed a central defect
by the randomization visit. Of 18 patients starting with a
central defect, only one changed to a paracentral defect at
randomization.

When we applied the adjustment, SF., for each patient's
normal variation to the visual fields of the late entry eyes,
the classification of 2/47 randomization fields was differ-
ent. Five rather than the initial 7 patients who had a para-
central defect at baseline had a central defect at
randomization (see Table 7). All other defect changes
remained the same. A Stuart-Maxwell chi-square test of
homogeneity showed that the shift in distribution of
defects from baseline to randomization as shown in Table
7 is statistically significant (p = 0.0003). There was no
observed change in severity (average dB loss) for the cen-
tral defect of the 17 study participants who had a central
defect at both baseline and randomization (mean 11.5 dB
versus 6.7 dB at baseline and randomization, respectively;
p = 0.09) after SF; adjustment. Figures 8 and 9 show
examples of visual fields obtained at baseline and rand-
omization visits in two late entry IONDT study partici-
pants; these examples show the type of change detected by
the computerized system.

Discussion
Automated perimetry facilitates the collection of quantita-
tive data on the pattern and severity of visual field defects.

Table 6: Comparison of defects in central location of study eye at baseline visit with defects at randomization visit, in late entry

patients, without correction for short term fluctuation (SF¢)

Defect at randomization visit (RV)

Paracentral Central Neither paracentral nor central Total
Defect at baseline visit No. (%) % atRV No. (%) % atRV No. (%) % at RV No. (%) % at RV
Paracentral 0 0 7 (100.0) 18.4 0 0 7 (100.0) 14.9
Central 0 0 17 (94.4) 44.7 1 (5.6) 1.1 18 (100.0) 383
Neither paracentral nor central 0 0 14 (63.6) 36.8 8 (36.4) 88.9 22 (100.0) 46.8
Total 0 0 38 (80.8) 100.0 9(19.2) 100.0 47 (100.0) 100.0
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Table 7: Comparison of defects in central location of study eye at baseline visit with defects at randomization visit, in late entry
patients, with correction for short term fluctuation (SF¢)

Defect at randomization visit (RV)*

Paracentral Central Neither paracentral nor central Total
Defect at baseline visit No. (%) % atRV No. (%) % atRV No. (%) % at RV No. (%) % at RV
Paracentral 2 (28.6) 0 5(71.4) 13.9 0 0 7 (100.0) 14.9
Central 0 0 17 (94.4)t 47.2 I (5.6) 1.1 18 (100.0) 383
Neither paracentral nor central 0 0 14 (63.6) 389 8 (36.4) 88.9 22 (100.0) 46.8
Total 2 (4.3) 100.0 36 (76.6) 100.0 9 (19.2) 100.0 47 (100.0) 100.0

* p = 0.0003; Stuart Maxwell test for marginal homogeneity
T p = 0.09 for change in severity, | |.5 dB at baseline versus 6.7 dB at randomization; paired t test
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Figure 8

Change in visual field from baseline to randomization for a late entry study participant. The superior field showed
no defect at baseline (8A). Nine days later at the randomization visit (8B), it was classified as an arcuate and remained as an
arcuate after adjustment using SF. The inferior field was classified as an arcuate at both baseline and at randomization and so
no adjustment using SF- was applied. The central field was classified as a paracentral at baseline, and a central at randomization,
but remained a paracentral defect after adjustment using SFc.
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Change in visual field from baseline to randomization for a late entry study participant. The superior field showed
an arcuate defect at baseline (9A). Twenty-one days later, at the randomization visit (9B), it was classified as an altitudinal but

after adjustment using SF, it remained classified as an arcuate defect. The inferior field was classified as an arcuate at baseline

and worsened to an altitudinal defect at randomization both before and after adjustment using SF... The central field was classi-
fied as a paracentral at baseline, and as a central scotoma at randomization both before and after adjustment using SF..

To date, however, full use has not been made of quantita-
tive data for detection, characterization, or progression of
visual field defects in ischemic optic neuropathy. In the
IONDT, we developed and validated a reliable rule-based
system. This system proved capable of consistently defin-
ing pattern and severity of visual field defects detected in
eyes with NAION enrolled in the IONDT. It also allowed
for evaluation of change in visual field defect and severity
over time. Development of this system entailed devising
definitions for visual field defects encountered in NAION
patients using an iterative process and expert panel and
defining progression. All decision rules were based upon
the opinion of the expert panel; these rules then provided
the basis by which all field classifications were made. Fur-
ther testing of the system showed that this rule-based
computer program is a valid method for analysis of the

patterns and severities of visual field data for individuals
with NAION.

Development and validation of a system for classifying
visual fields is complex, given that there is no existing
"gold standard" for defect classification and that experts
are unable to reach agreement on defect classification, at
least in this study. This type of problem is well known in
medicine. For instance, studies validating the use of com-
puter-assisted diagnosis tools [8,10,11] suggest that the
differences between computer diagnosis and human
expert diagnosis differed by about the same extent as
human experts disagree among themselves. The diagnos-
tic variability in this study was similar to performance of
humans and computers in validations of other expert sys-
tems for interpretations lacking a "gold standard", for
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which agreement ranged from 50% to 70% [8,10,11].
Given that computerized diagnosis may be no better than
that of an expert panel, the principal reason for utilizing a
computerized system in the context of a clinical trial is to
reduce inconsistency by eliminating intra- and inter-
observer variability. For example, we found that members
of the expert panel often did not classify a visual field the
same way they previously classified it. Thus, use of a com-
puterized system reduces variability, although not neces-
sarily the original bias of the expert panel in classification
of visual field defects. Once incorporated into a computer
system, the criteria for categorizing the pattern and sever-
ity of visual field defects are, according to Hirsbrunner
and colleagues [12], "explicit, obvious, and standard-
ized." Such attributes are essential within the context of
randomized clinical trials.

Development and validation of a classification system for
visual fields requires several steps [8,10,11]. First, an
expert panel must achieve consensus on a set of rules for
classifying defects. Second, the experts apply the rules suc-
cessfully, i.e., the rate of agreement was not meaningfully
different from agreement reported for similar classifica-
tion systems in other medical contexts. Third, the consist-
ent application of the rules by a computerized system
produces classifications that do not disagree with the
panel more than the expert panel disagrees with itself.
Finally, the computerized system produces reasonable
defect classifications, defined as classifications with which
the expert panel rarely disagrees.

We recognized that more than one interpretation was pos-
sible for a given distribution of disturbed points on a vis-
ual field and that it was not going to be possible for all the
experts to agree on a gold standard to evaluate the compu-
terized system. Thus, we elected to accept the computer-
ized determination given that the panel considered it to
be consistent with clinical interpretation.

A quantified or computerized analysis of visual fields that
approximates a human interpretation of an automated
visual field faces particular challenges in three areas -
detection, progression, and characterization of the defect.
Difficulties in detection of defect relate primarily to distin-
guishing appropriately between short-term and long-term
fluctuation. This problem is further compounded in vari-
ous disease states, such as glaucoma, in which the patho-
logical process itself produces fluctuation in sensitivity
[13]. The Ocular Hypertension Treatment Study used
multiple confirmation fields to diagnose the presence or
absence of a defect and provides an example of a method
to deal with clinical detection of visual field defects [14].
More advanced models of visual field perturbations, such
as those by De la Rosa and colleagues [15], utilize an
approach for rapid assessment of glaucomatous field

http://www.biomedcentral.com/1471-2415/6/34

defects based upon multiple correlations. Although the
IONDT computerized system cannot distinguish between
short and long-term fluctuation when detecting a defect
pattern within a single field, it does use a standard set of
rules for classification and detection and thus provides for
consistent identification and classification of defects.

Progression of field defects is a common end-point for
glaucoma studies. The issue, once again, is determining
change, but from an abnormal as opposed to a normal
baseline. Katz [16] reviewed scoring methods employed
by two multicenter clinical trials, the Advanced Glaucoma
Intervention Study (AGIS) and the CIGTS. These studies
utilized a cumulative score (0-20), based upon depres-
sion of adjacent points occurring within specified regions
of the visual field. Depression was defined by total devia-
tion plot on the HVF printout in the AGIS and by proba-
bility values in the CIGTS. McNaught and co-workers [17]
developed a linear model of point wise sensitivity values
against time to identify progression in normal tension
glaucoma. By any of these methods, detection and pro-
gression could be determined operationally, based on the
sensitivity and reliability required in a particular study.
The IONDT used change, defined as decibel loss or
increased number of points within defects identified at
baseline, to detect progression using the computerized
classification system, after adjusting for measured within-
individual variations in performance.

In contrast to detection and progression of visual field
defects, characterization is a more complex task. It
requires pattern recognition open to multiple interpreta-
tions and preferences (e.g., "lumping" versus "splitting").
Typically, glaucoma visual field interpretation does not
address visual field characterization. In one of the few
clinical trials to utilize pattern recognition as an outcome
for visual field testing, the Optic Neuritis Treatment Trial
(ONTT) established 15 monocular types of field defects
(14 local and diffuse) of three different severities occur-
ring in optic neuritis [18]. The Director and Associate
Director of the ONTT Visual Field Reading Center
reviewed visual fields separately, then together, to "reach
a consensus on the final classification for each visual
field." Initial agreement was noted for 76.3% of the HVF,
81.5% on the location and 74% on the shape. Complete
agreement in every category was achieved in only 47.4%
of 309 affected eyes. In a masked retest, the agreement on
shapes was present for 76.2% of 42 cases [7,18]. The same
investigators have recently developed a similar classifica-
tion methodology for visual fields obtained in the Ocular
Hypertension Treatment Study (OHTS). Complete agree-
ment in classification among three readers was achieved
in 64%-66% of defects and majority agreement was
achieved in an additional 31%-33% [19].
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Other methods have been used to characterize visual
fields. For example, neural networks have been touted as
providing a means for allowing computers to "learn" how
to categorize visual fields correctly, even in the absence of
specified rules. In the supervised class of artificial neural
networks, the systems require a training set of "correctly”
categorized visual fields to allow learning to occur [20-
23]. Thus, there is a tautology in that, in the absence of
rules, how is such a training set derived? Henson and asso-
ciates suggest that unsupervised neural networks can be
used to resolve this dilemma, as they are self-classifying
[24]. However, the patterns correspond to the number of
nodes used in the neural network and do not necessarily
correspond to clinically identified field defects.

In designing the computerized system for evaluation of
IONDT visual fields, we encountered several methodolog-
ical issues that could have influenced definitions of defect
classification and/or change. First, fields were obtained
using full threshold strategy rather than SITA, which
resulted in prolonged testing times. SITA strategies were
unavailable at the outset of patient recruitment and had
not yet been completely validated by the study end. Sec-
ond, because the IONDT did not formally train study
patients on performing Humphrey visual field exams
before collecting study visual field data, some observed
changes may be due to learning effects over time. The
importance of training was not generally recognized in
1992, when the IONDT began. However, the testing
method used in the IONDT is probably generalizable,
given that most patients in a clinical setting do not
undergo visual field training sessions. Despite these meth-
odological issues, the observed changes in pattern classifi-
cation and severity of IONDT visual fields were
remarkably consistent over time [25], suggesting that it is
unlikely that the computer system algorithms had sub-
stantial classification errors.

Another concern relating to study validity was the failure
of the 6 experts to agree completely on a sizable propor-
tion of defect classifications for the test fields during the
initial validation. The number of experts we included in
our testing differed substantially from those utilized in
virtually all other prospective trials involving visual fields.
This was a deliberate decision to ensure rigor and avoid
chance agreement. The observed lack of concordance in
classifying defects by the 6 experts is most likely due to the
number of experts (6 experts rather than the usual 2
experts plus a tie-breaker) and independence of reviewers
(experts from geographically dispersed clinical centers).
Indeed, we believe members of our expert panel were
more likely to manifest true independence in decision-
making than experts at a single reading center.

http://www.biomedcentral.com/1471-2415/6/34

Conclusion

In summary, we developed a computerized method for
analyzing automated perimetric data in the IONDT. This
system is a validated rule-based system capable of consist-
ently defining pattern and severity of visual field defect
encountered in NAION patient. Its primary use is in the
research setting; these methods are not meant to replace
clinical evaluation. Once incorporated into a computer
system, the criteria for categorizing the pattern and sever-
ity of visual field defects are explicit, obvious, and stand-
ardized. Such attributes are essential within the context of
randomized clinical trials.
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