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Abstract

Background: The xenobiotic transporters, Multidrug Resistance | (MDRI/ABCBI) and Breast Cancer Resistance
Protein (BCRP/ABCG2) may restrict intestinal absorption of various carcinogens, including heterocyclic amines (HCA) and
polycyclic aromatic hydrocarbons (PAH). Cyclooxygenase-2 (COX-2) derived prostaglandins promote gastrointestinal
carcinogenesis, affecting angiogenesis, apoptosis, and invasiveness.

The aim of this study was to investigate if polymorphisms in these genes were associated with risk of colorectal cancer
(CRC), and to investigate possible interactions with lifestyle factors such as smoking, meat consumption, and NSAID use.

Methods: The following polymorphisms were analyzed; a synonymous MDRI/ C3435T (rs1045642) in exon26, G-
rs3789243-A in intron3, the functional BCRP C421A (rs2231142), the two COX-2 A-1195G (rs689466) and G-765C
(rs20417) in the promoter region, and the COX-2 T8473C (rs5275) polymorphisms in the 3'-untranslated region. The
polymorphisms were assessed together with lifestyle factors in a nested case-cohort study of 359 cases and a random
cohort sample of 765 participants from the Danish prospective Diet, Cancer and Health study.

Results: Carriers of the variant allele of MDR/ intron 3 polymorphism were at 1.52-fold higher risk of CRC than
homozygous wild type allele carriers (Incidence rate ratio (IRR) = 1.52, 95% Confidence Interval (Cl): 1.12-2.06). Carriers
of the variant allele of MDRI C3435T exon 26 had a lower risk of CRC than homozygous C-allele carriers (IRR = 0.71
(ClI:0.50-1.00)). There was interaction between these MDRI polymorphisms and intake of red and processed meat in
relation to CRC risk. Homozygous MDR/ C3435T C-allele carriers were at 8% increased risk pr 25 gram meat per day
(CI: 1.00-1.16) whereas variant allele carriers were not at increased risk (p for interaction = 0.02). COX-2 and BCRP
polymorphisms were not associated with CRC risk. There was interaction between NSAID use and MDR/ C3435T and
COX-2 T8473C (p-values for interaction 0.001 and 0.04, respectively).

Conclusion: Two polymorphisms in MDRI were associated with CRC risk and there was interaction between these
polymorphisms and meat intake in relation to CRC risk. Our results suggest that MDR/ polymorphisms affect the
relationship between meat and CRC risk.
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Background

Colorectal cancer (CRC) is one of the leading causes of
cancer-related mortality in the Western World, with great
impact on the life quality for the affected persons. Both
genetic and life-style factors contribute to the pathogene-
sis, and gene-environmental interactions may modulate
cancer risk. Polymorphisms in genes encoding enzymes
involved in the transport and metabolism of ingested car-
cinogens may affect risk of CRC. In line with this, interac-
tions between genetic polymorphisms affecting the
metabolism of dietary carcinogens and meat intake have
been found in relation to CRC [1,2], whereas studies on
the potential interactions between environmental expo-
sure in terms of meat consumption and cigarette smoking
on one side and genetic polymorphisms in genes affecting
intestinal carcinogen transport on the other are scarce
[3.4].

The ATP-binding cassette (ABC) transporters P-glycopro-
tein (encoded by the Multidrug Resistance 1 (MDRI1/
ABCB1) gene) and Breast Cancer Resistance Protein
(BCRP, encoded by the BCRP/ABCG2 gene) are abundant
in the intestine [5]. They transport a diverse spectrum of
substrates from the enterocytes into the intestinal lumen,
thereby restricting the exposure to these potentially harm-
ful substances [6]. The substrates include a vast amount of
structurally unrelated compounds such as various drugs
[7,8]. Moreover, pesticides and insecticides [9], carcino-
gens such as PAHs [10] and HCAs [6,11,12] and endog-
enous compounds such as steroids and cytokines [13,14]
have also been suggested as substrates. One of the most
abundant dietary carcinogens formed during frying and
cooking of meat, 2-Amino-1-methyl-6-phenylimidazo
[4,5-b]pyridine (PhIP), is transported by BCRP [10], and
probably to a lesser extent by P-glycoprotein [6]. P-glyco-
protein preferentially transports large hydrophobic mole-
cules, while BCRP is able to transport both hydrophobic
and large anionic compounds, e.g. conjugates, however,
the substrate specificities have been shown to be overlap-

ping [7].

Intake of red and processed meat have been classified as
risk factor for colorectal cancer (CRC) [15,16]. The exact
mechanisms by which intake of meat and processed meat
promotes carcinogenesis is, however, not clear but several
different mechanisms have been proposed [17]. First, red
and processed meat may be a proxy for a high fat diet or
other life-style factors. Next, red and processed meat rep-
resent sources of carcinogenic heterocyclic amines (HCA),
polycyclic aromatic hydrocarbons (PAH) as well as N-
nitroso compounds [17] caused by cooking at high tem-
perature and by processing of meat. Moreover, heme iron
may promote carcinogenesis in combination with N-
nitroso compounds [17]. Smoking has also been reported
to confer risk of CRC [18,19] and tobacco contains a large
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number of mutagens and carcinogens, including PAH,
nitrosamines, and nicotine [20] that may reach the intes-
tine directly via ingestion of inhaled particles which are
subsequently swallowed. PAHs and other carcinogens
adhered on ingested particles may dissociate from the par-
ticles and be taken up the same way as meat carcinogens.

There is increasing evidence that polymorphisms in
MDR1 affect P-glycoprotein activity and expression [21-
23]. The synonymous MDR1 C3435T polymorphism in
exon 26 has been most extensively investigated. The vari-
ant allele has been associated with lower in vitro activity
and changed substrate specificity, possibly caused by a
lower mRNA stability and protein folding [24,25],
whereas studies on intestinal mRNA levels and protein
expression levels are not consistent [22,26-28]. The poten-
tial functional effect of the MDR1 G-rs3789243A poly-
morphism in intron 3 is unknown [29,30]. MDRI
polymorphisms have been studied in relation to risk of
CRC in previous studies, however, results are inconsistent
[3,31-33].

The variant allele of the non-synonymous BCRP C421A
(Q141K) polymorphism has been associated with lower
protein levels and lowered transport activity both in vitro
[34,35] and in vivo [27,35], but no associations were
found between either the intestinal levels of protein and
mRNA and BRCP polymorphisms [36] or between BCRP
polymorphisms and risk of CRC [4].

Cyclooxygenase-2 (COX-2) plays a key role in gastrointes-
tinal carcinogenesis, affecting angiogenesis, apoptosis,
and invasiveness [37]. Moreover, COX-2 is involved in the
regulation of the intestinal immune response to luminal
antigens [38] and modulate the interaction between car-
cinogen exposure and intestinal barrier function by regu-
lation of the intestinal immune homeostasis.

Two polymorphisms, A-1195G and G-765C in the pro-
moter region of COX-2 have been described [39]. Carriers
of the variant G-allele of -1195 lack a c-Myb binding site
resulting in lowered COX-2 mRNA levels [39]. The G to C
substitution at nucleotide -765 eliminates an Sp1 binding
site, but meanwhile creates an E2F binding site [39]. Even
though in vitro studies have revealed a lower COX-2
expression from the C-allele of G-765C allele [39], in vivo
studies have shown the opposite effect [39,40]. A COX-2
haplotype containing the variant allele in position -765
together with the variant allele of the T8473C polymor-
phism in the 3' untranslated region (UTR) has been asso-
ciated with high COX-2 activity [41], indicating that the
3'UTR variant allele may stabilize the mRNA level. The
COX-2 A-1195G wildtype and G-765C variant alleles were
associated with increased risk of CRC in a large Chinese
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study [42] in accordance with a high COX-2 level con-
ferred by these alleles.

Long term use of aspirin and other non-steroidal anti-
inflammatory drugs (NSAID) has been found to confer
protection against CRC [43,44]. The mechanism is con-
sidered to be inhibition of COX-2 activity but also COX-2
independent pathways are involved which includes anti-
gen activation of gut inflammation [45]. Smoking has
been shown to induce inflammation [46] and COX-2
expression [47,48]. Therefore, we hypothesized that poly-
morphisms affecting the intestinal barrier, i.e. intestinal
transporters, and intestinal immune response may modu-
late the effects of smoking, meat intake and use of NSAIDs
in relation to CRC risk. A priori, we expected that the var-
iant alleles of BCRP C421A, the MDR1 C3435T, MDR1 G-
1s3789243-A, the COX-2 G-765C and T8473C were risk
alleles, and the COX-2 A-1195G wildtype allele was the
high risk allele. We searched for associations between pol-
ymorphisms in MDR1, BCRP and COX-2 and risk of CRC
as well as the potential interaction with smoking, con-
sumption of meat, and use of NSAID in a case-cohort
study nested in the prospective population-based Danish
Diet, Cancer and Health cohort study.

Methods

Studied Subjects

The subjects were selected from the Danish Diet, Cancer
and Health study, an ongoing prospective cohort study
[49]. Between December 1993 and May 1997, 160,725
individuals aged 50 to 64 years, born in Denmark, living
in the Copenhagen and Aarhus areas and having no pre-
vious cancers at the time of invitation, were invited to par-
ticipate in the study. A total of 57,053 persons accepted
the invitation.

In total, 405 cases (184 women and 221 men) of colorec-
tal cancer were diagnosed among the cohort members
between 1994 and 2003 and registered in the files of the
nationwide Danish Cancer Registry. Within the cohort we
defined a sub-cohort sample including 368 women and
442 men who were randomly selected. Cases and the sub-
cohort sample were frequency-matched on gender. Blood
samples were available for 397 cases and 800 sub-cohort
members. All information on genotypes and lifestyle fac-
tors was available for 372 cases and 765 sub-cohort mem-
bers. 13 colorectal cancer cases diagnosed with carcinoid
tumor or various other histological subtypes were
excluded from the analysis, leaving 359 adenocarcinoma
cases.

Lifestyle variables
At enrolment, detailed information on diet, lifestyle,
weight, height, medical treatment, environmental expo-
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sures, and other socio-economic factors were collected
[49]. In the food-frequency questionnaire, meat con-
sumption was assessed in 12 categories of predefined
responses, ranking from 'never' to 'eight times or more per
day'. The daily intake was then calculated by using Food-
Calc [50], this program uses population specific standard-
ized recipes and portion sizes. Intake of red meat in grams
per day was calculated by adding up intake of beef, veal,
pork, lamb and offal. Intake of processed meat in grams
per day was calculated by adding up intake of processed
red meat, including bacon, smoked ham, salami, frank-
furter, Cumberland sausage, cold cuts and liver paté. Total
dietary fibers are calculated by the AOAC methods [51].
Pearson correlation coefficients (adjusted for total energy
intake) illustrating the comparison of nutient scores esti-
mated from the food-frequency questionnaire and from
the diet records were 0.39 and 0.53 for dietary fibers, 0.56
and 0.48 for iron, and 0.37 and 0.14 for meat for men and
women, respectively [52,53]. Alcohol intake was recorded
as the average frequency of intake of six types of alcoholic
beverage over the preceding year: the frequency of con-
sumption of three types of beer was recorded in bottles
(330 ml), wine in glasses (125 ml), and fortified wine in
drinks (60 ml) and spirits in drinks (30 ml). The prede-
fined responses were in 12 categories, ranging from
"never" to "8 or more times a day". The alcohol content
was calculated as follows: one bottle of light beer, 8.9 g
ethanol; one bottle of regular beer, 12.2 g ethanol; one
bottle of strong beer, 17.5 g ethanol; one glass of wine,
12.2 g ethanol; one drink of fortified wine, 9.3 g ethanol;
and one drink of spirits, 9.9 g ethanol. We did not differ-
entiate between red and white wine. Smoking intensity
was calculated as gram tobacco smoked per day and
included information on cigarettes (one cigarette = 1 g
tobacco), cigars (one cigar = 4.5 g tobacco), cheroot (one
cheroot = 4 g tobacco), and pipe (one pipe = 3 g tobacco).

The lifestyle questionnaire included this question regard-
ing use of NSAID: "Have you taken more than one pain
relieving pill per month during the last year?" If the
answer was yes, the participant was asked to record how
frequently they took each of the following medications:
"Aspirin", "Paracetamol”, "Ibuprofen", or "Other pain
relievers”. The latter category included NSAID prepara-
tions other than aspirin and ibuprofen. Based on all
records, we classified study subjects according to use of
"any NSAID" (= 2 pills per month during one year) at
baseline.

Data on hormone replacement therapy (HRT), intake of
dietary fibre and red meat, and anthropometric measure-
ments was obtained as previously described [49]. The
body mass index (BMI) was calculated as weight (kg) per
height (m) squared.
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Blood sampling and storage

Blood was collected at enrolment and prepared as previ-
ously described [54]. In short, a total of 30 ml blood was
collected in citrated (2 x 10 ml) and plain (1 x 10 ml)
Venojects from each non-fasting participant. Plasma,
serum, lymphocytes, and erythrocytes were isolated and
frozen at -20°C within 2 hours. At the end of the day of
collection, all samples were stored in liquid nitrogen, at -
150°C.

Genotyping

All analyses were run blinded to the case-control status.
DNA was isolated from frozen lymphocytes as described
by Miller et al [55]. Generally, 100 ng DNA were obtained
from 107 lymphocytes. Genotyping was performed by
TagMan real-time quantitative PCR (QPCR).

MDR1 C3435T and G-r1s3789243-A, BCRP C421A, and
COX-2 G-765C were genotyped on an Mx3000 machine
(Stratagene, La Jolla, CA, USA), using the Allelic Discrim-
ination feature of the MxPro software (Stratagene). Reac-
tions were carried out essentially as previously described
[30], except the reaction volume was 15 pl. In brief, each
reaction contained 1x TagMan Universal Master Mix
(Applied Biosystems, Foster City, CA, USA), approxi-
mately 20 ng DNA, and the relevant sets of primers and
locked nucleic acid (LNA)-containing probes. All reac-
tions were run for 50 cycles with two PCR steps, denatur-
ation and combined annealing and elongation,
respectively, except for MDRI1 G-1s3789243-A, where
annealing and elongation were split. Verified genotype
controls were included in each run. To confirm reproduc-
ibility, 20 samples for each SNP were randomly selected
within each of the three genotype groups and repeated.
The genotypes showed 100% identity.

COX-2 A-1195G and T8473C were genotyped on an
ABI7500 machine by endpoint readings as previously
described [54]. Twenty ng of DNA were genotyped in 5 pl
containing 1x Mastermix (Applied Biosystems, Naerum,
Denmark), 100 nM probes, and 900 nM primers. Con-
trols were included in each run, and repeated genotyping
of a random 10% subset yielded 100% identical geno-

types.

Statistical Analysis

The analyses were performed according to the principles
for the analysis of case-cohort studies as described by Bar-
low [56]. The analyses were performed unweighted. Age
was used as the time scale in the Cox regression model.
Tests and confidence intervals were based on Wald's test
using the robust estimate of the variance-covariance
matrix for the regression parameters in the Cox regression
model [57].
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All models were adjusted for baseline values of estab-
lished risk factors for colorectal cancer such as BMI (kg/
m2, continuous), NSAID (yes/no), use of HRT (never/
past/current, among women), smoking status (never/
past/current), and intake of dietary fibers (g/day, continu-
ous) and red meat (g/day, continuous).

We investigated possible interactions between the genes
and selected environmental factors using the likelihood
ratio test. Trend test were calculated using the Wald test.
The procedure PHREG in SAS (release 9.1; SAS Institute
Inc., Cary, NC, USA) was used for the statistical analyses.

Ethics

All participants gave verbal and written informed consent.
Diet, Cancer and Health and the present sub-study were
approved by the regional Ethics Committees on Human
Studies in Copenhagen and Aarhus (Jr.nr. (KF)11-037/01
and jr.nr. (KF)01-045/93), and by the Danish Data Pro-
tection Agency.

Results

Associations between genotypes and CRC risk
Characteristics of the study population and risk factors for
CRC are shown in Table 1.

The genotype distributions among the participants in the
sub-cohort sample did not deviate from Hardy-Weinberg
equilibrium (results not shown). Carriers of the variant
allele of MDR1 G-1s3789243-A were at 1.52-fold (95%
confidence interval (CI): 1.12-2.06) higher risk of CRC
than homozygous carriers of the wild type allele (Table 2).
Carriers of the variant allele of MDR1 C3435T exon 26
had a lower risk of CRC than homozygous C-allele carriers
(IRR = 0.71 (CI: 0.50-1.00)). COX-2 and BRCP polymor-
phisms were not associated with CRC risk (Table 2).

Haplotype analyses

The two MDR1 polymorphisms were in incomplete link-
age such that the two variant alleles co-segregated.
Homozygous carriers of the combination of the C-allele
of MDR1 C3435T and the A-allele of MDR1 G-1s3789243-
A were at 1.80 fold higher risk of CRC (95% CI: 1.06-3.05)
than homozygous carriers of the combination of the T-
allele of MDR1 C3435T and the G-allele of MDR1 G-
1$3789243-A. Carrier of only one of the risk alleles were
generally also at higher risk of cancer, indicating that both
polymorphisms contributed to the association with risk of
CRC (Table 3).

Haplotype analyses combining the three polymorphisms
of COX-2 revealed that four haplotypes included 97% of
the observed genotype combinations in the cohort sam-
ple. COX-2 haplotypes were not associated with CRC risk
(results not shown).

Page 4 of 11

(page number not for citation purposes)



BMC Cancer 2009, 9:407

http://www.biomedcentral.com/1471-2407/9/407

Table I: Baseline characteristics of study participants selected from the Danish Diet, Cancer and Health prospective cohort study.

Cases Sub-cohort IRR?(95% CI)
No. (%) Median (5-95%) No. (%) Median (5-95%)
Total 359 (100) 765 (100)
Gender
Men 200 (56) 419 (55)
Women 159 (44) 346 (45)
Age at inclusion 59 (51-64) 56 (50-64)
Topology
Proximal segment of colon 42 (12) -
Distal segment of colon 142 (40) -
Rectal 129 (36) -
Not specified 46 (13) -
BMI, kg/m? 26 (21-34) 26 (20-33) 1.02b (0.96-1.09)
Food intake
Alcohol, g/day 14 (1-69) 13 (1-64) 1.06b (1.00-1.13)
Red meat, g/day 82 (36-170) 82 (32-175) 1.02b (0.94-1.12)
Processed meat, g/day 26 (6-80) 26 (4-78) 1.00b (0.85-1.19)
Dietary fibers g/day 20 (10-32) 21 (11-34) 0.62b (0.37-1.02)
Smoking status at inclusion
Never 11 @31) 262 (34) 1.00 -
Former 112 (31) 239 (31) 1.02 (0.73-1.42)
Present 136 (38) 264 (35) I.15 (0.83-1.61)
NSAID use
No 244 (68) 528 (69) 1.00 -
Yes 115 (32) 237 (31) 1.07 (0.80-1.42)
HRT use among women
Never 93 (58) 181 (52) 1.00 -
Former 25 (l6) 60 (17) 0.68 (0.39-1.18)
Present 41 (26) 105 (30) 0.70 (0.44-1.10)

2 Mutually adjusted.

bBMI pr. 2 kg/m2. Alcohol pr. 10 g/day. Red meat, processed meat and dietary fibers pr 25 g/day.
Observed median values (5-95 percentiles) or percents of the distribution of alcohol, NSAID, smoking and potential colorectal cancer confounders

among cases and members of the comparison group.

Gene-gene and gene-environment analyses

Since we observed no gene-dose effects, variant genotypes
were combined in subsequent interaction analyses to
maximize the statistical power. No gene-gene interaction
between the MDR1 G-1s3789243-A and COX-2 T8473C
polymorphisms was found (results not shown). Since we
observed no allele-dose effects, variant genotypes were
combined in subsequent interaction analyses to maxi-
mize the statistical power. There was interaction between
the studied MDR1 polymorphisms and intake of red and
processed meat in relation to CRC risk (Table 4). Variant
allele carriers of MDR1 G-1s3789243-A were at 3% higher
risk pr 25 g meat/day (CI: 0.98-1.09) whereas for
homozygous carriers of the wild type allele the association
was in the opposite direction although not statistically sig-

nificant (IRR pr 25 g/day: 0.95, CI: 0.89-1.02, p for inter-
action = 0.01). Homozygous MDR1 C3435T C-allele
carriers were at 8% higher risk pr 25 g meat/day (CI: 1.00-
1.16) whereas variant allele carriers were not at risk by
meat intake (IRR pr 25 g/day 1.00, CI: 0.95-1.06, p for
interaction = 0.02). No interaction was found for BCRP
C421A.

We found interaction between MDR1 C3435T and NSAID
use in relation to risk of CRC (Table 5). Among
homozygous carriers of the C-allele, NSAID use was asso-
ciated with 2.34-fold (CI: 1.22-4.48) higher risk of CRC
compared to non-users, whereas NSAID use had no effect
among variant allele carriers (p for interaction 0.001).
Likewise, there was a marginally statistically significant
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Table 2: Incidence rate ratio for colorectal cancer for the studied gene polymorphisms.

Nc..o Nsub-conore IRR= (95% CI) IRRb (95% CI) P-values
MDRI G-rs3789243-A
GG 8l 224 1.00 - 1.00 - 0.03
GA 194 365 .55 (1.13-2.12) .55 (1.12-2.14)
AA 84 176 1.43 (0.98-2.08) |.45 (0.99-2.13)
GA and AA 278 54 1.51 (1.12-2.04) 1.52 (1.12-2.06)
MDRI C3435T
cc 73 18 1.00 - 1.00 - 0.11
cT 174 385 0.69 (0.49-0.99) 0.74 (0.51-1.07)
T 12 262 0.66 (0.45-0.96) 0.66 (0.45-0.98)
CTand TT 286 647 0.68 (0.48-0.95) 0.71 (0.50-1.00)
COX-2 G-765C
GG 267 566 1.00 - 1.00 - 091
cG 83 186 1.02 (0.75-1.39) 1.03 (0.75-1.41)
cc 9 13 |.45 (0.61-3.48) 1.21 (0.49-2.98)
CGand CC 92 199 .05 (0.78-1.41) 1.04 (0.77-1.42)
COX-2 A-1195G
AA 230 482 1.00 - 1.00 - 0.88
AG 16 258 0.94 (0.71-1.24) 0.93 (0.70-1.23)
GG 13 25 0.90 (0.44-1.85) 0.94 (0.45-1.95)
AG and GG 129 283 0.93 (0.71-122) 0.93 (0.71-1.23)
COX-2 T8473C
T 147 315 1.00 - 1.00 - 037
cT 178 355 112 (0.85-1.48) 111 (0.83-1.47)
cc 34 95 0.82 (0.52-1.29) 0.8l (0.51-1.28)
CT and CC 212 450 1.06 (0.81-1.38) .05 (0.80-1.37)
BRCP C421A
cc 296 592 1.00 - 1.00 - 0.16
CA 58 161 0.72 (0.51-1.01) 0.71 (0.50-1.01)
AA 5 12 110 (0.38-321) 117 (0.39-3.57)
CAand AA 63 173 0.74 (0.53-1.03) 0.73 (0.52-1.04)

aCrude (adjusted for age and sex).
bAdjusted for status of HRT (women only), smoking status, alcohol, dietary fibre, red meat, BMI and NSAID.
cp-value for trend for the fully adjusted estimates.

Table 3: Incidence rate ratio for colorectal cancer for combinations of MDRI genotypes

IRR2 (95% CI) (Ncaseleub-cohort)

MDRI C3435T

MDRI G-rs3789243-A ccC CcT TT

GG 138 (0.31-6.15) 116 (0.66-2.06) 1.00° -
Ncase/Nsub-cohort (3/6) (27/68) (52“ 53)

GA 2.20 (1.22-3.96) 1.52 (1.01-2.29) 1.72 (1.06-2.81)
N case/Nsub-cohort (32/42) (110/234) (55/92)

AA 1.80 (1.06-3.05) 138 (0.82-2.32) .48 (0.58-3.75)
Ncase/Nsub-cohort (39/72) (38/85) (8/20)

2 Adjusted for status of HRT, smoking status, alcohol, dietary fibre, red meat and BMI.
bThe most prevalent double homozygous genotype was used as reference.
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Table 4: Interaction between intake of red and processed meat and MDRI and BCRP polymorphisms in relation to CRC risk.

Nc..o Nsub-conore IRR=  (95% CI) IRRE  (95% CI) P-valuec
MDRI G-rs3789243-A
GG 8l 224 0.95 (0.89-1.02) 0.95 (0.89-1.02) 0.0l
GA and AA 278 54 1.03 (0.98-1.08) 1.03 (0.98-1.09)
MDRI C3435T
cc 73 18 1.07 (1.00-1.15) 1.08 (1.00-1.16) 0.02
CTand TT 286 647 1.00 (0.94-1.05) 1.00 (0.95-1.06)
BRCP C421A
cc 296 592 1.02 (0.97-1.07) 1.02 (0.97-1.08) 0.40
CAand AA 63 173 0.99 (0.91-1.07) 0.99 (0.91-1.08)

IRR for colorectal cancer pr intake of additionally 25 g red or processed meat in relation to risk of CRC.

aCrude (adjusted for age and sex).

bAdjusted for status of HRT (women only), smoking status, alcohol, dietary fibre, BMI and NSAID.
cp-value for interaction between genotype and red and processed meat for the fully adjusted estimates.

interaction between COX-2 T8473C and NSAID use (p for
interaction 0.04). A statistically non-significantly
increased risk of CRC by NSAID use was found among
homozygous wild type allele carriers (IRR 1.38, CI: 0.89-
2.14) compared to non-NSAID users, whereas NSAID use
was not associated with increased CRC risk among variant

allele carriers (Table 5). The same trend was seen for the
COX-2 G-765C polymorphism (p = 0.06).

There was no interaction between the polymorphisms
and smoking status in relation to CRC risk (results not
shown).

Table 5: Interactions between nonsteroidal anti-inflammatory drug (NSAID) use and MDRI, COX-2 and BCRP polymorphisms.

Polymorphism N .se/Noub-conore ~ IRR2(95% CI) IRR® (95% CI) p-valuec
NSAIDd NSAIDd NSAID4
NO YES NO YES NO YES

MDR]| C3435T
CcC 41/79 32/39 1.00 - 221 (1.17-4.17)  1.00 - 234 (1.22-448) 0.001
CTand TT 204/449 82/198 092 (0.60-1.41) 0.83 (0.52-1.33) 0.99 (0.63-1.54) 086 (0.53-1.39)

MDRI G-rs 3789243-A
GG 54/160  27/64 1.00 - .35 (0.77-2.35) 1.00 - 1.31  (0.74-2.32) 0.26
GA and AA 191/368 87/173 1.65 (1.15-2.38) 1.65 (1.09-2.49) 1.66 (l.15-241) 1.61 (1.06-2.46)

COX-2 G-765C
GG 180/397 87/169 1.00 - 122 (0.89-1.69) 1.00 - 120 (0.86-1.67) 0.06
CGand CC 65/131 27/68 122 (0.86-1.75) 093 (0.57-1.51) 1.23 (0.85-1.78) 0.90 (0.54-1.48)

COX-2 A-1195G
AA 156/329 74/153 1.00 - .05 (0.75-148) 1.00 - 099 (0.69-1.41) 0.46
AG and GG 89/199  40/84 091 (0.66-1.27) 1.04 (0.67-1.60) 0.88 (0.63-1.23) 1.04 (0.67-1.61)

COX-2 T8473C
TT 94/222  53/93 1.00 - 142 (0.92-2.18) 1.00 - 1.38  (0.89-2.14) 0.04
CT and CC 151/306 61/144 123 (0.89-1.70) 1.09 (0.73-1.62) 1.22 (0.87-1.69) 1.05 (0.70-1.58)

BCRP C421A
CcC 199/414  97/178 1.00 - 120 (0.88-1.63) 1.00 - 1.18  (0.85-1.62) 0.09
CA and AA 46/114 17/59 086 (0.58-1.27) 062 (0.35-1.10) 0.86 (0.57-1.29) 0.60 (0.33-1.08)

2Crude (adjusted for age and sex).

bAdjusted for status of HRT (women only), smoking status, alcohol, dietary fibre, red meat and BMI.

cp-value for interaction for the fully adjusted risk estimates.

dStudy subjects were classified according to use of "any NSAID" (> 2 pills per month during one year) at baseline
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Discussion

In the present study, both of the studied MDR1 polymor-
phisms were associated with CRC risk and interacted with
meat intake in relation to CRC risk. Carriers of the MDR1
G-1s3789243-A A-allele and homozygous carriers of
MDR1 C3435T C-allele were at higher risk of CRC than
carriers of the common allele genotypes. Carriers of these
two genotypes were, moreover, at higher risk of CRC in
relation to intake of red and processed meat whereas car-
riers of the respective common allele genotypes were not
at higher risk of CRC in relation to meat intake. COX-2
and BCRP gene polymorphisms were not associated with
CRC risk. Furthermore, there was interaction between
NSAID use and the MDR1 C3435T and COX-2 T8473C
polymorphisms in relation to risk of CRC. No gene-smok-
ing interactions were found.

The present study design has pros and cons. Prospective
studies have the advantage in relation to examining gene-
environmental interactions that they are not encumbered
by recall bias. In the present study, cases and cohort sam-
ple were selected from the same cohort, which together
with complete follow up of the participants, minimised
the risk of selection bias. Information on lifestyle factors
were collected at enrolment for all participants which
minimised the risk of differential misclassification of
cases and comparison group. However, lifestyle factors
were only collected once, and may thus not be represent-
ative for the lifestyle during follow-up. This is, however,
not expected to result in differential misclassification. Fur-
thermore, information on food intake was based on a
semi-quantitatively food frequency questionnaire
[49,53], which was, however, evaluated and found usea-
ble [52].

Known life-style factors affecting the risk of CRC include
diet, physical activity, body mass index (BMI), alcohol,
smoking and NSAID use [15]. In this study the results
were adjusted for relevant confounding factors. Physical
activity (habitual exercise) has been shown not to be a risk
factor in this population and hence, was not adjusted for
[58].

Heterozygous and homozygous variant genotype carriers
were combined for the analyses of interactions due to
power-considerations. Therefore, in the light of the
obtained P-values and the number of statistical testes per-
formed, we cannot exclude that our positive findings are
due to chance. On the other hand, the fact that we found
interaction between both of the studied MDR1 polymor-
phisms and meat intake in relation to CRC risk makes a
chance finding less likely.

In contrast to the finding in the present study, MDR1 pol-
ymorphisms have not been associated with overall risk of

http://www.biomedcentral.com/1471-2407/9/407

CRC in previous studies [31-33]. The only other larger
study, a case-cohort study in a Norwegian population of
the polymorphism G-1s3789243A [29,30] found no asso-
ciation between this SNP and the development of intesti-
nal adenomas and carcinomas [3]. Smaller studies,
including up to 285 cases, have not found associations
with overall CRC risk among Caucasians or Koreans [31-
33], although an association was found between the
MDR1 C3435T variant allele and CRC risk among patients
diagnosed before the age of 50 years [31]. Moreover, we
found no interaction between the MDR1 polymorphism
and smoking status which is in contrast to a previous
study showing an association between MDR1 C3435T var-
iant allele and CRC risk among life-long nonsmokers of
more than 63 years of age [33]. Relative to our study, the
mentioned studies have a weaker design.

We found a relative risk by meat intake of 1.03 (95% CI:
0.98-1.09, p for interaction = 0.01) and 1.08 (95% CL
1.00-1.16, p for interaction 0.02) per 25 g red and proc-
essed meat per day for the two identified risk MDR1 gen-
otypes. The risk is in line with a previous finding of a
relative risk of 1.29 per 100 g per day [16]. Moreover, meat
intake was not associated with CRC risk for carriers of the
other genotypes. The found interactions between MDR1
polymorphisms and intake of meat in the present study
suggest that the MDR1 polymorphisms may be of minor
importance in study populations with a low intake of red
and processed meat.

We observed an interaction between MDR1 C3435T and
NSAID use such that NSAID use was associated with
increased CRC risk among homozygous carriers of the
wild type allele only. In cell lines, COX-2 has been shown
to induce P-glycoprotein [59] whereas COX-2 inhibition
prevented the expression and function of P-glycoprotein
[60], thereby affecting apoptosis [61]. A similar relation-
ship has been found in vivo [62]. Thus, NSAID use seems
to affect P-glycoprotein tumorigenesis in an incompletely
understood manner. While MDRI seems to play a role in
CRC carcinogenesis, much is to be learned about the func-
tion of P-glycoprotein in relation to carcinogenesis.

The silent MDR1 C3435T polymorphism has been sug-
gested to lead to a more unstable mRNA and conse-
quently, lower overall activity of the variant allele should
be expected [24]. Therefore, we expected that red and
processed meat would be most carcinogenic among T-
allele carriers of MDR1 C3435T, whereas the opposite was
found. However, in a very recent review, Fung et al suggest
that the silent C3435 polymorphism induces a conforma-
tional change in P-glycoprotein due to ribosome stalling
during translation, whereas no effect on mRNA stability
was detected [25]. The two polymorphic P-glycoproteins
were shown to differ in their substrate specificity, since
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transport of varapamil but not rapamycin was changed by
the polymorphism [25]. Our study suggestthat red and
processed meat were most carcinogenic among C-allele
carriers of MDR1 C3435T. The very large MDR1 gene
includes 28 exons and is highly polymorphic which
makes it difficult to identify causal polymorphisms. In
addition, linkage patterns and allele frequencies in MDR1
are highly variable between different ethnic groups and
thus between the studied populations [22]. Hence, case-
control studies with assessment of multiple polymor-
phisms, enabling comprehensive haplotype analysis, in
parallel with P-glycoprotein activity, mRNA and protein
level measurements, will be required to understand
MDR1 genotype-phenotype causality.

We found no association between BCRP genotypes and
risk of CRC and on interaction between BCRP genotypes
and meat, smoking or NSAID. Our result is in accordance
with a recent gene-wide association study [4]. Our study
suggests that P-glycoprotein, but not BCRP, transport cer-
tain carcinogens, which are relevant in relation to meat
intake. Therefore, elucidating substrate differences
between P-glycoprotein and BCRP may help to identify
possible mechanisms behind meat-related carcinogenesis
[63].

We found no association between COX-2 genotypes and
risk of CRC. The haplotype pattern was similar to what
has previously been found for Danes [54]. In accordance
with our results, no association between COX-2 polymor-
phisms and CRC was demonstrated in a large French case
control study [64] and smaller studies [65,66]. Variant
allele carriers of COX-2 G-765C have been reported to be
at higher CRC risk among Han Chinese [42]. Other stud-
ies suggest that the effects of polymorphisms on COX-2
expression levels are large enough to have biological
impact provided that COX-2 expression is important in
CRC [54]. On this basis, our results suggest that COX-2
plays a limited role in colon carcinogenesis in the present
study population.

Interaction between NSAID and COX-2 polymorphisms
in relation to risk of CRC and colorectal adenomas has
been investigated previously [65,67,68]. Although some
studies on colorectal adenomas may suggest that the larg-
est risk-reducing effect by NSAID use is observed among
the genotypes related to high COX-2 levels, results are not
consistent [68-70]. We observed interaction between
COX-2T8473C and NSAID use. NSAID use was associated
with CRC risk among homozygous carriers of the COX-2
T8473C genotype, which is assumed to be associated with
low expression levels. In accordance with our result,
[45,61] aspirin has been shown to induce COX-2 tran-
scription in some tissues, among others intestinal myofi-
broblasts, especially in the presence of IL-1p [71]. On the
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other hand, induction of COX-2 gene expression by inhi-
bition of COX-2 have been demonstrated in both liver
and colon cancer cell lines [45,61]. This seem to be medi-
ated by a COX-2 independent mechanism [45], These in
vitro results indicate that the tissue specific effects of
NSAIDs are far from clear. Thus, the observed interaction
may be a chance finding. In the 'Diet, Cancer and Health
cohort, used in the present study, long term use of NSAID
was associated with a protective effect against CRC [72].
However, using a higher intake of NSAID as cut-off value
(weekly use) did not change our results regarding NSAID
use (results not shown).

Conclusion

In conclusion, the present study indicated that the two
studied MDR1 polymorphisms are associated with risk of
CRC and interact with intake of red and processed meat in
relation to CRC risk, whereas no association was found
between BCRP and COX-2 polymorphisms and risk of
CRC. Our study suggests that genetic variations in MDR1,
but not BCRP, affects the intestinal absorption of meat
related dietary carcinogens and that elucidating substrate
differences between P-glycoprotein and BCRP may iden-
tify possible mechanisms behind meat-related carcino-
genesis. This is the first study finding interactions between
polymorphisms affecting intestinal transport proteins and
meat intake in relation to CRC.

Next, our results suggest an increased risk of CRC by
NSAID intake by homozygote MDR1 C3435T wildtype
carriers. If confirmed, the present results stresses the
importance of identification of possible subgroups which
may not take advantage of, or may even be at increased
risk, by NSAID prevention. No consistent associations
were observed for COX-2 polymorphisms.
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